Computers in Chemistry —
Lecture VII

Prof. Dr. Stephan Irle
Quantum Chemistry Group
Nagoya University

Today’s Lecture

Repetitive execution (Do the same thing many
times)

Loop types

Counter-Controlled DO Loops

General DO Loops

Get this lecture online

Please go to: http://qc.chem.nagoya-u.ac.jp
Click on “Teaching”

Click on “PPT” link of “7.1 Lecture VIl - DO
LOOPS”

userid: qcguest, password: gcigf!

6.2 Assignment 5 (PDF)

6.3 Practice program: quadratiet#8Q (Solve quadratic equation)
7.1 Lecture VIl - DO LOO
7.2 Assignment 6 (PDF)

7.3 Practice programs: multiplication-table.f90 sum-to-limit.f80 do-tree.f90

4.1 Loop Types

Previously, we learned a) sequence (regular program
statements) and b) selection (IF statements)

Now we learn the third basic control structure, namely
c) repetition (repeat the same thing many times).
A repetition structure or loop makes possible the
repeated execution of one or more statements, called
the “body of the loop”
There are two basic types of repetition:

— Repetition controlled by a counter (numerical variable)

— Repetition controlled by a logical expression

4.2 Counter-Controlled DO Loops | 4.2 Counter-Controlled DO Loops |l

* FORTRAN 90 provides one basic loop construct, * When the loop is executed, the following
the DO construct. happens:
* DO constructs for counter-controlled loops have 1. control-variable is assigned initial-value
the following form: 2. control-variable is compared to the limit to see if it is

less than or equal to the limit, for a positive step-size
greater than or equal to the limit, for a negative step-size

3. If so, the statement sequence, called the “body of

DO control-variable = initial-value, limit, step-size
statement-sequence

END DO » o
o o) the loop”, is executed
* lntlal-va.lue, I"_n't' step-s_lze are INTEG_ER 4. The step-size is added to the control-variable, and
expressions with step-size # O; step-size may be step 2 is repeated. Otherwise, repetition is
omitted in which case its default value is 1 terminated.
4.2 Counter-Controlled DO Loops Il 4.2 Counter-Controlled DO Loops IV
* If the termination test in step 2 is satisfied 11
initially, the loop is never executed. 2 4
39
* Example:
b 4 16
DO Number=1,9 5 75
PRINT *, Number, Number**2 6 36
END DO 7 49
8 64
The output of the loop is on the next page: 9 81

4.2 Counter-Controlled DO Loops V 4.2 Counter-Controlled DO Loops VI

81
64

* If step-size is negative, the control-variable is
decremented (step-size is subtracted).
* Example:
DO Number=9, 1, -1
PRINT *, Number, Number**2
END DO

RN WS UL 0O
N
(O}

The output of the loop is on the next page:

4.2 Counter-Controlled DO Loops VI 4.2 Counter-Controlled DO Loops VIII
* NOTE: initial-value, limit, step-size are * initial-value, limit, step-size are often
determined BEFORE the DO loop and THE variables. For example:

NUMBER OF REPETITIONS CANNOT BE CHANGED
DURING THE DO LOOP, since it is calculated
before the DO loop as:

READ *, Number
DO I =1, Number

Number of repetitions = Sum =Sum + |
INT((limit — initial-value + step-size)/step-size) END DO
* Statements in the body of the loop may use the * Reads a value for variable Number, and the

control-variable, but CANNOT MODIFY ITS VALUE. computes sum =1+ 2 + ... + Number

11

4.2 Counter-Controlled DO Loops IX

* The body of a DO loop may contain another DO
loop. We call this construct a “nested” DO loop.

* Example:
DOM=1, Last_ M
DON-=1, Last N
Product=M * N
Print *, M, ““/ N, ““ Product
END DO
END DO

4.3 General DO Loops |

* Counter-controlled DO loops execute the
statements in the body of the loop for a pre-
defined number of times.

* Sometimes we wish to determine the number
of repetitions DURING the DO loop.

* For this, we need GENERAL DO loops (DO-EXIT
constructs)

4.2 Counter-Controlled DO Loops X

* Download the program multiplication-
table.f90, compile, and execute

* Open X-terminal, cd “Downloads”, and
compile:
cd Downloads
pico multiplication-table.f90

gfortran —o multiplication-table.x multiplication-table.f90
./multiplication-table.x

4.3 Genera|| DO Loops I
1

v \\

* Flow-chart: ﬁj >

.

A . TRUE. —»

y’ N
IF (logical-expression) EXIT

.FALSE. ‘L

END DO

\L 16

4.3 General DO Loops IV 4.3 General DO Loops V

* FORTRAN 90 form of DO-EXIT construct: « To solve this problem, we must perform the
DO following steps:
statement-sequence-1 1. Enter the value for Limit
IF (logical-expression) EXIT o
statement-sequence-2 2. Initialize Number and Sumto 0
END DO 3. Repeat the following:

o Example: consider previous example a. If Sti_lm > Lin‘lift],tt;rrpilrlmate‘ repetition; otherwise
continue wi e following

Sum=1+2+..+ Number b. | t Number by 1
' .) . ncremen umper
* Question: For which smallest Number is Sum c. Add Number to Sum Y

greater than Limit? _
4. Display Number and Sum

4.3 General DO Loops VI 4.3 General DO Loops VI

* Task: Write your own FORTRAN code without

* The following is an implementation of the S _ o
looking first at the solution, sum-to-limit.f90

solution to this problem:
DO
IF (Sum > Limit) EXIT ! Terminate repetition Good luck.
I Otherwise continue with the following
Number = Number + 1
Sum = Sum + Number
END DO

DO-loop solution for assignment Il

PROGRAM Do_Tree

Program to print the Christmas tree from Assignment III using a
Counter-controlled DO loop.

variables:
Maxlength: maximum number of columns in a line
Line: The line to be printed

Number of Stars (counter)
Position in line variable
MaxStar: How many Stars is maximum (limit)
StarStep: How many Stars more in each line
(width of the tree, step-size)
Input: MaxStar
Output: Christmas tree

IMPLICIT NONE
INTEGER, PARAMETER :: Maxlength = 72
INTEGER :: IStar, MaxStar, StarStep, IPos
CHARACTER*1 :: Star="+*"

CHARACTER* (Maxlength) Line

PRINT *, "How many stars more in each line:"
READ *, StarStep

PRINT *, "Maximum number of stars in a line:"
READ *, MaxStar

! Check if MaxStar fits in the Line of length Maxlength

IF (MaxStar > Maxlength) THEN
PRINT *, "Maxstar", MaxStar, "is greater than", Maxlength
STOP

END IF

DO-loop solution for assignment |l

! Initialize the line with blanks"
DO IPos = 1, Maxlength
Line(IPos:IPos) = " "
END DO

PRINT *,"*"
DO IStar = 1, MaxStar-2, StarStep
DO IPos = IStar, IStar+StarStep

Line(IPos:IPos) = "*"
END DO
PRINT *, Line
END DO

END PROGRAM DO_Tree

RUNNING THE PROGRAM:

[stephan@hawk trash]$./do-tree.x

How many stars more in each line:
2

Maximum number of stars in a line:
12

*

wan

.

-

AR

R kAR KA E

22

