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熱伝導と接触変成作用  

Heat Conduction and Contact Metamorphism 
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INTRODUCTION 基本知識 
 
The thermal structure of the earth is fundamental for understanding 
many geological processes including the locations of volcanoes, 
earthquakes and hydrothermal fields.  
 
Heat transfer （熱輸送）can be divided into three different types: 
 
- conduction (熱伝導) 
- advection（熱移流） 
- radiation（熱輻射） 
 
In fluids and gasses advection and radiation are dominant. In rocks, 
radiation is not an important heat transfer mechanism (or can be 
treated as part of conduction), but both advection and conduction 
may be important. Conduction of heat energy (熱エネルギーの拡散) is 
analogous to diffusion of matter (物質の拡散) and represents the 
transfer of energy by movement and collisions of atoms, electrons and 
phonons. Advection is the process of transferring heat by movement 
of either hot or cold bodies with respect to one another.  
 
One simple way to think of the difference between conduction and 
advection is to consider a blob of ink in a river (Fig. 1). The 
concentration of ink is analogous to temperature, and the distribution 
across the river of the ink concentration (or temperature) at some 
time and at some distance down stream is a function of how quickly 
the ink spreads out (conduction) and how quickly the ink is 
transported down stream (advection). 
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Figure 1. The difference between conduction and advection can be easily 
thought of in terms of the transport of a spreading blob of ink in a flowing river. 
 
 
One example of advection of heat is the inflow of cold lithospheric 
plates in subduction zones.  Heat advection is also important in 
situation where there is movement of hot fluids in rocks, e.g. oceanic 
ridges （海嶺）. Today we will focus on heat conduction and contact 
metamorphism (接触変成作用）. 
 
 

FOURIER’S LAW AND HEAT FLOW 
フーリェ法則と熱流量 

 
The conductive flow of heat through a substance is described by 
Fourier's Law (フーリェ法則): 
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  (1) 

 
Q is the heat flow (熱流量) in Watts per square meter (W m-2)(熱流束-

heat flux-ともいう), k is the thermal conductivity (熱伝導率) (J s-1 m-1 
Kelvin-1), and dT/dz is the thermal gradient.  The negative sign is there 
because we define temperature and distance to increase in the same 
direction and because Q flows from high T to low T.  Fourier’s Law is 
an empirical law but has been well tested and until recently no 
significant exceptions were known. In recent years it has been 
suggested that some modern materials exhibit different non-Fourier 
conductive behaviour. 
 
Typical values for k are 1.5–3.0 J s-1 m-1 Kelvin-1.  The average heat 
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flow for continental areas is around 56 mW m-2 and for oceanic areas 
78 mW m-2.  The reason for this difference is the young age of the 
oceanic crust. At the earth’s surface, the amount of heat flowing from 
within the earth is much less than the heat energy derived from the 
sun (~400 W m-2). 
 
 

DERIVATION OF THE HEAT CONDUCTION EQUATION 
熱伝導方程式の導出 

 
The heat conduction equation is derived by considering two 
relationships: one between heat flow, Q, and spatial gradients in T 
(Fourier’s Law) and the other considering the relationship between 
heat flow, Q, and temporal gradients in T. By combining these two 
relationships, we derive an equation that shows how T varies with both 
space and time. 
 
In this example we will consider a 1-dimensional situation—this is 
appropriate for narrow elongate intrusions such as dykes and sills. It is 
also a very good approximation for the cooling of the outermost 100 
km of the Earth. Let us consider a small volume of the material we are 
interested in with thickness Δz (Fig. 2).  
 
 
 

                                   
 
Figure. 2. To derive the heat conduction equation, we first consider a one-
dimensional region with thickness Δz, heat capacity c, density ρ and with a 
difference in the heat flow in (Qin) and the heat flow out (Qout).  
 
 
The Law of conservation of energy tells us: 
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Where c is the specific heat of the material (比熱) (J/K/kg) and ρ is the 
density.  That is, if the heat flow out (Qout) of the area is less than the 
heat flow in (Qin) then the material is heating up at a rate (dT/dt > 0) 
related to its specific heat and density. Different rocks will change 
temperature by different amounts for the same input of heat energy. 
Heat and temperature are not the same! Let us consider changes in 
unit time. 
	
  
-The temperature rise for c joules is 1° for 1 kg of material. 
-The temperature rise for Q joules is (J/c)° for 1 kg of material. 
-The temperature rise for Q joules and 

€ 

ρΔz  kg of material is (

€ 

T
cρΔz )°. 

 
 
Secondly we can say that  
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  (3) 

 
We can now rewrite the first equation to relate the spatial variation in 
temperature with the rate of temperature change. 
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We can now include the substitute for Q using Fourier's Law,  
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Now we let k/cρ = κ where κ (m2/s) is the thermal diffusivity and so 
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           (4). 

 
This is the fundamental equation of heat conduction in one dimension.   
 
 
 
 

QUALITATIVE UNDERSTANDING OF HEAT CONDUCTION 
熱伝導の定性的な理解 

 
Heat conduction is controlled by a second order differential equation 
relating temperature, time and position. Changes in temperature by 
conduction only occur if there are curves in the heat profile.  If there is 
a linear gradient then no change in temperature takes place.  The 
greater the curvature is, the greater the rate of change of 
temperature. This means that if sharp changes are introduced in the 
thermal structure, for instance by intruding a hot magma into a cold 
country rock, then the temperature at the boundaries will change 
much faster than elsewhere. Positive curvature causes a rise in T, while 
negative curvature causes a decrease in T—protrusions of the thermal 
structure get flattened out and depressions get filled in.  
 
A second important point is that if two conducting solid objects are 
brought together, the temperature at the boundary is the average of 
the two temperatures. This means that if a 1000°C magma is intruded 
into rock with a temperature of 200°C, then the initial temperature at 
the boundary will be (1000+200)/2 = 600°C.  
 
 

 
APPLICATION TO MAGMATIC INTRUSIONS 

貫入岩体への適応例 
 
We can now use our understanding of heat conduction to predict 
changes in temperature around an igneous intrusion intruded into cold 
country rock.  
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Figure. 3 The change in the temperature around an intrusion with time. 
Time, t’, temperature, T’, and distance, Z’, are expressed as 
dimensionless quantities with definitions as follows: 
 
 

€ 

ʹ′ t =
κt
h2

 (t is time and kappa is the thermal diffusivity) , 

€ 

ʹ′ T =
T −T0
Ts −T0

	
  (T is 

the temperature, Ts is the original temperature of the intrusion and T0 is the 
original temperature of the country rock and the temperature at infinity), 

€ 

ʹ′ Z = z /h (z is the distance and h is the half width of the intrusion) 
 
 
A common boundary condition is to assume initial uniform temperature 
extending to infinity (Fig. 3). This means that after an infinite amount 
of time the thermal anomaly created by the dyke will disappear.  If we 
assume the intrusion was instantaneous then the initial thermal profile 
will be a square wave.  The temperature along the contact will be the 
average of the intrusion and country rock.  So we know the initial 
conditions and final conditions.  The heat conduction equation here 
tells us what happens in between. 
 
We know from our result above that the most rapid changes in 
temperature will occur where the gradients are steepest, i.e. near the 
contacts, which are the corners in the thermal structure shown in 
figure 3.  These corners will become rounded and the heat will move 
outwards. 
 
Within the body we will see a gradual cooling.  Outside we will see a 
very different behaviour.  First the temperature will rise and then fall.  
Also the peak of temperature will not occur at the same time in all 
places.  We can see that even for a simple situation there will be a 
complex variation in the relationships between temperature-time 
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history of rocks and their position. 
 
 

PARAMETERS OF THERMAL CONDUCTION IN ROCKS 
岩石における熱伝導のパラメター 

 
Something very fortunate is that although c and k vary considerably κ 
only varies very little for most rock types.  It is usually considered to 
be 10-6 m2 s-1. However, it is about half this for calcite-rich rocks. 
Changing κ	
  affects the time scale for heating but does not affect the 
peak temperature attained. 
 
The most common problem is to determine how the temperature 
varies with time and space for a given intrusion geometry, magma 
temperature and pre-intrusion temperature.  Different magmas vary in 
temperature by several 100s of degrees. Intrusion sizes can vary from 
mm to 10s kilometers. 
 
We will look in more detail at the modeling during the practical. To get 
some idea, the time t taken for a body with half width h to reach 
approximately half its original temperature in the core of the intrusion 
is related to its size and κ by the equation: 
 

€ 

t =
h2

κ  
(Table 1). 

 
 
 
 

 
Table 1. Cooling time scales for intrusions of different sizes. 
 
 
 
So we can see that 1m dykes may take only weeks to cool, but large 
plutons may take millions of years. An example of cooling around a 
pluton is given in figure 4. These data show that cooling has taken 

h (meters) 
	
  

T(seconds) 	
   t(years) 	
  

1	
   106   	
   0.0317	
  
10	
   108	
   3.17 
100	
   1010	
   317	
  
1000	
   1012	
   31700	
  
10000	
   1014	
   3.17x106	
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several millions of years implying that the pluton must have a radius of 
the order of 10km. 
 

          
Figure 4. Cooling of the Quottoon Pluton in British Columbia (Canada) shown 
by radiometric dating. The dates record the time at which the rock reached 
different temperatures. It took several millions of years to cool significantly 
implying the presence of a large pluton. 
 
 

COMPLICATING FACTORS 
その他の影響 

 
A more complete analysis of the temperature distribution around an 
intrusion requires consideration of other factors. More complete 
modeling requires numerical solutions to the conduction equation. This 
approach can include other complications such as temperature 
dependence of thermal conductivity (熱伝導の温度依存性), 2-d and 3-d 
geometries of the intrusions, an initial thermal gradient in the region 
with the intrusion (初期地温勾配), latent heat (潜熱), convection of 

fluids near the intrusion (貫入岩体周囲の熱水循環) etc.  
 
There are ways to incorporate some of these features in the 1-d 
modeling we have looked at. We will look at two simple ways to treat 
latent heat and advection. 
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Latent heat (潜熱) is released as the liquid magma crystallizes. The 
extra heat energy released maintains the temperature at a high value 
until all the magma is crystallized. The contribution of latent heat can 
be approximated by adding an amount equivalent to releasing all the 
energy at the same time and treating it as an equivalent temperature 
rise. For example some approximate values for basaltic magma are as 
follows. 
 
Latent heat of crystallization (潜熱) 4 x 105 J / kg 
Specific heat (比熱) 103 J /Kg / °C 
 
If the latent heat were instantaneously released and all used to 
increase the temperature of the magma the rise would be 
 
(4 x 105)/103 = 400°C 
 
This number can be added to the initial temperature for the magma. 
This does not correspond to a physically meaningful process, but the 
result does give a good approximation for the peak T around the 
intrusion. Numerical methods are required for accurate estimates of T 
within and very close to the intrusion. 
 
Advection of heat by the convection of hot fluids (熱水循環による熱移

流) is quite common around intrusions. Convection transports heat 
more effectively than conduction and results in a lower temperature 
close to the intrusion and a higher temperature at a greater distance. 
In many cases the zone of convection is restricted close to the 
intrusion. An example where both domains can be identified is the 
Kakkonda (葛根田) hydrothermal area in NE Japan (Fig. 5), where a 
young and hot granite body has intruded to depths of about 3km 
beneath the surface. The zone of convection can be modeled using a 
high value for κ, which has the same effect. 
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Figure 5. Thermal structure in the Kakkonda hydrothermal region 
showing the shallow regions with circulating water and small 
differences in temperature compared to the deeper region with steep 
thermal gradients due to conduction (after Ikeuchi et al., 1998). 
Greater depth acts against free flow of fluid both due to pressure 
closing gaps in the rock and the rapid deposition of minerals filling in 
fractures. 
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