
Chapter 7

Eigenvectors and eigenvalues

7.1 Eigenvalues and eigenvectors

We start with the main definition of this chapter.

Definition 7.1.1. Let V be a vector space over a field F, and let L : V → V be a linear
map. An element λ ∈ F is an eigenvalue of L if there exists X ∈ V with X ̸= 0 such
that

L(X) = λX.

In such a case, X is called an eigenvector or an eigenfunction associated with the
eigenvalue λ.

Examples 7.1.2. (i) Consider LA : R2 → R2 with A = ( 1 2
4 3 ). Then one observes

that

LA

(
1
2

)
=

(
1 2
4 3

)(
1
2

)
=

(
5
10

)
= 5

(
1
2

)
.

Thus, ( 1
2 ) is an eigenvector of LA associated with the eigenvalue 5. Similarly, one

can check that ( 1
−1 ) is an eigenvector of LA associated with the eigenvalue −1.

(ii) If A =

( a11 0 ... 0
0 a22 ... 0
...

...
...

...
0 0 ... amn

)
, then Ej is an eigenvector of LA associated with the

eigenvalue ajj.

(iii) If V = C1(R) and if L = d
dx
, then any λ ∈ R is an eigenvalue of L since the

function x 7→ eλx belongs to C1(R) and satisfies[
L
(
eλ·
)]
(x) =

(
eλ·
)′
(x) = λeλx.

Thus this function is an eigenvector associated with the eigenvalue λ.
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Remark 7.1.3. An eigenvector is never unique. Indeed, if X is an eigenvector asso-
ciated with the eigenvalue λ of L, then for any c ∈ F with c ̸= 0 the element cX ∈ V
is also an eigenvector of L associated with the eigenvalue λ. Indeed, one only has to
observe that

L(cX) = cL(X) = cλX = λ(cX).

More generally one has:

Lemma 7.1.4. The set of eigenvectors associated with the eigenvalue λ of L is a sub-
space of V .

This vector space is called the eigenspace associated with the eigenvalue λ of L.

Proof. We have just seen that if X is an eigenvector of L associated with the eigenvalue
λ, then cX is an eigenvector associated with the same eigenvalue. This corresponds to
the second condition of the definition of a subspace of V , see Definition 3.1.5.

For the first condition of the same definition, observe that if X1, X2 satisfy L(X1) =
λX1 and L(X2) = λX2, then one has

L(X1 +X2) = L(X1) + L(X2) = λX1 + λX2 = λ(X1 +X2),

which corresponds to this condition.

Example 7.1.5. Let A =
(

0 0 0
0 3 0
0 0 3

)
∈ M3(R) and consider the corresponding map LA :

R3 → R3. Then 0 and 3 are eigenvalues of LA, with E1 an eigenvector associated with
the eigenvalue 0, and any cE2 + dE3, with c, d ∈ R, an eigenvector associated with the
eigenvalue 3. Note that the eigenspace associated with the eigenvalue 0 is of dimension
1 while the eigenspace associated with the eigenvalue 3 is of dimension 2.

The following result is important, especially in relation with quantum mechanics.

Theorem 7.1.6. Let λ1, . . . , λm be eigenvalues of L, and let X1, . . . , Xm be correspond-
ing eigenvectors. If λi ̸= λj for any i ̸= j, then the vectors X1, . . . , Xm are linearly
independent.

Proof. This proof is a proof by induction. Clearly, if m = 1 then the only eigenvector
X1 ̸= 0 is linearly independent. So, let us assume that the statement is true for a certain
m−1 ≥ 1, and let us prove it for m. Thus, let us assume that X1, . . . , Xm−1 are linearly
independent, and show that X1, . . . Xm are also linearly independent. For this purpose,
consider the linear combination

c1X1 + c2X2 + · · ·+ cmXm = 0, (7.1.1)

for some coefficients cj ∈ F. By multiplying this equality by λm one gets

c1λmX1 + c2λmX2 + · · ·+ cmλmXm = 0. (7.1.2)
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On the other hand, by applying L to (7.1.1) one gets

c1L(X1) + c2L(X2) + · · ·+ cmL(Xm) = c1λ1X1 + c2λ2X2 + · · ·+ cmλmXm = 0. (7.1.3)

Finally, by subtracting (7.1.3) to (7.1.2) one obtains

c1 (λm − λ1)︸ ︷︷ ︸
̸=0

X1 + c2 (λm − λ2)︸ ︷︷ ︸
̸=0

X2 + · · ·+ cm−1 (λm − λm−1)︸ ︷︷ ︸
̸=0

Xm−1 = 0.

Since X1, . . . , Xm−1 are linearly independent, it follows that c1 = c2 = · · · = cm−1 = 0.
We then conclude from (7.1.1) that cm = 0 as well, meaning thatX1, . . . , Xm are linearly
independent.

Corollary 7.1.7. If A ∈ Mn(F), then the linear map LA : Fn → Fn can have at most
n distinct eigenvalues.

Proof. If LA had m > n eigenvalues, then the eigenvectors X1, . . . , Xm would be a
family of m linearly independent elements of Fn, which is impossible.

7.2 The characteristic polynomial

If V is a vector space over a field F, and if L : V → V is a linear map, how can one find
out the set of eigenvalues of L ? In this section, we shall answer this question.

Theorem 7.2.1. Assume that V is a finite dimensional vector space over F, and let
L : V → V be linear. Then λ ∈ F is an eigenvalue of L if and only if L − λ1 is not
invertible.

Proof. If λ is an eigenvalue of L, with X ∈ V an associated eigenvector, then

[L− λ1](X) = L(X)− λX = λX − λX = 0,

and thereforeX ∈ Ker(L−λ1). By Theorem 4.7.8, it follows that L−λ1 is not invertible.
Reciprocally, if L−λ1 is not invertible, it follows from the same theorem that there

exists X ∈ Ker(L − λ1) with X ̸= 0. In other words, there exists X ∈ V with X ̸= 0
such that L(X)− λX = 0, which means that L(X) = λX. Thus, λ is an eigenvalue of
L and X is an associated eigenvector.

Let us consider a special case of the previous statement. If V = Fn and L = LA for
some A ∈ Mn(F) one infers that λ ∈ F is an eigenvalue of LA if and only if LA − λ1 is
not invertible, i.e. if and only if A− λ1n is not invertible. However, we have seen that
this holds if and only if Det(A− λ1n) = 0. We have thus proved:

Corollary 7.2.2. Let F be an arbitrary field, and let A ∈ Mn(F). Then λ is an eigen-
value of LA if and only if Det(A− λ1n) = 0.
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Definition 7.2.3. For any A ∈ Mn(F) and λ ∈ F, one sets

PA(λ) := Det(A− λ1n)

and call it the characteristic polynomial associated with A.

Note that some authors use the following definition: PA(λ) = Det(λ1n −A) which
is equal to ±Det(A−λ1n), depending if n is even or odd. Note also that if A ∈ Mn(F),
then PA is a polynomial of degree n. As a consequence of the previous corollary, one
has obtained:

Proposition 7.2.4. For any A ∈ Mn(F), the scalar λ ∈ F is an eigenvalue of LA if
and only if PA(λ) = 0.

Examples 7.2.5. (i) Let A = ( 1 2
4 3 ), then

PA(λ) = Det(A−λ12) = Det

(
1− λ 2
4 3− λ

)
= (1−λ)(3−λ)−8 = (λ−5)(λ+1).

Thus, the eigenvalues of LA are −1 and 5.

(ii) For A =
(

1 1 2
0 5 −1
0 0 7

)
one has

PA(λ) = Det

1− λ 1 2
0 5− λ −1
0 0 7− λ

 = (1− λ)(5− λ)(7− λ),

and the eigenvalues of LA are 1, 5 and 7.

(iii) For ( 0 1
1 0 ) one has PA(λ) = (1− λ)(1 + λ), and the eigenvalues are −1 and 1.

(iv) For ( 0 1
−1 0 ) one has PA(λ) = λ2 + 1 and the eigenvalues are... ?

Note that once the eigenvalues have been determined, it is possible to find the
eigenvectors (or the eigenspaces) by solving a linear system. Indeed, if λ is an eigenvalue
of LA one looks for some X ∈ Fn such that AX = λX ⇔ (A− λ1n)X = 0.

Examples 7.2.6. (i) For A = ( 1 2
4 3 ) and λ = 5, one has to solve[(

1 2
4 3

)
−
(
5 0
0 5

)](
x
y

)
=

(
−4 2
4 −2

)(
x
y

)
=

(
0
0

)
which is equivalent to{

−4x+ 2y = 0
4x− 2y = 0

⇔
{

x arbitrary
y = 2x

.

Thus, the eigenspace associated with the eigenvalue 5 is given by {( x
2x ) | x ∈ R}

or equivalently {x ( 1
2 ) | x ∈ R}.
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(ii) For ( 0 1
1 0 ) and the eigenvalue λ = 1 one has to solve(

−1 1
1 −1

)(
x
y

)
=

(
0
0

)
which is equivalent to the single equation −x + y = 0, or equivalently to x = y.
Thus, the eigenspace associated with the eigenvalue 1 is {x ( 1

1 ) | x ∈ R}.

Let us now come back to the matrix ( 0 1
−1 0 ) with PA(λ) = λ2 + 1. Assume for a

while that there exists λ, solution of λ2+1 = 0, or equivalently λ2 = −1. One can then
wonder about the corresponding eigenspace ? For that purpose, consider[(

0 1
−1 0

)
− λ

(
1 0
0 1

)](
x
y

)
=

(
−λ 1
−1 −λ

)(
x
y

)
=

(
0
0

)
,

which is equivalent to{
−λx+ y = 0
−x− λy = 0

⇔
{

y + λ2y = 0
x = −λy

⇔
{

y(1 + λ2) = 0
x = −λy

.

Since 1 + λ2 = 0, the element y can be chosen arbitrarily, and then one can define
x by the relation x = −λy. Thus, the eigenspace associated with the eigenvalue λ is
{y ( −λ

1 ) | y ∈ R} which is a one dimensional vector space. Everything looks fine, except
that there is no λ ∈ R satisfying λ2 + 1 = 0 ! At this point, it is necessary to introduce
the notion of complex numbers, which will be done in the last chapter.

As a final example, one can consider the matrix A =
(

2 1 0
0 1 −1
0 2 4

)
with corresponding

characteristic polynomial PA(λ) = (2 − λ)2(3 − λ). Thus, the eigenvalues of LA are 2
and 3. It is good exercise to check this characteristic polynomial, and to determine the
eigenspace corresponding to these eigenvalues, see Exercise 7.8.

We can now define an important set related to each linear map.

Definition 7.2.7. Let V be a finite dimensional vector space, and let L : V → V be a
linear map. The set of all eigenvalues of L is called the spectrum of L and is denoted
by σ(L), i.e. σ(L) = {λ1, λ2, . . . } with each λj an eigenvalue of L.

Before the next statement, let us remind that if B is an invertible matrix, then one
has

1 = Det(1n) = Det
(
BB−1

)
= Det(B)Det

(
B−1

)
which means that Det(B−1) = Det(B)−1.

Lemma 7.2.8. Let A ∈ Mn(F) and consider LA : Fn → Fn the associated linear map.
Let B ∈ Mn(F) be invertible. Then

σ
(
LBAB−1

)
= σ

(
LA
)
.
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Proof. One has

Det
(
BAB−1 − λ1n

)
= Det

(
BAB−1 − λB1nB−1

)
= Det

(
B(A− λ1n)B−1

)
= Det(B)Det(A− λ1n)Det(B−1) = Det(A− λ1n).

Thus, λ is an eigenvalue of LA if and only if λ is an eigenvalue of LBAB−1 .

Lemma 7.2.9. For any A ∈ Mn(F), λ ∈ F is an eigenvalue of LA if and only if λ is
an eigenvalue of LtA.

Proof. It is sufficient to observe that (tA − λ1n) = t(A − λ1n) and to recall that
Det(B) = Det(tB) for any B ∈ Mn(F), see Lemma 6.2.6.

7.3 Eigenvalues and eigenfunctions for symmetric

matrices

The aim of this section is to show that if A ∈ Mn(R) is symmetric, i.e. tA = A, then
the corresponding linear map LA has n eigenvalues λ1, . . . , λn (some of them can be
equal) and n mutually orthogonal eigenvectors. In fact, we shall prove a slightly more
general statement, valid for more general linear maps.

First of all, recall that if tA = A, then the corresponding bilinear map FA : Rn ×
Rn → R and defined by FA(X, Y ) = tXAY is symmetric. In other word, it means that
FA(X,Y ) = FA(Y,X), see Exercise 5.6.

Lemma 7.3.1. If A ∈ Mn(R) is symmetric, and if λ1, λ2 ∈ R are eigenvalues of LA
with λ1 ̸= λ2, then any associated eigenvectors X1 and X2 satisfy X1⊥X2.

Proof. One has

FA(X1, X2) =
tX1AX2 =

tX1(λ2X2) = λ2
tX1X2 = λ2(X1 ·X2)

since AX2 = λ2X2. Here (X1 · X2) means the scalar product between the two vectors
X1 and X2. However, since FA is symmetric one also has

FA(X1, X2) = FA(X2, X1) =
tX2AX1 =

tX2(λ1X1) = λ1
tX2X1 = λ1(X2 ·X1)

since AX1 = λ1X1. By comparing these expressions, one has thus obtained that

λ2(X1 ·X2) = λ1(X2 ·X1).

However, since X1 · X2 = X2 · X1 and since λ1 ̸= λ2 one concludes that X1 · X2 = 0,
which means that the two vectors are orthogonal.
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Let us now observe that if A ∈ Mn(R) and if λ is an eigenvalue of LA with the
corresponding eigenspace of dimension m, then one can always choose m mutually
orthogonal elementsX1, . . . , Xm which satisfy LA(Xj) = λXj for j ∈ {1, . . . ,m}. Indeed,
if we denote by Vλ the eigenspace associated with the eigenvalue λ, we can apply
Graham-Schmidt to this subspace and obtain a basis of Vλ containing m elements.
Each of these elements still satisfies LA(Xj) = λXj. Note that the dimension of the
eigenspace Vλ is called the geometric multiplicity of the eigenvalue λ.

Theorem 7.3.2. Let A ∈ Mn(R), and assume that there exists X1, . . . , Xn ∈ Rn, with
Xj ̸= 0 and such that LA(Xj) = λjXj for some λj ∈ R and all j ∈ {1, . . . , n}. Assume
also that Vect(X1, . . . , Xn) = Rn. Then if one defines the matrix B with the column Bj

given by Bj = Xj, it follows that B is invertible and that

B−1AB = diag(λ1, . . . , λn),

where diag(λ1, . . . , λn) corresponds to the diagonal matrix with entries λ1, . . . , λn on its
diagonal.

Remark 7.3.3. (i) We shall prove subsequently that the assumptions of this theorem
are satisfied whenever A is symmetric. The assumptions are also satisfied if A is
arbitrary but LA has n distinct eigenvalues, see Theorem 7.1.6.

(ii) If we consider B as a change of bases, then the statement means that in the basis
defined by the vectors X1, . . . , Xn, the linear map LB−1AB is diagonal.

Proof. Since X1, . . . , Xn are linearly independent, it follows that Det(B) ̸= 0 and thus
that B is invertible, with inverse denoted by B−1.

Let us now compute

B−1AB = B−1A
(
X1 X2 . . . Xn

)
= B−1

(
AX1 AX2 . . . AXn

)
= B−1

(
λ1X1 λ2X2 . . . λnXn

)
= B−1B diag(λ1, . . . , λn) = diag(λ1, . . . , λn).

Indeed, observe that(
(X1 X2 . . . Xn) diag(λ1, . . . , λn)

)
ij
=

n∑
k=1

(X1 X2 . . . Xn)ik diag(λ1, . . . , λn)kj

= (X1 X2 . . . Xn)ij λj

= (λ1X1 λ2X2 . . . λnXn)ij

since diag(λ1, . . . , λn)kj = λj if k = j and 0 otherwise.

From now on, we shall establish a link between the eigenvalues/eigenvectors and a
geometric construction. For that purpose and for any symmetric matrix A ∈ Mn(R) let
us define fA : Rn → R by

fA(X) := FA(X,X) = tXAX,

and call it the quadratic form associated with A.
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Examples 7.3.4. (i) If A =
(

3 −1
−1 3

)
, then

fA

(
x1

x2

)
= (x1 x2)

(
3 −1
−1 3

)(
x1

x2

)
= 3x2

1 − 2x1x2 + 3x2
2.

(ii) More generally, if A = (aij) ∈ Mn(R) with A symmetric, then

fA

x1
...
xn

 = (x1 . . . xn)

a11 . . . a1n
...

. . .
...

an1 . . . ann


x1

...
xn

 =
n∑

i,j=1

aij xi xj.

Let us now consider the unit sphere Sn−1 ⊂ Rn, i.e.

Sn−1 = {X ∈ Rn | ∥X∥ = 1},

and for a symmetric matrix A ∈ Mn(R) we consider fA(X) with X ∈ Sn−1.

Definition 7.3.5. A point X ∈ Sn−1 is a maximum for fA on Sn−1 if fA(X) ≥ fA(Y )
for any Y ∈ Sn−1.

Note that such a maximum always exists, but it can be non-unique. For example if
A = 1n, then

fA(X) = f1n(X) = tX1nX = X ·X = ∥X∥2 = 1

and thus f1n is constant on the sphere. It means that any X ∈ Sn−1 is a maximum for
f1n on Sn−1.

The following result establishes a link between the eigenvalues of LA and the max-
imum points of fA.

Theorem 7.3.6. If A ∈ Mn(R) is symmetric and if X is a maximum for fA on Sn−1,
then the value fA(X) is an eigenvalue for LA with a corresponding eigenvector X, i.e.

LA(X) = AX = fA(X)X.

Proof. Let H0,X = {Y ∈ Rn | Y · X = 0} be the hyperplane perpendicular to X, of
dimension n − 1, and let us choose any Y ∈ H0,X with ∥Y ∥ = 1. For any t ∈ R, one
sets

C(t) := cos(t)X + sin(t)Y ∈ Rn.

Observe that since X · Y = 0 one has

∥C(t)∥2 = ∥ cos(t)X∥2+∥ sin(t)Y ∥2 = cos2(t)∥X∥2+sin2(t)∥Y ∥ = cos2(t)+sin2(t) = 1.

It follows that for any t ∈ R the point C(t) belongs to Sn−1, and in addition one has
C(0) = X. In more precise words, the map

R ∋ t 7→ C(t) ∈ Sn−1
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is a curve on Sn−1 passing through X for t = 0. Let us also observe that

C ′(t) = − sin(t)X + cos(t)Y

and that C ′(0) = Y . Note that this latter quantity corresponds to the direction of the
curve at t = 0

Consider now the map R ∋ t 7→ fA
(
C(t)

)
≡ tC(t)AC(t) ∈ R. Since fA(X) is

maximal and since C(0) = X, this map t 7→ fA
(
C(t)

)
is (locally) maximal at t = 0,

and thus fA
(
C(t)

)′∣∣
t=0

= 0. Since one has

d

dt

(
tC(t)AC(t)

)∣∣
t=0

=
(
tC ′(t)AC(t) + tC(t)AC ′(t)

)∣∣
t=0

= tYAX + tXAY

= 2tYAX,

where we have used that tYAX = tXAY (see Exercise 5.6), it follows that tYAX = 0
for any Y ∈ H0,Y . In addition, since tYAX = Y · (AX), one infers that AX ∈ H⊥

0,X ,
and consequently that AX = λX for some λ ∈ R (recall that H0,X is of dimension n−1
and thus that only Vect(X) is perpendicular to it).

Finally, one observes that since ∥X∥ = 1 one has

fA(X) = tXAX = X · (AX) = X · (λX) = λ∥X∥2 = λ

which means that LA(X) = AX = fA(X)X, as expected.

Let us observe that by using the notation introduced in Chapter 5 one has

fA(X) = tXAX = X · (AX) = ⟨X,AX⟩ = ⟨X,LA(X)⟩

and that

H0,X = {Y ∈ Rn | Y ·X = 0} = {Y ∈ Rn | ⟨Y,X⟩ = 0}.

Thus, what really matters in the previous statement and its proof is the existence of a
scalar product, and that ⟨Y,LA(X)⟩ = ⟨LA(Y ), X⟩ (which is a more general formulation
of the equality tYAX = tXAY ). By using this observation, one can easily generalize
the previous proof and statement. For that purpose, let us first provide a new definition.

Definition 7.3.7. Let V be a vector space and let ⟨·, ·⟩ be a scalar product on V . A
linear map L : V → V is symmetric with respect to the scalar product if it satisfies

⟨Y,L(X)⟩ = ⟨L(Y ), X⟩ ∀X,Y ∈ V.

Theorem 7.3.8. Let V be a finite dimensional vector space endowed with a scalar
product, and let L : V → V be a linear map which is symmetric with respect to the
scalar product. Then L possess an eigenvalue, with eigenvector X ̸= 0.
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Definition 7.3.9. Let V be a vector space and L : V → V be a linear map. A subspace
W ⊂ V is stable for L if L(W ) ⊂ W , i.e. if whenever X ∈ W then L(X) ∈ W .

Examples 7.3.10. (i) {0} and V are always stable for any linear map L : V → V ,

(ii) Ker(L) is stable since for any X ∈ Ker(L) one has L(X) = 0 ∈ Ker(L),

(iii) If W is the eigenspace associated with an eigenvalue λ of L, then W is stable.

For the next statement, recall that if W is a subspace of a vector space V endowed
with a scalar product, then

W⊥ = {Y ∈ V | ⟨Y,X⟩ = 0 ∀X ∈ W}.

Lemma 7.3.11. Let V be a finite dimensional vector space and let ⟨·, ·⟩ be a scalar
product on V . Let L : V → V be a linear map which is symmetric with respect to the
scalar product. If W is stable for L, then W⊥ is stable for L.

Proof. Let Y ∈ W⊥ and X ∈ W , then ⟨L(Y ), X⟩ = ⟨Y,L(X)⟩ = 0 since L(X) ∈ W .
Thus L(Y ) ∈ W⊥ for any Y ∈ W⊥, which means precisely that W⊥ is stable.

We can now state and prove the most important result of this section.

Theorem 7.3.12. Let V be a vector space of dimension n and endowed with a scalar
product ⟨·, ·⟩. Let L : V → V be a linear map which is symmetric with respect to the
scalar product. Then V possesses an orthonormal basis of eigenvectors of L. In other
words there exist Y1, . . . , Yn mutually orthogonal and with ∥Yj∥2 = ⟨Yj, Yj⟩ = 1 such
that V = Vect(Y1, . . . , Yn) and such that L(Yj) = λjYj for some λj.

Proof. By Theorem 7.3.8 there exists X1 ̸= 0 such that L(X1) = λ1X1 for some λ1. If
one sets W1 = Vect(X1), then W is stable for L, and the same property holds for W⊥

1 .
Thus W⊥

1 is a subspace of V of dimension n − 1, and L is a symmetric linear map in
W⊥

1 (endowed with the scalar product inherited from V ). Thus, we can again apply
the previous theorem in W⊥

1 instead of in V , and there exists X2 ∈ W⊥
1 with X2 ̸= 0,

such that L(X2) = λ2X2. Then, by defining W2 := Vect(X2), one obtains that W
⊥
2 (the

subspace orthogonal to W2 in W1) is of dimension n− 2, and is stable for L. Since L is
a symmetric linear map in W⊥

2 one can go on iteratively in the procedure, up to Wn.

Finally, by fixing Yj := Xj/∥Xj∥ one gets that Yj ∈ Wj, that ∥Yj∥ = 1 and by
construction Yj is orthogonal to Yk whenever j ̸= k. One has thus obtained a basis of
V which satisfies the stated properties.

Remark 7.3.13. In the basis {Y1, . . . , Yk} the linear map L is diagonal. Whenever
there exists a basis such that a linear map L is diagonal is this basis, one says that L is
diagonalizable.
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Let us summarize our findings: One has obtained that in a vector space of finite
dimension and endowed with a scalar product, any symmetric linear map is diagonaliz-
able. Equivalently, if A ∈ Mn(R) is symmetric, then the linear map LA is diagonalizable.
In particular it means that if A ∈ Mn(R) is symmetric, then there exists λ1, . . . λn ∈ R
such that

PA(λ) = (λ1 − λ)(λ2 − λ) . . . (λn − λ). (7.3.1)

Note that all λj need not be different. For example, one could have λ2 = λ1 but
λ3 ̸= λ1. The number of times a value λj appears in this decomposition is called the
algebraic multiplicity of the eigenvalue λj. What the previous theorem says is that if
A is symmetric, the algebraic multiplicity of an eigenvalue is equal to the geometric
multiplicity of this eigenvalue (i.e. to the dimension of the corresponding eigenspace).
Note that this equality holds for symmetric matrices, but it is not true in general.

7.4 Complex vector spaces

In Chapter 9, the field C of complex numbers is recalled. Thus, one can speak about
complex vector spaces, as for example Cn, which is of dimension n. One can also freely
speak about Mn(C), i.e. matrices with each entry in C.

For any A ∈ Mn(C), let us consider LA : Cn → Cn defined by LA(X) = AX which
is obviously a linear map. Then, the fundamental theorem of algebra says that there
exist λ1, . . . , λn ∈ C such that

PA(λ) = Det(A− λ1n) = (λ1 − λ)(λ2 − λ) . . . (λn − λ).

Note that we have already seen such a factorization in equation (7.3.1), but it was only
for symmetric matrices. Here, there is no restriction on A, but the eigenvalues λj can
be complex. In other words, this fundamental theorem of algebra claims that counting
multiplicity there always exist n solutions to the equation PA(λ) = 0. However, be
careful that this factorization does not imply that any matrix A is diagonalizable, even
on Cn. For example, for the matrix ( 0 1

0 0 ), one has PA(λ) = λ2 (which means that
λ1 = λ2 = 0), but this matrix can not be diagonalized in any basis.

Another natural question when dealing with Cn is how to endow it with a scalar
product ? Let us recall that a scalar product was used for defining a norm by the
relation ∥X∥2 =

√
⟨X,X⟩, see Definition 5.1.5. For example, if x ∈ R, it is necessary

that ⟨x, x⟩ ≥ 0. Thus, let us consider two complex numbers z1, z2 and set

⟨z1, z2⟩ := z1 z2. (7.4.1)

Then one observes that if z = x+ iy with x, y ∈ R one has

⟨z, z⟩ = (x+ iy)(x+ iy) = (x+ iy)(x− iy) = x2 + y2 ≥ 0.
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In fact, this corresponds to the (square of the) norm of z when one identifies C with
the plane R2. Similarly, if Z = t(z1, . . . , zn) ∈ Cn and Z ′ = t(z′1, . . . , z

′
n) ∈ Cn, one sets

⟨Z,Z ′⟩ :=
n∑

j=1

zj z′j (7.4.2)

and observes again that ⟨Z,Z⟩ ≥ 0.
In Chapter 5, the abstract notion of a scalar product was defined for real vector

space. Let us complement this definition in the case of a complex vector space (but
observe that the real scalar product is a special case of the following definition).

Definition 7.4.1. A scalar product on a complex vector space V is a map ⟨·, ·⟩ :
V × V → C such that for any X,Y, Z ∈ V and λ ∈ C one has

(i) ⟨X, Y ⟩ = ⟨Y,X⟩,

(ii) ⟨X + Y, Z⟩ = ⟨X,Z⟩+ ⟨Y, Z⟩,

(iii) ⟨λX, Y ⟩ = λ⟨X,Y ⟩ = ⟨X,λy⟩,

(iv) ⟨X,X⟩ ≥ 0 and ⟨X,X⟩ = 0 if and only if X = 0.

It is then easily observed that the definition provided in (7.4.1) and in (7.4.2) are
indeed scalar product on C and Cn respectively.

Let us now consider A = (aij) ∈ Mn(C) and let Z,Z ′ ∈ Cn. Then one has

⟨LA(Z), Z ′⟩ = ⟨AZ,Z ′⟩ =
n∑

j=1

(AZ)jZ ′
j =

n∑
j=1

n∑
k=1

ajkZkZ ′
j

=
n∑

k=1

n∑
j=1

Zk
takjZ ′

j =
n∑

k=1

Zk

( n∑
j=1

takjZ ′
j

)
= ⟨Z, tAZ ′⟩

= ⟨Z,LtA(Z
′)⟩.

For simplicity, let us set A∗ := tA. We have thus shown that ⟨LA(Z), Z ′⟩ = ⟨Z,LA∗(Z ′)⟩.
In the next statement, we rephrase in this more precise setting what has already

been obtained in Theorem 7.3.12.

Theorem 7.4.2. If A ∈ Mn(C) satisfies A∗ = A, then LA is diagonalizable, with n real
eigenvalues λj.

For completeness, let us check that the eigenvalues of LA are real, provided A∗ = A.
Thus, assume that λj is an eigenvalue of LA with corresponding eigenvector Xj ̸= 0 and
observe that

λj∥Xj∥2 = ⟨λjXj, Xj⟩ = ⟨LA(Xj), Xj⟩ = ⟨Xj, LA(Xj)⟩
= ⟨Xj, λjXj⟩ = λj⟨Xj, Xj⟩ = λj∥Xj∥2.

Since ∥Xj∥ ≠ 0 it follows that λj = λj, which implies that λj is real.
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Example 7.4.3. If A = ( 0 i
−i 0 ) ∈ M2(C), then A∗ = A and one observes that PA(λ) =

Det
( −λ i

−i −λ

)
= (λ+1)(λ−1). Thus the eigenvalue of A are real, even so A looks rather

complex !

Remark 7.4.4. Let us stress that Theorem 7.4.2 is at the root of quantum mechanics.
Indeed, in a suitable framework it says that ”the observables have real spectrum”.
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7.5 Exercises

Exercise 7.1. Let P : V → V be a linear map on a vector space V and assume that P
is a projection. Show that P can only have two possible eigenvalues, namely 0 and 1.

Exercise 7.2. For any θ ∈ [0, 2π), consider the matrix A(θ) :=

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
and

show that the corresponding linear map LA(θ) : R2 → R2 always admits the eigenvalue 1.

Exercise 7.3. Consider the matrix A :=

(
2 0
3 4

)
and show that 2 and 4 are eigenvalues

of the associated linear map LA. What are all corresponding eigenvectors ? Similarly,

consider the matrix B =

1 1 2
0 5 −1
0 0 7

 and show that 1, 5 and 7 are eigenvalues of the

associated linear map. Determine the corresponding eigenspaces.

Exercise 7.4. Let A ∈ Mn(R) be invertible, and assume that λ ∈ R is an eigenvalue
of LA with X ∈ Rn a corresponding eigenvector.

1. Is X an eigenvector of LA3 ? If so, what is the corresponding eigenvalue ?

2. Is X an eigenvector of the linear map associated with A+21n ? If so, what is the
corresponding eigenvalue ?

3. Is X an eigenvector of L4A ? If so, what is the corresponding eigenvalue ?

4. Can λ be equal to 0 ?

5. Is X an eigenvector of LA−1 ? If so, what is the corresponding eigenvalue ?

6. What can you say about Ker(LA − λ1) ?

7. What can you say about Det(A− λ1n) ?

Exercise 7.5. For any A ∈ M2(R), show the following equality

PA(λ) = λ2 − λTr(A) + Det(A).

Exercise 7.6. Let A ∈ Mn(R) and assume that A has n eigenvalues λ1, . . . , λn. Then,
show the following equalities:

(i) Det(A) = λ1λ2 . . . λn (product of the eigenvalues)

(ii) Tr(A) = λ1 + λ2 + · · ·+ λn (sum of the eigenvalues)

Exercise 7.7. Let A =
(

1 1 2
0 5 −1
0 0 7

)
, and consider the associated linear map LA : R3 → R3.

Determine the eigenvalues of LA and the corresponding eigenspaces.
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Exercise 7.8. Let A =
(

2 1 0
0 1 −1
0 2 4

)
, and consider the associated linear map LA : R3 → R3.

Determine the eigenvalues of LA and the corresponding eigenspaces.

Exercise 7.9. Let A = ( 1 2
4 3 ), and consider the associated linear map LA : R2 → R2.

Determine the eigenvalues of LA and the corresponding eigenspaces. Consider then the
matrix B = ( 1 1

2 −1 ) and compute the product B−1AB. What do you observe, and how do
you understand your result ?

Exercise 7.10. Let A = ( −2 −7
1 2 ), and consider the associated linear map LA : R2 → R2.

Determine the eigenvalues of LA and the corresponding eigenspaces.

Exercise 7.11. Let A ∈ Mn(R) and consider the linear maps LA and LtA. Show that
these linear maps have the same eigenvalues.

Exercise 7.12. Show that if A ∈ Mn(R) is orthogonal (i.e. tA = A−1), then the (real)
eigenvalues of LA can only be 1 or −1.

Exercise 7.13. For A =
(

1 1 1
1 1 1
1 1 1

)
consider the associated linear map LA : R3 → R3.

Determine the eigenvalues of LA and the corresponding eigenspaces. Find the change of
bases such that in the corresponding new basis this linear map becomes diagonal.

Exercise 7.14. Let A ∈ Mn(R) be symmetric. Show that there exists B ∈ Mn(R) such
that B3 = A.

Exercise 7.15. For a symmetric matrix A ∈ Mn(R), one says that A is positive
definite if ⟨AX,X⟩ > 0 for any X ∈ Rn with X ̸= 0. In fact, this is precisely the
condition which makes the bilinear map FA define a scalar product, see Exercise 5.6. If
A is symmetric and positive definite, show that

1. All eigenvalues of LA are strictly positive,

2. A2 is symmetric and positive definite,

3. A−1 is symmetric and positive definite.

Exercise 7.16. Let A =
(

1
5

2
5

4
5

3
5

)
, and consider the associated linear map LA : R2 → R2.

Compute An for n = 2, n = 3, n = 25 and n = ∞. You are allowed to use the result of
Exercise 7.9.

Exercise 7.17. Let A = ( 0 i
−i 0 ), and consider the associated linear map LA : C2 → C2.

Determine the eigenvalues of LA and the corresponding eigenspaces. Show that these
eigenspaces are orthogonal.

Exercise 7.18. Do there exist A,B ∈ Mn(R) such that AB − BA = 1n ? Justify your
answer. Note that the notion of trace can be useful for this exercise.
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