Equivalence of NFTA and DFTA

- Construction of an equivalent DFTA $A_d = (Q_d, \mathcal{F}, Q_d^f, \Delta_d)$ to a given NFTA $A = (Q, \mathcal{F}, Q^f, \Delta)$ - $Q_d = 2^Q = \{S \mid S \subseteq Q\}$
 - $-Q_d^f = \{ S \in Q_d \mid S \cap Q^f \neq \emptyset \}$
 - Δ_d consists of rules $f(S_1, \ldots, S_n) \rightarrow S$ that satisfies

1

$$\forall f \in \mathcal{F}, \ \forall S_1, \dots, S_n \in Q_d$$
$$S = \{q \mid \exists q_1 \in S_1, \dots, \exists q_n \in S_n, \\ f(q_1, \dots, q_n) \to q \in \Delta\}$$

- DFTA $A_d = (Q_d, \mathcal{F}, Q_d^f, \Delta_d)$ is equivalent to the Ex. in p.8 of slide 1, where \triangle is $a \rightarrow \{q\}, g(\{q\}) \rightarrow \{q, q_q\},$ $g(\{q,q_g\}) \to \{q,q_g,q_f\}, g(\{q,q_g,q_f\}) \to \{q,q_g,q_f\},$ $f(\{q\},\{q\}) \to \{q\}, f(\{q,q_q\},\{q\}) \to \{q\},$ $f(\{q, q_g, q_f\}, \{q\}) \to \{q\}, f(\{q\}, \{q, q_g\}) \to \{q\},$ $f(\{q,q_g\},\{q,q_g\}) \to \{q\}, f(\{q,q_g,q_f\},\{q,q_g\}) \to \{q\},$ $f(\{q\}, \{q, q_g, q_f\}) \to \{q\}, f(\{q, q_g\}, \{q, q_g, q_f\}) \to \{q\},$ $f(\{q, q_g, q_f\}, \{q, q_g, q_f\}) \to \{q\}$ $Q_d^f = \{\{q, q_g, q_f\}\}$
- Q2-1: Convert NFTA (defined in Q1-1 in p.10 of slide 1) to a DFTA.

Pumping Lemma

• Ex. of non-regular tree language:

$$\{f(g^{m}(a), g^{m}(a)) \mid m \ge 0\}$$

$$\{g^{m}(h^{m}(a)) \mid m \ge 0\},$$

where $g^{k}(a) = \underbrace{g(g(\cdots g(a) \cdots))}_{k}$

• Pumping Lemma

For a regular tree language L, there exists k such that for any $t \in L$ $|t| \ge k$ implies the existence a decomposition C[C'[u]] of t satisfying

- **1.** $C' \notin \mathcal{X}$, and
- **2.** $\forall n \ge 0, \ C[C'^n[u]] \in L$

• Proof Sketch: let A be NFTA that recognizes L, and k be its number of states. For a $t \in L$ satisfying $|t| \ge k$, a state occurs twice in a path

q

Taking C, C', and u in above figure, $t = C[C'[u]] \rightarrow^*_A C[C'[q]] \rightarrow^*_A C[q] \rightarrow^*_A q_f \in Q^f$ Thus,

 $C[C'^{n}[u]] \to^{*}_{A} C[C'^{n}[q]] \to^{*}_{A} C[C'^{n-1}[q]] \to^{*}_{A}$ $\cdots \to^{*}_{A} C[q] \to^{*}_{A} q_{f} \in Q^{f}$

Proof of the claim that $L = \{f(g^m(a), g^m(a)) \mid m \ge 0\}$ is non-regular

- Assuming *L* be regular, there exists *k* determined by Pumping lemma. For $t = f(g^m(a), g^m(a))$ ($m \ge k$), there exists a decomposition t = C[C'[u]] saitsfying 1. and 2. of the lemma.
- In case $C \in \mathcal{X}$, $C' = f(g^{\ell}(x_1), g^m(a))$ ($0 \leq \ell \leq m$), $u = g^{m-\ell}(a)$. From Pumping lemma, $C[u] \in L$ follows, which contradicts to $C[u] = u \notin L$ - In case $C = f(g^{\ell}(x_1), g^m(a))$ ($0 \leq \ell < m$), $C' = g^{\ell'}(x_1)$, $u = g^{m-\ell-\ell'}(a)$ ($0 < \ell' \leq m-\ell$). From
 - Pumping lemma, $C[u] \in L$ follows, which constradicts to $C[u] = f(g^{m-\ell'}(a), g^m(a)) \notin L$

- Q2-2: Let $\mathcal{F} = \{f(,), a, b\}$ and $|t|_a$ be the number of occurrences of a in t. Show that tree language $L = \{t \in T(\mathcal{F}) \mid |t|_a = |t|_b\}$ is non-regular.
 - Hint: consider a member

 $f(f(f(\cdots, a), a), f(f(\cdots, b), b))$ in L