Properties of Tree Automata

• Closure

The following operations preserve regularity:

- Union: $L_1 \cup L_2$
- Complementation: $\overline{L_1}$ via complete DFTA
- Intersection: $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$
- Linear tree homomorphisms
- Inversion of linear tree homomorphisms

• Proof for union:

Construct NFTA $A = (Q, \mathcal{F}, Q^f, \Delta)$ recognizing $L_1 \cup L_2$ from NFTA $A_i = (Q_i, \mathcal{F}, Q_i^f, \Delta_i)$ recognizing L_i for each i

- $-Q = Q_1 \cup Q_2$
- $\Delta = \Delta_1 \cup \Delta_2$ $Q^f = Q^f_1 \cup Q^f_2$

• Tree homomorphism:

- $h : T(\mathcal{F}) \to T(\mathcal{F}')$ determined by $h_{\mathcal{F}} : \mathcal{F} \to T(\mathcal{F}', \mathcal{X})$,

where $h_{\mathcal{F}}(f) \in T(\mathcal{F}', \mathcal{X}_n)$ for arity(f) = n $h(a) = h_{\mathcal{F}}(a)$, and

$$h(f(t_1,\ldots,t_n)) = (h_{\mathcal{F}}(f))\{x_1 \leftarrow h(t_1),\ldots,x_n \leftarrow h(t_n)\}$$

- For $h_{\mathcal{F}}(g) = f(x_1, f(x_2, x_1)), h_{\mathcal{F}}(a) = a, h_{\mathcal{F}}(b) = b, h(g(a, g(b, b))) = f(a, f(f(b, f(b, b)), a)).$
- h is linear: $h_{\mathcal{F}}(f)$ is linear for any $f \in \mathcal{F}$

 image h(L) and inverse image h⁻¹(L) by tree homomorphism h of L:

$$h(L) = \{h(t) \mid t \in L\}, \text{ and}$$

 $h^{-1}(L) = \{t \mid h(t) \in L\}$

• Ex. that non-linearity prevents preservation of regularity:

for $\mathcal{F} = \{f(), g(), a\}, \ \mathcal{F}' = \{f'(,), g(), a\},\$ $h_{\mathcal{F}}(f) = f'(x_1, x_1), \ h_{\mathcal{F}}(g) = g(x_1), \ h_{\mathcal{F}}(a) = a,$ and $L = \{f(g^m(a)) \mid m \ge 0\},\$ $h(L) = \{f'(g^m(a), g^m(a)) \mid m \ge 0\}$

- Proof for linear homomorphisms For an NFTA $A = (Q, \mathcal{F}, Q^f, \Delta)$ recognizing L, we construct an NFTA $A' = (Q', \mathcal{F}, Q^f, \Delta')$ recognizing h(L).
 - For each $r = f(q_1, \dots, q_n) \rightarrow q \in \Delta$, $Q_r = \{q_p^r \mid p \in \mathsf{Pos}(h(f))\}$, and
 - Δ_r is the set of following rules ($p \in Pos(h(f))$):
 - $g(q_{p1}^r, \dots, q_{pk}^r) \rightarrow q_p^r$ for (h(f))(p) = g and arity(g) = k,
 - $q_i \rightarrow q_p^r$ for $(h(f))(p) = x_i$, and - $q_{\varepsilon}^r \rightarrow q$
 - $Q' = Q \cup \bigcup_{r \in \Delta} Q_r$ and $\Delta' = \bigcup_{r \in \Delta} \Delta_r$

- Proof for inversion of linear homomorphisms For a DFTA $A = (Q, \mathcal{F}, Q^f, \Delta)$ recognizing L, we construct an NFTA $A' = (Q \cup \{s\}, \mathcal{F}, Q^f, \Delta')$ recognizing $h^{-1}(L)$.
 - Δ' is the set of rules given as follows:
 - $a \rightarrow q$ for q such that $a \in \mathcal{F}$ and $h(a) \rightarrow^*_A q$, - $f(q_1, \ldots, q_n) \rightarrow q$ for $f \in \mathcal{F}$, $p_1, \ldots, p_n \in Q$, $(h(f))\{x_1 \leftarrow p_1, \ldots, x_n \leftarrow p_n\} \rightarrow^*_A q$ (n > 0), and $q_i = p_i$ for i such that x_i occurs in h(f), and $q_i = s$ for other i's

-
$$a \to s$$
 for $a \in \mathcal{F}$

- $f(s, \ldots, s) \rightarrow s$ for $f \in \mathcal{F}$ (arity(f) = n > 0)