
Logic, Automata and Relations

• A logical formula φ with a single variable x

represents a set L

w ∈ L iff w |= φ

• Ex.: P (x) be a formula, which is satisfied if

x is an even integer

2 |= P (x)

P (x) can be seen as the set of even numbers

• Formula with n variables x1, . . . , xn represents

n-ary relation

(w1, . . . , wn) ∈ R iff w1, . . . , wn |= φ
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• A (tree) automaton can represents a relation

on strings (trees)

• String that represents a duple (aba, ε, bbba):

[aba, ε, bbba] =
a
⊥
b

b
⊥
b

a
⊥
b

⊥
⊥
a

• Ex.: Automata that represents addition re-

lation R+ on binary representation

- R+ is defined by

(xR, yR, zR) ∈ R+ iff x = y + z

- Automata on alphabet







0
0
0
,
0
0
1
, · · · ,

1
1
1







that

recognizes the relation R+ (shown in the

following page)
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• Ex. (cont.):

- 1100 = 0101+ 0111 on binary. Thus,

[0011,1010,1110] =
0
1
1

0
0
1

1
1
1

1
0
0

is accepted
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Binary Relation defined by Tree

Automata

• Class Rec×: Relation L1 × L2 for regular tree

languages L1 and L2

- ∆ = {(t, t) | t ∈ T(F)} is not in Rec×

• Class Rec： Relation {(t, u) | [t, u] ∈ L} for reg-

ular tree language L

- Tuple of trees (for the case n ≥ m)

[f1(t1, . . . , tn), f2(u1, . . . , um)]

= f1f2([t1, u1], . . . , [tm, um], [tm+1,⊥], . . . , [tn,⊥])

- Ex.: [f(g(a), g(a)), f(f(a, a), a)]

= ff(gf(aa,⊥ a), ga(a ⊥))
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• Class GTT: Relation fixed from NFTAs A1

A2 as follows:

Let Ai = (Qi,F , ∅,∆i)

C[t1, . . . , tn] R C[u1, . . . , un]) ⇐⇒

for some C and qj ∈ Q1 ∩Q2,

tj →
∗
A1

qj and uj →
∗
A2

qj
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• Ex. relation R in Rec: F = {a,Ω, g(), f(, )}

tRu
def
⇐⇒ u ∈ ({t} ·Ω T(F))

NFTA A with Qf = {q′} that accepts [t, u]
aa → q′ , gg(q′) → q′ , ff(q′, q′) → q′,
Ωa → q′, Ωg(q) → q′, Ωf(q, q) → q′ , ΩΩ → q′

⊥ a → q, ⊥ g(q) → q, ⊥ f(q, q) → q , ⊥ Ω → q

Acception ex.:

for t = f(g(Ω), g(Ω)) and u = f(g(g(a)), g(Ω)),

[tu] = ff(gg(Ωg(⊥ a)), gg(ΩΩ))

→∗
A ff(gg(Ωg(q)), gg(q′))

→∗
A ff(gg(q′), q′)

→A ff(q′, q′)

→A q′
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• Ex. relation R∗ in GTT R∗：F = {×,+,0,1}

tRu
def
⇐⇒ ∃C, t′ t = C[0× t′] ∧ u = C[0]

GTT by A1, A2 that defines R∗

A1: 0 → q 0 → q0 1 → q
q + q → q q × q → q q0 × q → q0

A2: 0 → q0

Acception ex.:

for t = 1+ ((0× 1)× 1 and u = 1+ 0,

t →∗
A1

1+ ((q0 × q)× q)

→A1
1+ (q0 × q)

→A1
1+ q0

u →A2
1+ q0
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• Relationship among classes
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Closure property of Rec

• Inherits from NFTA (union, intersection, etc)

• i’th projection Ri ⊆ Tn−1 of R ⊆ Rn:

Ri(t1, . . . , , ti−1, ti+1, . . . , tn)
def
⇐⇒ ∃t R(t1, . . . , ti−1, t, ti+1, . . . , tn)

• E.: R = {(a, a, a), (a, a, c), (a, b, c)}

R2 = {(a, a), (a, c)}

• i’th cylindrification Ri ⊆ Tn+1 of R ⊆ Rn:

Ri(t1, . . . , tn+1)
def
⇐⇒ R(t1, . . . , ti−1, ti+1, . . . , tn+1)

• Ex.: R = {(a, a), (a, c)} ⊆ {a, b, c}2

R2 = {(a, a, a), (a, b, a), (a, c, a), (a, a, c), (a, b, c), (a, c, c)}
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• Rec is closed under projection and cylindrifi-

cation

• Proof: Projection Ri is given as a linear tree

homomorphism h from R:

hF(f1 · · · fn(x1, . . . , xk))

= f1 · · · fi−1fi+1 · · · fn(x1, . . . , xk′),

(arity(f1 · · · fn) = k ≥ k′ = arity(f1 · · · fi−1fi+1 · · · fn))

Cylindrification Ri is given the inverse image

of h
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Closure property of GTT

• GTT is closed under transitive closure

• Proof sketch: (augmenting ε-rules)

for states q, q′ in both A1 and A2 such that

∃t t →∗
A1

q ∧ t →∗
A2

q′

if q 6→∗
A2

q′, q → q′ is added to A2

if q′ 6→∗
A1

q, q′ → q is added to A1
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• Proof sketch (cont.)
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