Propositional Linear-time Temporal Logic PLTL

- Syntax of PLTL
 - Atomic formula: p (in a set P of propositions)
 - Expression: constructed from atomic formulae by \land , \lor , \Rightarrow , \neg , U and N, where U and N are used in forms of $\phi U\psi$, $N\phi$

- Semantics of PLTL (cont.)
 - Intuitively, w = pp'p'' represents a situation that p holds now, p' next moment, and p'' after that.
 - $N\phi$ means that ϕ holds in the next moment
 - $\phi U\psi$ means that ϕ holds until ψ holds

- Ex.: N(pUp') defines $L = \{w \mid w \models N(pUp')\}$, which is represented as regular expression $Rp^*p'R^*$, where R denotes all $p \in P$ combined by +, i.e., $R = (p_1 + \dots + p_m)$ for $P = \{p_1, \dots, p_m\}$
- Ex.: formula that defines each language
 R*pR*: true Up (p holds at a moment) (true is defined as, e.g. p ∨ ¬p) true Uφ is sometimes written as Fφ
 - pp*: ¬(F(¬p)) (p holds continuously) ¬(F(¬φ)) is sometimes written as Gφ

- Satisfiability problem of PLTL formulae: Problem whether there exists a string w that satisfies a given formula ϕ
- Th.: Satisfiability problem of PLTL formulae is decidable
- Proof: by transformation into WS1S
 - Prepare 2nd order variable X_p for each $p \in P$ The coding \hat{w} of a string w is shown by examples below

For
$$P = \{p, p'\}$$
 and $w = pp'p$,
 $\hat{w} = (X_p, X_{p'})$, where $X_p = \{\varepsilon, 11\}$, $X_{p'} = \{1\}$

5

 Proof (cont.) Construct WS1S formula ψ as $T(\phi, \varepsilon)$ from **PLTL** formula ϕ so that $w \models \phi$ iff $\hat{w} \models \psi$ -T(p,x): $x \in X_p$ - $T(N\phi, x)$: $T(\phi, x1)$ - $T(\phi U \phi', x)$: $\exists y.(x \leq y \wedge T(\phi', y))$ $\wedge \forall z. (x \leq z \wedge z \leq y \Rightarrow T(\phi, z)))$ - $T(\neg \phi)$: $\neg T(\phi)$