
SML (Mathematics of Quantum Information Theory)

Problem Sheet
Spring Semester, 2025

This problem sheet will continually be updated throughout the semester.

You are welcome to discuss and work on problems in groups, though please indicate that you have worked
together. Please show all working and quote any theorems that you use in your submission.

Choose some problems to solve and upload your solution as a pdf to TACT with file name:

Familyname Firstname Date.pdf (e.g. Meidai Hanako 6-16.pdf).

Linear Algebra review

1. (a) Let 〈· | ·〉 be a complex-valued inner-product of a complex vector space H. Prove the Cauchy–Schwarz
inequality ∣∣〈ψ | φ〉∣∣ ≤ ‖ψ‖ ‖φ‖, ψ, φ ∈ H.

(b) Use part (a) to show the triangle inequality for the norm ‖ψ‖ =
√
〈ψ | ψ〉,

‖ψ + φ‖ ≤ ‖ψ‖+ ‖φ‖.

2. Show that if ψn → ψ in H, then for any φ ∈ H, 〈φ | ψn〉 → 〈φ | ψ〉 in C.

3. ** Let `2(N) be the space

`2(N) =
{

(xn)n≥0 : xn ∈ C for all n and
∑
n≥0

|xn|2 <∞
}
.

Show that `2(N) is infinite-dimensional.

4. (a) Let {ej}j∈J be an orthonormal basis of a Hilbert space. Show that the decomposition of any vector
as a linear combination of basis vectors is unique.

(b) Let | ψ〉 =
∑
j | ej〉〈ej | ψ〉 =

∑
j ψj | ej〉 and | φ〉 =

∑
j | ej〉〈ej | φ〉 =

∑
j φj | ej〉 with ψj = 〈ej | ψ〉

and φj = 〈ej | φ〉 ∈ C. Show that

〈ψ | φ〉 =
∑
j

ψjφj .

5. Let H be a finite-dimensional Hilbert space and ψ, φ ∈ H. Show that

(a) Rank
(
|ψ〉〈φ|

)
= 1, (b)

(
|ψ〉〈φ|

)∗
= |φ〉〈ψ|.

6. Let H be a finite-dimensional Hilbert space.

(a) Show that for a linear operator U : H → H

U∗U = UU∗ = 1H ⇐⇒ 〈Uψ | Uφ〉 = 〈ψ | φ〉 for all ψ, φ ∈ H.

(b) If {|ej〉}nj=1 and {|ẽj〉}nj=1 are orthonormal bases of H, show that there is a unitary operator U : H →
H such that U |ej〉 = |ẽj〉 for all j. Conversely, if {|ej〉}nj=1 is an orthonormal basis and U is unitary,
show that {|Uej〉}nj=1 is an orthonormal basis.

(c) If H = H∗ with spectral decomposition H =
∑
j λjPλj , show that the operator V = eiH =

∑
j e
iλjPλj

is unitary.

7. Let {|ej〉}nj=1 be an orthonormal basis of a Hilbert space H ∼= Cn. Define the linear operator S : H → H
such that S|ej〉 = |ej+1〉 for j ≤ n− 1, S|en〉 = |e1〉 and extended linearly.

(a) Find the matrix representation of S with respect to the orthonormal basis {|ej〉}nj=1.

(b) Show that Sn = 1n.

(c) Find all eigenvalues and eigenvectors of S in the case that n = 3 and H ∼= C3.



8. Suppose that for all j = 1, . . . , n there is a continuous map [a, b] 3 t 7→ |ψj(t)〉 ∈ H such that {|ψj(t)〉}nj=1

is an orthonormal system for all t ∈ [a, b]. Let P (t) =
n∑
j=1

|ψj(t)〉〈ψj(t)| be the corresponding subspace

projection. Show that for any |φ1〉, |φ2〉 ∈ H, the maps

[a, b] 3 t 7→ 〈φ1 | P (t)φ2〉 ∈ C, [a, b] 3 t 7→ P (t)|φ1〉 ∈ H

are continuous.

9. Consider the 2× 2 matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(a) Verify that for any j, k ∈ {1, 2, 3},

σ∗j = σj , σjσk + σkσj = 2δj,k 12,

where δj,k = 0 if i 6= j and δj,k = 1 if j = k.

(b) Find all eigenvalues and normalised eigenvectors of σj , for j = 1, 2, 3.

(c) Write σ1, σ2 and σ3 in diagonal form,

σj = λ
(j)
1 |e

(j)
1 〉〈e

(j)
1 |+ λ

(j)
2 |e

(j)
2 〉〈e

(j)
2 | λ

(j)
2 , λ

(j)
2 ∈ R, j ∈ {1, 2, 3},

and {|e(j)
1 〉, |e

(j)
2 〉} is an orthonormal basis of C2.

10. Let A and B be diagonalisable operators on a finite-dimensional Hilbert space H.

(a) Suppose that eigenvalues of A and B are non-degenerate. Show that if [A,B] = 0, then A and B are
simultaneously diagonalisable, i.e. there is an orthonormal basis {|ej〉}nj=1 that diagonalises both A
and B.

(b) ** Prove the same result as part (a) without the assumption of non-degenerate eigenvalues.

11. Let A and B be linear operators on H such that A2 = 1H and B2 = −1H. Show that for any t ∈ R

(a) exp(itA) = cos(t)1 + i sin(t)A (b) exp(tB) = cos(t)1 + sin(t)B.

12. *** Let H be an infinite dimensional (separable) Hilbert space with orthonormal basis {ej}j≥1. Define the
sequence of projections {PN}N≥0 as

PN =

N∑
j=1

|ej〉〈ej |

(a) Show that for any |ψ〉 ∈ H,
∥∥PN |ψ〉 − |ψ〉∥∥→ 0 as N →∞.

(b) Show that it does not hold that

‖PN − 1H‖
N→∞−−−−→ 0, where ‖A‖ = sup

‖ψ‖=1

∥∥A|ψ〉∥∥.
If you like, you may consider the case H = `2(N), which has the canonical orthonormal basis {ej}j∈N
such that ej(n) = δj,n.

13. Let H be a finite-dimensional space and L(H) = {A | A : H → H linear} the space of linear operators.

(a) Show that the sesquilinear form,

〈·, ·〉 : L(H)× L(H)→ C, 〈A,B〉 = Tr(A∗B)

defines an inner-product (called the Hilbert–Schmidt inner product) on L(H).

(b) If dim(H) = n show that dim
(
L(H)

)
= n2.

(c) Find an orthonormal basis for L(H) with respect to the Hilbert–Schmidt inner product.

14. Let H be a finite-dimensional space and Tr : L(H)→ C the trace. Show that:

(a) Tr(UAU∗) = Tr(A) for all A ∈ L(H) and U unitary,

(b) The trace is independent of the choice of orthonormal basis,

(c) Tr(AB) = Tr(BA) for all A,B ∈ L(H).



Postulates of quantum mechanics

1. Let a|ψ〉+ b|φ〉 ∈ H be a superposition of orthogonal states, a, b ∈ C and ‖aψ+ bφ‖ = 1. Show that for
an observable A = A∗, it may occur that

〈A〉aψ+bφ 6= 〈A〉aψ+eiθbφ, θ ∈ R.

2. ** Suppose that H(t) is a self-adjoint operator and U(t) is a solution to the initial value problem

i
d

dt
U(t) = H(t)U(t), U(0) = 1.

Show that U(t) is unitary and is a unique solution.

3. Solve the Schrödinger equation and find the time evolution for the case where H(t) = H is a Pauli
matrix, σ1, σ2 and σ3.

4. Let |+〉 = 1√
2
(1, 1), |−〉 = 1√

2
(1,−1) ∈ C2. Calculate the probability to measure +1 for the observables

σy and σz in the following states

(a) |+〉, (b) |−〉, (c)
1√
2

(|+〉+ |−〉) (d) ρ =
1

2
(|+〉〈+|) +

1

2
(|−〉〈−|)

5. Let H = C3 and consider the observable

A =

0 0 1
0 1 0
1 0 0

 .

(a) Show that the possible outcomes of a measurement of A are +1 and −1.

(b) Let |ψ〉 = 1√
3
(1, 1, 1). Compute

(i) Pψ(+1), (ii) Pψ(−1), (iii) 〈A〉ψ, (iv) ∆ψ(A).

6. (Nuclear magnetic resonance)** Let ω0, ω, g ∈ R and define the time-dependent Hamiltonian

H(t) =
ω0

2
σ3 + g

(
cos(ωt)σ1 + sin(ωt)σ2

)
∈M2(C).

(a) Show that the state |ψ(t)〉 ∈ C2 satisfies the Schrödinger equation i ddt |ψ(t)〉 = H(t)|ψ(t)〉 if and
only if

i
d

dt
|φ(t)〉 =

(ω0 − ω
2

σ3 + gσ1

)
|φ(t)〉, where |φ(t)〉 = exp

(
1
2 iωtσ3

)
|ψ(t)〉. (1)

(b) Find the general solution |φ(t)〉 to Equation (1) and therefore a solution |ψ(t)〉 to the Schrödinger
equation.

(c) Qualitatively describe the solution |φ(t)〉 in the case that

(i) |g| small, (ii) |ω − ω0| � |g|, (iii) ω = ω0

7. Let ρ ∈ Dens(H) be a density operator.

(a) Show that 〈ψ | (ρ− ρ2)ψ〉 ≥ 0.

(b) Show that ρ is a pure state ρ = |ψ〉〈ψ| if and only if ρ2 = ρ.

(c) Show that ρ describes a non-pure state if and only if Tr(ρ2) < 1.

8. Let H = C2, x = (x1, x2, x3) ∈ R3 and consider the operator

ρx =
1

2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
.

(a) Show that ρx ∈ Dens(C2) if and only if ‖x‖ =
√
x2

1 + x2
2 + x2

3 ≤ 1.

(b) Show that ρx is a pure state if and only if ‖x‖ = 1.

9. For any a = (a1, a2, a3) ∈ R3, define the matrix a · σ = a1σ1 + a2σ2 + a3σ3.



(a) Show that for any a,b ∈ R3,

(a · σ)(b · σ) = (a · b)12 + i(a× b) · σ,

where a · b =
∑
j ajbj is the dot product and

a× b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 ∈ R3

is the cross product of vectors in R3.

(b) Let n̂(θ, φ) =
(

sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)
)
∈ R3 and Dn̂(α) = exp

(
− iα2 n̂(θ, φ) · σ

)
. Show

that for all α, β ∈ R
Dn̂(α)Dn̂(β) = Dn̂(α+ β)

10. Let H be a finite dimensional Hilbert space and W ⊂ H a subspace. Suppose that there is a linear
operator U :W → H such that 〈w1 | w2〉 = 〈Uw1 | Uw2〉 for all |w1〉, |w2〉 ∈ W. Show that there exists
a unitary operator U ′ : H → H such that U ′|w〉 = U |w〉 for all |w〉 ∈ W (that is, U ′ extends U to H).

11. Let A = A∗ be a generic self-adjoint operator on H = C2 with spectral decomposition A = λ1|e1〉〈e1|+
λ2|e2〉〈e2|.

(a) For |ψ〉 = a|0〉+ b|1〉 a generic pure state, compute

(i) Pψ(λ1), (ii) Pψ(λ2), (iii) 〈A〉ψ, (iv) ∆ψ(A).

(b) Let ρx =
1

2

(
12 + x · σ

)
=

1

2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
with x ∈ R3 a point in the Bloch ball, ‖x‖ ≤ 1.

Calculate

(i) Pρx(λ1), (ii) Pρx(λ2), (iii) 〈A〉ρx , (iv) ∆ρx(A).

12. Show that, up to the equivalence |ψ〉 ∼ eiα|ψ〉, any Qubit |ψ〉 ∈ C2 can be written

|ψ〉 ∼ |ψ(θ, φ)〉 = e−i
φ
2 cos

(
θ
2

)
|0〉+ ei

φ
2 sin

(
θ
2

)
|1〉, θ, φ ∈ R.

13. Consider the self-adjoint and unitary operators A and B on C2, where

A =
1√
2

(
1 −i
i −1

)
, B =

1

2

(√
3 −1

−1 −
√

3

)
.

(a) Write A and B in the form n̂(θ, φ) · σ with n̂(θ, φ) =
(

sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)
)
∈ SR3 a

point on the Bloch sphere.

(b) Compute the ±1 eigenvectors of A and B.



Tensor products and entanglement

1. (a) Let |ψ〉 = 1√
2
(|0〉+ |1〉) ∈ C2. Write out the tensor products |ψ〉⊗2 and |ψ〉⊗3 explicitly in terms of

the orthonormal basis built from |0〉 and |1〉.
(b) Show that 1√

2

(
|00〉 + |11〉

)
= 1√

2

(
|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉

)
∈ C2 ⊗ C2 can not be written as a single

product |ψ〉 ⊗ |φ〉 with |ψ〉 ∈ C2, |φ〉 ∈ C2.

(c) More generally, show that a 2-Qubit a00|00〉+a01|01〉+a10|10〉+a11|11〉 is entangled if and only if

det

(
a00 a01

a10 a11

)
6= 0.

2. Find square matrices A and B of the same size such that under the Kronecker product A⊗B 6= B⊗A.

3. (a) Let |ψ1〉, |ψ2〉 ∈ H, |η1〉, |η2〉 ∈ K. Show that

|ψ1 ⊗ η1〉〈ψ2 ⊗ η2| =
(
|ψ1〉〈ψ2|

)
⊗
(
|η1〉〈η2|

)
.

(b) If A ∈ L(H) and B ∈ L(K), show that (A ⊗ B)∗ = A∗ ⊗ B∗. Show that the tensor product of
projections is a projection and the tensor product of unitaries is a unitary.

(c) Show that the matrix (with respect to the standard orthonormal basis of C4)

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ∈ L(C4)

can not be written in the form A⊗B with A,B ∈ L(C2).

4. Suppose that A ∈ L(H) and B ∈ L(K) are diagonalisable. Show that A ⊗ B is diagonalisable. Also,
describe the spectrum/eigenvalues σ(A⊗B) in terms of the spectrum/eigenvalues of A and B.

5. Let H ∈ L(C2) be the Hadamard operator, H|0〉 = 1√
2
(|0〉+ |1〉), H|1〉 = 1√

2
(|0〉 − |1〉).

(a) Compute H⊗2 explicitly, both in terms of the basis {|00〉, |01〉, |10〉, |11〉} and the Kronecker product
of matrices.

(b) Show that H⊗n ∈ L
(
(C2)⊗n

) ∼= L(C2n
)

can be written

H⊗n =
1

2n/2

2n−1∑
x,y=0

(−1)x·y|x〉〈y|, (−1)x·y = (−1)x0y0 · · · (−1)xn−1yn−1 ,

where |x〉 = |xn−1 · · ·x1x0〉 and |y〉 = |yn−1 · · · y1y0〉 is the binary decomposition of basis elements
in C2n ∼= (C2)⊗n.

6. (a) Let C4 ∼= C2
A⊗C2

B . Given a (4×4)-matrix M , write the matrix representation of TrC
2
A(M) ∈ L(C2

B).

(b) For any M ∈ L(H⊗K), show that

TrH
(

TrK(M)
)

= TrK
(

TrH(M)
)

= TrH⊗K(M) ∈ C.

(c) If M = M∗ ∈ L(H⊗K), show that TrH(M) and TrK(M) are self-adjoint.

7. Suppose that ρ ∈ Dens(H⊗K), A ∈ B(H) and B ∈ B(K). Show that

TrK(ρ) ∈ Dens(H), TrH(ρ) ∈ Dens(K), 〈A⊗ 1K〉ρ = 〈A〉TrK(ρ), 〈1H ⊗B〉ρ = 〈B〉TrH(ρ).

8. Define the Bell states in C2 ⊗ C2,

|Φ+〉 =
1√
2

(
|00〉+ |11〉

)
, |Φ−〉 =

1√
2

(
|00〉 − |11〉

)
,

|Ψ+〉 =
1√
2

(
|01〉+ |10〉

)
, |Ψ−〉 =

1√
2

(
|01〉 − |10〉

)
.

(a) Show that the Bell states form an orthonormal basis of C2 ⊗ C2.



(b) Let TrC
2

: L(C2⊗C2)→ L(C2) denote the partial trace onto an operator on the first tensor. Show
that the density matrices

TrC
2

(|Φ+〉〈Φ+|), TrC
2

(|Φ−〉〈Φ−|), TrC
2

(|Ψ+〉〈Ψ+|), TrC
2

(|Ψ−〉〈Ψ−|) ∈ Dens(C2)

describe non-pure states in C2.

(c) For an operator A ∈ L(C2), show that

〈A⊗ 12〉Φ+ = 〈A⊗ 12〉Φ− = 〈A⊗ 12〉Ψ+ = 〈A⊗ 12〉Ψ+

9. Let |ψ〉 ∈ H ⊗ K be a pure state. Show that |ψ〉 is a product state if and only if TrK(|ψ〉〈ψ|) and
TrH(|ψ〉〈ψ|) are pure states.

10. Let ρA ∈ Dens(HA) be a density operator. Find an auxiliary Hilbert space HB and a pure state
|ψAB〉 ∈ HA ⊗HB such that the partial trace TrHB (|ψAB〉〈ψAB |) = ρA.

11. (General measurements) We say that a collection of linear operators {Mm}Km=1 ⊂ L(H) are a set of
measurement operators if

∑
mM

∗
mMm = 1H. Given a pure state |ψ〉, we say Pψ(m) = 〈M∗mMm〉ψ is

the probability to obtain an outcome m for m = 1, . . . ,K.

(a) Show that measurement operators can be constructed from any self-adjoint operator A = A∗.

(b) Let M ∼= CK be a Hilbert space with an orthonormal basis {|m〉}Km=1. Fix also a pure state
|φM〉 ∈ M and define

U : H⊗ span{|φM〉} → H⊗M, U
(
|ψ〉 ⊗ |φM〉

)
=

K∑
m=1

(Mm|ψ〉)⊗ |m〉.

Show that U can be extended to a unitary operator U ′ ∈ L(H ⊗M) (you can use Q10 from the
Postulates of quantum mechanics section).

(c) Let Pm = 1H ⊗ |m〉〈m| ∈ L(H⊗M). Show that

〈U∗PmU〉|ψ⊗φM〉 = 〈ψ |M∗mMmψ〉 = Pψ(m).

(d) Suppose that the eigenvalue 1 of Pm is measured via the pure state U |ψ ⊗ φM〉. Show that this
state collapses to

U |ψ ⊗ φM〉
measurement−−−−−−−−→

( Mm|ψ〉√
〈ψ |M∗mMmψ〉

)
⊗ |m〉.

12. Show that a quantum copier does not exist. That is, there is no linear map

K : H⊗H → H⊗H, K
(
|ψ〉 ⊗ |η〉

)
= |ψ〉 ⊗ |ψ〉.

13. Find the Schmidt decomposition of the following vectors in C2 ⊗ C2

(a)
1√
2

(|00〉+ |11〉), (b)
1

2
(|00〉+ |01〉+ |10〉+ |11〉), (c)

1√
3

(|00〉+ |01〉+ |10〉).

14. Let |ψ〉 ∈ H ⊗H be a pure state.

(a) Show that |ψ〉 is a product state if and only if the Schmidt number (number of non-zero terms in
the sum of the Schmidt decomposition) is 1.

(b) Show that the Schmidt number of |ψ〉 is the same as the rank of the reduced density operator
ρH = TrH(|ψ〉〈ψ|) ∈ Dens(H).

15. Let H = C2 ⊗C2 ⊗C2 and consider the operator T with matrix representation (in the canonical basis)

T =

(
0 0
1 0

)
⊗
(

0 1
0 0

)
⊗
(

0 1
1 0

)
.

(a) Find the matrix representation of T and T ∗ in C8. Show that T 2 = (T ∗)2 = 0 and check if
TT ∗ = T ∗T or TT ∗ 6= T ∗T .

(b) Define the Hamiltonian H = T + T ∗. Show that for any integer m ≥ 0,

H2m = K =

(
1 0
0 0

)
⊗
(

0 0
0 1

)
⊗ 12 +

(
0 0
0 1

)
⊗
(

1 0
0 0

)
⊗ 12, H2m+1 = H.



(c) Show that the time evolution operator

exp(−itH) = (1−K) + cos(t)K − i sin(t)H.

(d) Suppose that at t = 0 |ψ(0)〉 = |010〉. Compute the time evolution |ψ(t)〉 for any t > 0.

(e) Suppose we take a measurement of the first Qubit (first tensor product) of |ψ(t)〉. What is the
probability of measuring |0〉 as the first qubit? What does the pure state |ψ(t)〉 collapse to after
such a measurement?

16. (a) Show that for any self-adjoint operator A ∈ L(H) and pure state |ψ〉 ∈ H,

〈ψ | Aψ〉 ≤
√
〈ψ | A2ψ〉.

When is 〈ψ | Aψ〉 =
√
〈ψ | A2ψ〉?

(b) Suppose H = C2 ⊗ C2 and A = QS +RS +RT −QT , where

Q = n̂Q · σ ⊗ 12, R = n̂R · σ ⊗ 12, S = 12 ⊗ n̂S · σ, T = 12 ⊗ n̂T · σ,

where n̂Q, n̂R, n̂S , n̂T ∈ SR3 are unit vectors in R3. Show that

A2 = 4(12 ⊗ 12) + [n̂Q · σ, n̂R · σ]⊗ [n̂S · σ, n̂T · σ].

(c) Use the results of (a) and (b) to show Tsirelson’s inequality,〈
ψ
∣∣ (QS +RS −RT −QT )ψ

〉
≤ 2
√

2

for any pure state |ψ〉 ∈ C2 ⊗ C2.



Quantum circuits and algorithms

1. Show that the classical Toffoli gate, TOF(x1, x2, x3) = (x1, x2, x1x2 ⊕ x3) can be constructed from the
classical logic gates ID, AND, XOR and COPY.

2. (a) Show that there exists ξ, α, β, γ ∈ R such that any single Qubit gate U can be written as

U = eiξRz(α)Ry(β)Rz(γ), Rz(α) = e−
iα
2 σz , Ry(β) = e−

iβ
2 σy .

(b) If U is single Qubit gate, show that there is a ξ ∈ R and unitary operators A,B,C constructed
from Ry and Rz such that ABC = 1 and

U = eiξAXBXC.

3. Show that the circuit

H

will transform a state |x1x0〉 in the computational basis of C2 ⊗ C2 to a Bell state.

4. (a) Write the following equality of diagrams as an equality of operators and show it is true,

H H

H H

= .

(b) Show that the swap gate S|x1x0〉 = |x0x1〉 can be written as a combination of controlled-NOT
gates,

=

5. Show that the quantum TOFFOLI gate can be decomposed as follows:

P1

P ∗1 P ∗1 P2

H P ∗1 P1 P ∗1 P1 H

where P1 = P (π4 ) and P2 = P (π2 ).

6. Let V =

(
a b
c d

)
be a unitary matrix. Find a quantum circuit comprised of single Qubit gates and

controlled-NOT gates to implement the two-level unitary

Ṽ =



1
a b

1
1

1
1

c d
1


,

(Note: you can use the quantum Toffoli and controlled-V gates in your circuit so long as you explain
that they can be decomposed as a combination of single-Qubit and CNOT gates, see Q5).

7. Let V ∈ L(C2) be a self-adjoint unitary operator.



(a) Show that for any pure state |ψ〉 ∈ C2,

|+V 〉 =
1√
2

(|ψ〉+ V |ψ〉), |−V 〉 =
1√
2

(|ψ〉 − V |ψ〉)

are eigenvectors of V .

(b) Consider the 2-Qubit system C2 ⊗ C2 and quantum circuit,

(H ⊗ 12)C1(V )(H ⊗ 12) =

H H

V

,

where H is the Hadamard gate.

i. Suppose the input state for the circuit is |0〉 ⊗ |ψ〉. Compute the output state.

ii. Suppose we measure the observable |1〉〈1|⊗12 in the output state. Show that this measurement
will collapse the output state into |±V 〉 depending on whether the measurement value is 0 or
1.

8. Let H = (C2)⊗4 be a 4-Qubit system with canonical basis {|x〉}15
x=0. Design a quantum circuit that

implements addition modulo 16. Namely, design a circuit that implements the map

U+ : H⊗H → H⊗H, U+ : |x〉 ⊗ |y〉 7→ |x〉 ⊗ |x+ y mod 16〉,

for x, y ∈ {0, 1, . . . , 15}. You may describe your circuit as a product of unitary operators, a circuit
diagram or via pseudo-code.

9. For a 3-Qubit system, we define the FREDKIN gate,

(a) Show that this gate can be written on the canonical/computational basis

F
(
|x2〉 ⊗ |x1〉 ⊗ |x0〉

)
= |x2〉 ⊗ |x1 ⊕ x2(x1 ⊕ x0)〉 ⊗ |x0 ⊕ x2(x1 ⊕ x0)〉.

(b) Show that the FREDKIN gate can be written as a combination of controlled-NOT gates and
Q-TOF.

(c) Write down the matrix representation of F in the canonical basis.

10. Let N > 1 be some fixed positive integer and 1 ≤ x ≤ N − 1 such that xr = 1 mod N for some
r ≥ 2. Show that the operator Ux : CN → CN defined on the canonical basis {|k〉}N−1

k=0 such that
Ux|k〉 = |xk mod N〉 is unitary.

11. Let S ⊂ {0, 1, . . . , 2n−1} be a non-empty subset and define the function fS : {0, 1, . . . , 2n−1} → {0, 1},
where fS(x) = 1 if x ∈ S and fS(x) = 0 if x /∈ S. Show that for the pure states |ψ〉 ∈ (C2)⊗n and
|−〉 = 1√

2
(|0〉 − |1〉) ∈ C2,

UfS (|ψ〉 ⊗ |−〉) = (1− 2PS)|ψ〉 ⊗ |−〉, PS =
∑
x∈S
|x〉〈x|.



Elements of quantum information theory

1. (a) Show that the partial trace TrK : L(H⊗K)→ L(H) is an example of a quantum channel.

(b) Show that the transpose of a matrix, considered as a linear map L(Cn) 3 A 7→ AT ∈ L(Cn), is not
a completely positive map.

2. Let H = C2, p ∈ [0, 1] and consider the following quantum channels.

ΦX(ρ) = pXρX∗ + (1− p)ρ, ΦY (ρ) = pXρY ∗ + (1− p)ρ, ΦZ(ρ) = pZρZ∗ + (1− p)ρ,

where ρ ∈ Dens(C2) and X,Y, Z are the Pauli matrices. By the equivalence ρ = ρx for some x ∈ R3

with ‖x‖ ≤ 1, show the effect of these channels on points in the Bloch ball that represent mixed states
in C2.

3. LetHB be a finite-dimensional Hilbert space and ρB ∈ Dens(H). Then for any operator V ∈ L(HA⊗HB)
such that V ∗V ≤ 1A⊗B , show that

Φ : L(HA)→ L(HA), Φ(T ) = TrB
(
V (T ⊗ ρB)V ∗

)
∈ L(HA),

defines a quantum operation.

4. Show that the composition of two quantum operations is also a quantum operation.

5. ** Find the Kraus operators/operator-sum representation of the depolarising channel, where for p ∈
[0, 1], and T ∈ Dens(Cd),

Φ(ρ) =
p

d
1d + (1− p)ρ.

6. Show that the quantum trace distance on states is a metric. That is for any ρ, ν, ω ∈ Dens(H), D(ρ, ν) ≥
0, D(ρ, ν) = 0 if and only if ρ = ν, D(ρ, ν) = D(ν, ρ) and

D(ρ, ν) ≤ D(ρ, ω) +D(ω, ν).

7. Compute the trace distance D(ρ, ν), where

(a) ρ =
3

4
|0〉〈0|+ 1

4
|1〉〈1|, ν =

2

3
|0〉〈0|+ 1

3
|1〉〈1|,

(b) ρ =
3

4
|0〉〈0|+ 1

4
|1〉〈1|, ν =

2

3
|+〉〈+|+ 1

3
|−〉〈−|.

8. Let {pi}ni=1 be a probability distribution and {ρi, νi}ni=1 ⊂ Dens(H).

(a) Show that the trace distance is jointly convex on density operators,

D
(∑

i

piρi,
∑
i

piνi

)
≤
∑
i

piD(ρi, νi).

(b) Show that the fidelity is jointly concave on density operators,

F
(∑

i

piρi,
∑
i

piνi

)
≥
∑
i

piF (ρi, νi).

9. Let |ψ〉 and |φ〉 be pure states in H with density operators ρψ and ρφ. Show that

D
(
ρψ, νφ) =

√
1− F (ρψ, νφ)2.

10. Show that the entropy of a state is additive under a tensor product,

S(ρ⊗ ν) = S(ρ) + S(ν), ρ ∈ Dens(H), ν ∈ Dens(K).

11. ** Let P = {pj}nj=1 be a probability distribution and {ρj}nj=1 ⊂ Dens(H). Show that

n∑
j=1

pjS(ρj) ≤ S
( n∑
j=1

pjρj

)
≤

n∑
j=1

pjS(ρj) +H(P).


