2012年3月10日(土)名古屋大学環境総合館 レクチャーホール

EPMAが拓いた岩石学

年代測定総合研究センター 鈴木和博 先生には研究の「いろは」を懇切丁寧に教えていただくのではなく、「親父の後ろ姿を見せる」という形で教えていただいたと思っています。

壷井基裕 (2010), 日本地球化学会ニュース, No. 203, 21-22

これを読んだ某氏、すかさず、

『これって、要するに、**何も教えてくれなかった** ということですよね』

- I EPMA
- Ⅱ 相平衡-変成岩の部分平衡
- Ⅲ 鉱物粒界の微量元素濃集
- IV EPMAを使ったCHIME年代測定
- V CHIME展開研究:韓半島中部、京畿地塊
- VI 里山からキツネが消えた日

EPMA以前の岩石学

屈折計とユニバーサルステージが通常の武器

CHIVE

アッベの屈折計

ユニバーサルステージ

時には、岩石や分離した鉱物の 湿式化学分析一究極の武器

写真 http://www.modernmicroscopy.com/article_pix/070718_ustage/fig9.jpg

理学部地球科学教室に導入されたEPMA(JXA-5A)

EPMA: Electron Probe Micro-Analyzer

組織を観察しながら点分析

.62

35

溶融実験試料

	Ol	Opx	Срх	Spinel
SiO ₂	41.35	57.31	52.46	0.06
TiO ₂	0.02	0.04	0.26	0.09
Al ₂ O ₃	0.04	1.54	4.70	37.49
Cr ₂ O ₃	0.23	0.27	1.16	27.11
FeO	7.98	5.66	2.96	17.41
MnO	0.09	0.10	0.04	0.17
MgO	49.63	34.37	17.09	16.31
NiO	0.32	0.11	0.08	0.31
CaO	0.29	0.46	21.07	0.0
Na2O	0.0	0.0	0.38	0.0
K2O	0.0	0.0	0.01	0.0
Total	99.95	99.86	100.20	99.25

F091.7

鉱物粒子内の元素の2次元分布

0906090940 100

100µm

And Aller

Chemical shift (元素の状態分析)

Suzuki, Noro, Miyake, Yamamoto & Yokoi (1983)

EPMAが拓いた岩石学 I

相平衡の概念(閉鎖系と開放系)

D.S. Korzinskii (1959) Physicochemical basis of the analysis of the paragenesis of minerals, Consultants Bureau, New York 都城秋穂 (1965)変成岩と変成帯, 岩波書店, 東京

ドロマイト CaMg(CO₃)₂ 質石灰岩が接触変成作用

鈴木(1975)

岐阜県揖斐郡春日村

Suzuki (1977) . Contrib. Mineral. Petrol., 61, 79-89.

流体 (CO₂+H₂O) は完全移動成分ではない

流体組成はLocal systemの鉱物共生でBuffering

部分平衡(Local system)のサイズはmm単位

EPMAが拓いた岩石学 II

鉱物粒界の微量元素濃集

岩石 = 鉱物の集合 (Σ鉱物)

岩石の 全岩化学組成 岩石の 全岩化学組成

- **≠** 鉱物の化学組成の合計(Σ鉱物の化学組成)

CHIME

Kenya, Ngong Hills の火山岩

集積角閃石と集積輝石に包有される燐灰石

Suzuki, K. (1981), Geochemical Journal, 15, 295-303

異質原子の粒界濃集:偏析(Segregation)

 $E \propto \mu R(\delta R)^2$

 μ : shear modulus 剛性率

 $\delta R = R - R'$

 $1200-1100^{\circ}C$, $C_{i}/C_{b} = 0.1 - 0.3$ $600^{\circ}C$, $C_i/C_b = 0.01$

結晶温度 = 1200°C 冷却速度 = 10°C/s

活性化エネルギー3eV 10µm

Suzuki, K. (1986), Geochemical Journal, 20, 17-27

岩石成因論と粒界

Ou Oules Adams TICA

マントル岩石(ペリドタイト)→部分熔融→玄武岩 K2O等 incompatible elements 不足 (Oxburgh, 1964)

Spinel d	unite fr	om San Carl	os, Arizona, (J. S .A.
	Olivine	Orthopyroxene	Clinopyroxene	Spinel
構成割合	c. 90 %	c. 6 %	c. 3 %	<i>c</i> .1%
SiO2	41.1	57.1	53.6	0.012
TiO2	< 0.002	0.0075	0.113	0.0495
Al2O3	0.0038	1.69	3.84	20.7
Cr2O3	0.0197	0.604	1.55	48.4
FeO	8.23	5.93	2.97	14.2
MnO	0.083	0.088	0.122	0.171
MgO	50.1	33.2	16.5	15.2
NiO	0.361	0.115	0.0526	0.150
ZnO	0.0045	< 0.003	< 0.003	0.066
CaO	0.0663	1.01	20.2	< 0.003
Na2O	0.0044	0.0142	1.55	0.0051
K2O	0.0023	0.0043	0.0048	0.0036
P2O5	< 0.004	<0.004	< 0.004	<0.004
Total	99.97	99.76	100.50	98.96

ペリドタイトの部分熔融実験

1150°C	1200°C
120 min	60 min
0.5 %	1 %

SiO_2	65.6	60.6
TiO_2	1.44	2.06
Al_2O_3	14.8	14.4
Cr_2O_3	0.03	0.25
FeO	3.87	4.15
MnO	0.04	0.11
MgO	4.43	6.08
NiO	0.01	0.03
CaO	4.17	5.59
Na ₂ O	1.99	2.28
$K_2 O$	4.34	4.20
P_2O_5	0.25	0.29

Suzuki, K. (1987), Chemical Geology, 63, 319-334

1 岩石の 全岩化学組成 = 鉱物と<mark>粒界</mark> の化学組成の合計

- 2 粒界濃集:偏析 (Segregation)、駆動力:歪み
 Ci / Cb = f(T,---)、分配成立
 粒界は近似的にメルト(マグマ)
- 3 粒界: Incompatible elements の貯蔵庫 Mantle peridotite の部分熔融で生じる玄武岩 マグマに K, P, Ti 等の Incompatible elements を供給

EPMAを使ったCHIME年代測定

電子プローブマイクロアナライザ(EPMA)で鉱物粒子各部の Th,U, Pb含有量を多数点測定し、Th +U=0に外挿して、初 生鉛と年代を決定する。

CHIMEは Chemical Th-U-total Pb Isochron Method (トリウム-ウ ラン-全鉛アイソクロン法)の頭を連ねたネーミング。名古屋 大学が世界に先駆けて創案。

足立 守 名誉教授 田中 剛 名誉教授 との共同研究 Measured Pb

Measured Th plus U

適度な半減期 存在量が多い 娘同位体の存在量が少ない 普遍性

Parent	Ľ	Daughter
親核種	半減期	娘核種
⁴⁰ K	12.5億年	⁴⁰ Ar
⁸⁷ Rb	488.1億年	⁸⁷ Sr
¹⁴⁷ Sm	1059.7億年	¹⁴³ Nd
²³⁵ U	7.04億年	²⁰⁷ Pb
²³⁸ U	44.68億年	²⁰⁶ Pb
²³² Th	140.1億年	²⁰⁸ Pb

濃飛流紋岩に貫入する伊奈川花崗岩

岐阜県恵那市岩村町上切

鉱物の閉止温度(親核種・娘核種が移動しなくなる温度)

ジルコン (Zircon) とモナザイト (Monazite)

ジルコン ZrSiO₄ USiO₄ Coffinite ThSiO₄ Thorite

花崗岩中の副成分鉱物の量 (岐阜県中津川市産の苗木花崗岩)

鉱物	mg/1kg	化学組成	+ other REE
ホタル石	853.8	CaF ₂	Th or U + Si
燐灰石	215.2	$Ca_5(PO_4)_3(F,Cl,OH)$	The or $U + SI$
チタン鉄鉱	166.5	FeTiO ₃	
ジルコン	145.5	ZrSiO ₄	
モナズ石	78.1	(La, Ce, Pr,Nd)PO ₄	
フェルグソ	ン種0.5	$Y(Nb,Ta)O_4$	
褐簾石	9.5	Ca(Ca,LREE)(Al,Fe) ₃ (S	$(i_2O_7)(SiO_4)O(OH)$
ルチル	3.6	TiO ₂	
コロンバイ	ト 1.7	$(Fe, Mn)(Nb, Ta)2O_6$	
トーライト	1.4	ThSiO ₄	

http://www.westatic.com/img/dict/ktkbt/~ug7s-ktu/monazi.jpg

モナザイト (La,Ce,Nd)PO₄

- + other REE < 10 mol % + Y,Th,U,Ca
- Th or U + Si = REE + P (huttonite)
 Th or U + Ca = 2REE (cheralite)

U, Th-Pb 年代測定

娘核種 親核種 壞変定数 (decay constant) 238**U** J \Rightarrow ²⁰⁶Pb + 8 α + 6 β $\lambda_8 = 1.55125 \times 10^{-10} \text{ y}^{-1}$ 235U $\lambda_5 = 9.8485 \times 10^{-10} \text{ y}^{-1}$ \Rightarrow ²⁰⁷Pb +7 α + 4 β $\lambda_2 = 4.9475 \times 10^{-11} \text{ v}^{-1}$ ²³²Th \Rightarrow ²⁰⁸Pb + 6 α + 4 β 岩石からジルコン・モナザイトを分離 数mg~数100mg (多数の粒子)を溶解 化学的に元素の単離 ウラン・鉛の定量(同位体希釈法)と同位体分析 初生鉛の補正 (²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb; ²⁰⁴Pbは非壊変起原)

²⁰⁶Pb* = ²³⁸U {exp(
$$\lambda_8 t$$
) - 1}

$$^{207}\text{Pb}* = ^{235}\text{U} \{\exp(\lambda_5 t) - 1\}$$

²⁰⁸Pb* = ²³²Th {exp($\lambda_2 t$) - 1}

閉止温度が高いことは欠点でもある

モナザイト

南極、ナピアー岩体

100µm

鉱物粒子各部の年代(Subgrain年代)の測定方法

物理的に分割→化学的分離→質量分析

研磨

他の鉱物と混ぜて 空気研磨

分割 顕微鏡下で切断 局所サンプリング →質量分析

イオンでスパッタリング SIMS (ANU)

レーザーで蒸発 LA-ICPMS

表面から蒸発 TIMS 微小領域化学分析 名古屋大学

CHIME法 EPMA Electron probe MicroAnalyzer

超高精度 (ppt: 10⁻¹²) 低空間分解能 高精度 (ppb: 10⁻⁸) 空間分解能 >20-30µm 低精度 (ppm: 10⁻⁵) 空間分解能 2-4μm

U-Th-Pb 系の親核種-娘核種の関係

 $\begin{array}{lll} ^{232}\text{Th} \Rightarrow ^{208}\text{Pb}: & ^{208}\text{Pb} = & ^{232}\text{Th} \left\{ \exp(\lambda_{232}t) - 1 \right\}: & \lambda_{232} = 4.9475 \times 10^{-11} \, \text{y}^{-1} \\ ^{235}\text{U} \Rightarrow ^{207}\text{Pb}: & ^{207}\text{Pb} = & ^{235}\text{U} \left\{ \exp(\lambda_{235}t) - 1 \right\}: & \lambda_{232} = 9.8485 \times 10^{-10} \, \text{y}^{-1} \\ ^{238}\text{U} \Rightarrow ^{206}\text{Pb}: & ^{206}\text{Pb} = & ^{238}\text{U} \left\{ \exp(\lambda_{238}t) - 1 \right\}: & \lambda_{232} = 1.55125 \times 10^{-10} \, \text{y}^{-1} \end{array}$

Total Pb = Pb_{initial} + ²⁰⁸Pb + ²⁰⁷Pb + ²⁰⁶Pb = Pb_{initial} + ²³²Th {exp($\lambda_{232}t$) -1 + ²³⁵U {exp($\lambda_{235}t$) -1} + ²³⁸U {exp($\lambda_{238}t$) -1} ²³⁸U/²³⁵U = 137.88 (Steiger and Jäger, 1977)

もし初生鉛(Pb_{initial})が壊変起原の鉛に比べて十分に小さい場合は Pb_{initial}=0として年代が決定できる

CHIME

最初のモナザイト年代測定結果 (Pb_{initial}=0と仮定)

領家変成岩: 紅柱石-珪線石漸移帯(620℃)

0.05mm

	wt.%	O=4
SiO ₂	0.167	0.0066
ThO ₂	6.899	0.0616
UO_2	0.632	0.0055
Y_2O_3	0.232	0.0048
La_2O_3	14.69	0.2129
Ce_2O_3	27.24	0.3919
Pr_2O_3	2.78	0.0398
Nd_2O_3	11.19	0.1570
Sm_2O_3	2.34	0.0317
Eu_2O_3	< 0.05	-
Gd_2O_3	1.14	0.0149
Tb_2O_3	0.11	0.0014
Dy_2O_3	0.27	0.0034
Er_2O_3	< 0.05	-
Yb_2O_3	< 0.05	-
FeO	< 0.02	-
CaO	1.547	0.0651
PbO	0.476	0.0050
P_2O_5	30.00	0.9982
Total	99.716	

	ThO_2	UO_2	PbO	Age
0	6.899	0.632	0.476	1206
1	5.323	0.540	0.030	101
2	4.124	0.396	0.021	92
3	7.405	0.691	0.352	842
4	6.338	0.535	0.304	868
5	5.044	0.480	0.027	97
6	6.538	0.342	0.290	877
7	5.213	0.438	0.029	104
8	6.602	0.516	0.301	840
9	5.053	0.450	0.031	113
0	7.113	0.687	0.501	1215
1	5.348	0.506	0.031	105
2	6.752	0.660	0.463	1181
3	7.177	0.723	0.526	1278
4	7.153	0.686	0.482	1167
5	5.417	0.431	0.026	90
6	5.454	0.470	0.030	102

UMB

$Pb_{initial} = 0$ は自明に非ず。 アイソクロン法へ

空間分解能の高いCHIME年代測定

CHIME

モナザイト分析値を選別する化学的な基準

Ca = REE with S = P

Monazite (La,Ce)PO₄

- 三価の Y は直接 REE を置換 Y=REE
- Th と U はチャージを合わせるために: Th⁴⁺ or U⁴⁺ + Si⁴⁺ = REE³⁺ + P⁵⁺ (huttonite) ThSiO₄
 - Th⁴⁺ or U⁴⁺ + Ca²⁺ = $2REE^{3+}$ (cheralite) (Th+Ca)(PO₄)₂
- 6 配位の Ca + 4 配位(P を Sで置換) Ca²⁺ + S⁶⁺ = REE³⁺ + P⁵⁺ CaSO₄

理想的には (Ca+Si)/(Th+U+Pb+S) は1になる。

0.95<(Ca+Si)/(Th+U+Pb+S)<1.05

Suzuki, K. and Kato, T. (2008), Gondwana Research 14, 569-586

年代未詳のモナザイト: CHIME年代を先に

1200

PbO₂ (wt.%)

$$0.95 < \frac{Ca+Si}{Th+U+Pb+S} < 1.05$$

$$K_2O < 0.02$$

年代未詳のジルコン: CHIME年代を先に

Kusiak, A.A., Dunkley, D.J., Suzuki, K., Kachlík, V., Kędzior, A., Lekki, J. and Opluštil, S. (2010), Gondwana Research, 17, 153-161

CHIME法の論文は日の目を見るまでに

2年余の歳月を要した

1985: JXA5A改造着手
1985: 基礎研究開始
1986: JXA-5A改造完了 ジルコンの主成分分析
1987: モナザイトの分析法確立
1988: 最初の論文投稿(年末)
1989: 論文リジェクト連続
1990: 論文リジェクト連続
1991: 論文が初めてアクセプト

CHIME法は容易には理解されなかった。最終的に 掲載が決まったSedimentary Geologyでも否定意見が 多かったため、編集長のK.A.W. Crook教授は論文の 掲載を迷っていた。 しかし、SHRIMP年代測定を 推進しているANUの I.S. Williams博士が何人目かの 査読者として原稿を読み、図表の細部に至るまで細 かく検討して、論文の掲載を Crook教授に強く推薦 した結果、やっと掲載可となった。

Suzuki, K., Adachi, M. and Tanaka, T. (1991): Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th-U-total Pb evidence from an electron microprobe monazite study. Sedimentary Geology, 75, 141-147. (被引用回数 **84**-201203)

最初の論文は出たが. ⇒1994年に国際会議で発表

注目

Suzuki, K., Adachi, M. and Kajizuka, I. (1994): Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth and Planet. Sci. Lett., 128, 391-405. (被引用回数 143-201203)

Suzuki, K. and Adachi, M. (1994): Middle Precambrian detrital monazite and zircon from the Hida gneiss in the Oki-Dogo Island, Japan: their origin and implication for the correlation of the basement gneiss of Southwest Japan and Korea. Tectonophysics, 235, 277-292. (被引用回数 91-201203)

氷上花崗岩の年代論

Suzuki, K. and Adachi, M. (1991): Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal, 25, 357-376. (被引用回数**173**-201203)

地質の野外観察と対応した年代測定

CHIME 年測センターのCHIME年代測定専用EPMA

CHIME年代測定用EPMAの使用時間と年代測定数

最近のCHIME年代測定の進歩-その1

最近のCHIME年代測定の進歩-その2

cps

地球創世記の研究

Jack Hillsの砕屑性ジルコンとモナザイトCHIME年代測定結果

2012年のCHIME年代測定

ジルコンのU・Thの分布と非調和なPb分布 (lumpy lead)

100µm

ジルコンのU・ThとPbの非調和分布の原因

82 Ma 伊奈川花崗岩

高濃度領域にPbが集まる。拡散では説明できない?

仮定:一部のRnはα壊変の 反跳で格子からフィッショ ントラックに入り、次の核 種に異変するまでランダム ウォークを続ける。

平均飛行時間 10⁻¹¹ s 平均滞在時間 4.87×10⁻⁹ s for Q= 8 kcal 7.24×10⁻⁸ s for Q= 10 kcal 平均移動距離 50 ∫m for ²¹⁹Rn from ²³⁵U (life-time = 5.77s) 1.5 cm for ²²²Rn from ²³⁸U (life-time = 5.72d)

Suzuki, K. (1987), Geochemical Journal, 21, 173-182. (被引用回数 13-201203)

年測センターにおけるCHIME展開研究:韓半島中部、京畿 地塊の中期原生代とペルム-三畳紀変成岩

京畿地塊は蘇魯(Sulu)衝突帯の東方延長?

Lee & Cho, 2003: Jour. Petrol., 44, 197-225

マイロナイト帯から離れたグラニュライト

仮説:熱い異地性岩体による接触変成作用

片麻岩とグラニュライトの境界:マイロナイト帯

Suzuki, K. (2009), Geosciences Journal, 13, 275-292

片麻岩とグラニュライトはNappeとWindow

Route 56沿いの変成岩のCHIME年代

マイロナイト化した泥質グラニュライト

680

340

0

50 cps

45

40

35

30

25

20

15

Pinite after cordierite 組織から 塑性変形 ガーネット →菫青石・Y解放 ピナイト の順番が読み取れる

マイロナイト化した泥質グラニュライトのモナザイト

Matrix

wt.%

2.8

2.4

2.0

1.6

1.2

0.8

0.4

wt.%

7.0

6.0

5.0

4.0

Garnet porphyroclast

PhO

Y2O3 0

230

190

150

110

50µm

wt.%

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Ma

2100

1800

1500

1200

900

600

300

UO2

50µm

Y2O3

wt.% 0.6 0.5 0.3 0.2 0.1

wt.%

1.2

1.0

0.8

0.6

0.4

0.2

0

0

京畿地塊北東部の年代分布

剪断センス: top to the NE direction

結論:蘇魯衝突帯は韓半島まで延びない

Gneiss complex:大陸衝突時に揚子江 – 異地性岩体 地塊から剥がれて中朝地塊に衝上 Allochthon

里山からキツネが消えた日

キツネは1960年代後半から少なくなり、いつの間にかいなくなった。 キツネの目撃は1972年あるいは1974年が最後。しかし、1977年頃の初 夏に子ギツネの死骸を埋葬したという人もいて確かではない。

この地域では「キツネは、うり坊を襲うことにより、イノシシの人里 進出を抑制していた」という見解があり、キツネの消えた時期に関心 が高い。

イノシシは1980年代初めに田畑に出没し始め、年々その被害が拡大。 キツネが消えたのが1970年代前半なら抑制説は疑わしくなる。

2010年の地蔵堂建て替え

キツネの死は1979年末か1980年初め

大気中核実験で生じた¹⁴C濃度の異常(Bomb effect)

チキンラーメンの袋の変遷 [画像提供:日清食品ホールディングス株式会社]

キツネの食べ物: δ^{13} Cと δ^{13} N

赤澤・米田・吉田 (1993), Minamigawa et al. (2005), Minami (1995), Yoneda et al. (2004), Jahren and Kraft (2008), 南・中村・平田・長岡・鵜澤(2007) ファーストフード (米国) はトウモロコシを含む飼料で飼育されたもの ピンクはコラーゲンの測定値をδ¹³Cで-4.5%, δ¹⁵Nで-3.4%補正してプロット

キツネのSr同位体比は花崗閃緑岩の初生値以下

里山からキツネが消えてから

1975年までに消えたと思われていたキツネが1979年まで生存していたことが判明し、イノシシの田畑進出(1980年頃から)との間隔が狭まった。因果関係の存在

20-21日の夜間 柵の下を掘って侵入 26-27日の夜間 柵を押し倒して侵入

キツネがイノシシを防いでいた

キツネが消えた日が転換点

2011年10月31日 世界の人口70億人

成長の限界がやってくる

世界平均1人1日あたりの穀物量 497g (米3.3合) 人類は食料危機の直前(?)

日本の余力は山間の耕作放棄地 22.3 万ha (2005年) 360.8 万ha

お礼

地球科学教室の寛大な大学院入試に救われ、自由闊達な雰 囲気の中で定年退職を迎えることができました。この間、実 に多くの先生や先輩から教えを受け、学生や同僚・友人にも 恵まれて、好き勝手な研究に没頭することができて幸せでし た。寛容に見守って援助と協力をいただきましたことを厚く 感謝申しあげます。

ご清聴ありがとうございました。

Measured Th plus U