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1 Preface

The aim of this Special Mathematics Lecture (SML) is to introduce the mathematical framework used
to study quantum computing and quantum information. In order to do this, we will also need to
introduce the basic postulates of quantum mechanics. The mathematics of quantum mechanics is
quite complicated and often involves so-called infinite-dimensional Hilbert spaces. But if our interest
is in quantum computing and information, we can restrict our attention to finite-dimensional spaces
like Cn, which makes many aspects much easier.

Let us briefly introduce a few important concepts that we will further study in the lectures.

Quantum mechanics

Very loosely speaking, quantum mechanics is a theory about the behaviour of very small objects (elec-
trons, atoms, etc.). It is a theory developed by Heisenberg, Schrödinger, von Neumann, Dirac and
many others in the 1920s and 1930s. The physics of quantum phenomenon necessitated the devel-
opment of new mathematical constructions such as Hilbert spaces, (quantum) states and (quantum)
observables. Many parts of quantum mechanics do not agree with our intuition, which is based on
our observations of the macroscopic world. However, the experimental evidence in favour of quan-
tum mechanics is substantial so, despite its counter-intuitive nature, its foundations remain almost
universally accepted 100 years later.

A key part of quantum mechanics is the way in which measurement is understood, both physically
and mathematically. Physically, measurement of a quantum system is not a neutral operation and
will change the nature of the system itself. Mathematically, given a quantity we want to observe,
we can understand its possible outcomes and the probability that each will occur. These outcomes
and probabilities are closely related to the eigenvalues and eigenvectors of the mathematical object (a
linear operator) that describes the observable.

A particularly non-intuitive but important aspect of quantum mechanics is the notion of quantum
entanglement, where parts of a quantum system are intrinsically linked, even if they are very far from
each other. Mathematically, we understand quantum entanglement via so-called tensor products of
Hilbert spaces and what this implies for the states (vectors) in this composite system.

Quantum computing

One way we can understand quantum computing is as an application of quantum mechanics to infor-
mation theory, a mathematical description of the transmission of data/information.

A classical computer performs operations (mathematical operations, algorithms, ...) on data that is
represented by bits, strings of 0 or 1. A quantum computer is a device for computation that uses
distinctly quantum mechanical phenomena (superposition, entanglement, ...) to perform operations
on data represented by quantum bits (Qubits), strings of |0〉 or |1〉. Both methods of computation
have similar underlying principles, using algorithms to transform data and communicate information.
But the setting and implementation are very different. This means that one form of computation may
be faster/more efficient at performing a specific task than another. As we will see, there are some
tasks/algorithms that can be performed much more efficiently by a quantum computer.

What we will not discuss, is how to construct and implement a quantum computer in the real world,
though remark that there are many different approaches such as adiabatic quantum computing and
topological quantum computing with distinct theoretical foundations.

Quantum information

Roughly speaking, quantum computing is focused on the operations one can do on systems of Qubits
in order to implement particular algorithms or solve particular problems. More generally, we can study
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what information/data is contained in a system of Qubits and what operations preserve this informa-
tion. Put another way, if a Qubit system is described by a quantum state (or, more generally, a density
matrix), what are the operations on such states/density matrices that preserve the information/data
that is to be transmitted. A careful study of such operations is required to carefully analyse if errors
have occurred in a quantum transmission and how much the information has been altered. With such
information, one can try and implement error-correcting quantum codes to counteract these errors.

At the time of writing, it is unclear how much we will be able to say about the wider theory of quantum
information within the context of this SML, but the interested reader can consult [3, Part III], which
is the ‘standard’ reference.

A motivating example: (simplified) Deutsch’s algorithm

As previously stated, a classical bit is an element x ∈ {0, 1}. Suppose we have a function f : {0, 1} →
{0, 1} and want to know if f(0) = f(1) or f(0) 6= f(1). Using classical bits, this takes two steps:
compute f(0), then compute f(1) and compare the results.

If we use a system of two Qubits, then we can answer this question in one step. We will outline this
process without proper definitions (which will come later in the text). A generic Qubit is an element

|x〉 = a|0〉+ b|1〉 := a

(
1
0

)
+ b

(
0
1

)
∈ C2, a, b ∈ C, |a|2 + |b|2 = 1.

Before we consider a 2-Qubit system, we briefly introduce the Hadamard transformation on Qubits,
which is a linear and unitary operator H : C2 → C2 such that

H|0〉 =
1√
2

(
|0〉+ |1〉

)
, H|1〉 =

1√
2

(
|0〉 − |1〉

)
, H =

1√
2

(
1 1
1 −1

)
in matrix form.

Note also that H2 = 12 and so H will send the vectors 1√
2
(|0〉+ (−1)y|1〉) to |y〉 for y ∈ {0, 1}.

We now consider a composite system. A 2-Qubit vector is given by the product

|x, y〉 = (|x〉)(|y〉) = |x〉 ⊗ |y〉 =
(
a|0〉+ b|1〉

)
⊗
(
c|0〉+ d|1〉)

= ac|0, 0〉+ ad|0, 1〉+ bc|1, 0〉+ bd|1, 1〉 ∈ C2 ⊗ C2, a, b, c, d ∈ C.

We will precisely define the tensor product ⊗ later. Given the function f : {0, 1} → {0, 1}, we can
define the (unitary) operation on 2-Qubits,

Uf : C2 ⊗ C2 → C2 ⊗ C2, Uf
(
|x, y〉

)
= |x, y ⊕ f(x)〉,

where y ⊕ f(x) ∈ {0, 1} denotes addition modulo 2. That is,

Uf (|0, 0〉) = |0, f(0)〉, Uf (|0, 1〉) = |0, 1⊕ f(0)〉, Uf (|1, 0〉 = |1, f(1)〉, Uf (|1, 1〉) = |1, 1⊕ f(1)〉.

We wish to apply Uf on a specific 2-Qubit vector, namely,

(H ⊗H)(|0〉 ⊗ |1〉) = (H|0〉)⊗ (H|1〉) =
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉 − |1〉) =
1

2
(|0〉+ |1〉)(|0〉 − |1〉).

To help compute Uf of this vector, we first note that

Uf
(
|x〉( 1√

2
|0〉 − 1√

2
|1〉)
)

= 1√
2

(
|x, f(x)〉 − |x, 1⊕ f(x)〉

)
=

{
1√
2
(|x, 0〉 − |x, 1〉), f(x) = 0,

1√
2
(−|x, 0〉+ |x, 1〉), f(x) = 1,

= (−1)f(x)|x〉( 1√
2
|0〉 − 1√

2
|1〉).
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We now consider the operation Uf on the 2-Qubit |x〉|y〉 = 1
2(|0〉+ |1〉)(|0〉 − |1〉). A computation will

give that

Uf
(

1
2(|0〉+ |1〉)(|0〉 − |1〉) = 1

2

(
(−1)f(0)|0〉(|0〉 − |1〉) + (−1)f(1)|1〉(|0〉 − |1〉)

)
=

{
1
2(−1)f(0)(|0〉+ |1〉)(|0〉 − |1〉), f(0) = f(1),
1
2(−1)f(0)(|0〉 − |1〉)(|0〉 − |1〉), f(0) 6= f(1).

Finally, we apply the Hadmard transformation on the first Qubit only,

(H ⊗ 1)Uf
(

1
2(|0〉+ |1〉)(|0〉 − |1〉) =

{
1
2(−1)f(0)H(|0〉+ |1〉)(|0〉 − |1〉), f(0) = f(1),
1
2(−1)f(0)H(|0〉 − |1〉)(|0〉 − |1〉), f(0) 6= f(1).

=

{
1√
2
(−1)f(0)(|0〉)(|0〉 − |1〉), f(0) = f(1),

1√
2
(−1)f(0)(|1〉)(|0〉 − |1〉), f(0) 6= f(1).

= 1√
2
(−1)f(0)|f(0)⊕ f(1)〉(|0〉 − |1〉)

We can then measure the first Qubit to obtain the value f(0) ⊕ f(1) ∈ {0, 1} and determine if
f(0) = f(1) or not. We can combine all these process into one step via an application of the quantum
circuit,

(H ⊗ 1)Uf (H ⊗H)|0, 1〉 = 1√
2
(−1)f(0)|f(0)⊕ f(1)〉(|0〉 − |1〉)

We also represent the quantum circuit by the following diagram (which will be further explained later)

|0〉 H

Uf

H

|1〉 H

x x

y y ⊕ f(x)

The difference between classical and quantum methods become more apparent in higher dimensions.
Suppose f : {0, 1}n → {0, 1} is a function that is either constant f(x) = c ∈ {0, 1} for all x ∈ {0, 1}n
or is balanced: takes value 0 for half of {0, 1}n and 1 for the other half. Classical methods require
at least 2n−1 + 1 queries to know with complete certainty if f is constant or balanced. On the other
hand, the Deutsch–Joza algorithm solves this question by one operation of a quantum circuit built
from H and Uf on a particular choice of n-Qubit. So there is an exponential difference in terms of
steps taken.

The above example one case where ‘quantum’ methods can be used to obtain interesting and surprising
results. There are many other surprising examples such as quantum teleportation and superdense
coding that we will cover in the notes that follow.
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2 Linear algebra review

We first review some points from linear algebra. Indeed, much of the mathematical content of quantum
mechanics and quantum computing is directly related to complex vector spaces and linear operators
on these spaces.

2.1 Hilbert spaces

The setting of quantum mechanics and quantum computing is a complex Hilbert space. A review of
the complex numbers and its elementary properties are given in Appendix A.

Definition 2.1. A complex Hilbert space is a vector space H over the field C with a sesquilinear

inner product 〈· | ·〉 : H×H → C with the properties

〈ψ | φ〉 = 〈φ | ψ〉,
〈ψ | aφ1 + bφ2〉 = a〈ψ | φ1〉+ b〈ψ | φ2〉
〈ψ | ψ〉 ≥ 0 and 〈ψ | ψ〉 = 0 ⇐⇒ ψ = 0

for all ψ, φ, φ1, φ2 ∈ H and a, b ∈ C. Furthermore, the inner product induces a norm ‖ψ‖ =√
〈ψ | ψ〉 such that H is complete.

Remarks 2.2. 1. The conditions on the complex inner-product imply that 〈aψ | φ〉 = a〈ψ | φ〉 for
any a ∈ C.

2. For a norm to be complete, any sequence {ψn}n≥0 in H such that ‖ψn − ψm‖ < ε for n,m large
enough implies that there exists ψ ∈ H such that ‖ψn − ψ‖ → 0.

To prove that ‖ψ‖ =
√
〈ψ | ψ〉 is a norm, one uses the Cauchy–Schwarz inequality, whose proof is an

exercise.

Lemma 2.3 (Cauchy–Schwarz inequality). For any ψ, φ ∈ H,∣∣〈ψ | φ〉∣∣ ≤ ‖ψ‖ ‖φ‖.
Exercise 2.1. Show that if ψn → ψ in H, then for any φ ∈ H, 〈φ | ψn〉 → 〈φ | ψ〉 in C.

Example 2.4. For any natural number n ≥ 1, Cn is a complex Hilbert space with the obvious

vector space structure,

a


z1

z2
...
zn

+ b


w1

w2
...
wn

 =


az1

az2
...
azn

+


bw1

bw2
...

bwn

 .

The inner-product is similar to that on Rn, but with a complex conjugate on the left,

〈z1
...
zn

∣∣∣∣∣
w1

...
wn

〉 =

n∑
j=1

zjwj .

An inner-product lets us consider orthogonality and the angles between vectors. We say ψ and φ ∈ H
are orthogonal if 〈ψ | φ〉 = 0. Similarly, if V ⊂ H is a vector subspace, we can define

V⊥ =
{
φ ∈ H : 〈ψ | φ〉 = 0 for all ψ ∈ V

}
.
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Exercise 2.2. Let V ⊂ H be a closed vector subspace. Show that any vector φ ∈ H can be

decomposed as a sum φ = φ1 + φ2 with φ1 ∈ V, φ2 ∈ V⊥ and, hence, 〈φ1 | φ2〉 = 0. Put another
way, there is a decomposition H = V ⊕ V⊥.

Any vector space has a basis, a set of linearly independent vectors {ϕj}j∈J ⊂ H such that any element
ψ ∈ H can be decomposed as a linear span of basis elements,

ψ =
∑
j∈J

ajϕj , aj ∈ C for all j ∈ J.

Using the inner-product, we will generally work with an orthonormal basis, a basis {ej}j∈J such that

〈ej | ek〉 = δj,k =

{
1, j = k,

0, otherwise.

The Gram–Schmidt process can turn any basis into an orthogonal basis. We can also normalise any
non-zero vector ψ 7→ 1

‖ψ‖ψ to have unit length.

Example 2.5. The Hilbert space Cn has the canonical orthonormal basis

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · , en =


0
0
...
1

 .

For quantum computing and quantum information theory, it generally suffices to only consider finite-
dimensional Hilbert spaces, i.e. Hilbert spaces with a finite basis. But for many systems in quantum
mechanics, infinite-dimensional spaces are needed. An important example is

L2(R3) =
{
f : R3 → C

∣∣∣ ∫
R3

|f(x)|2 dx <∞
}
.

Exercise 2.3. Let {ej}j∈J be an orthonormal basis of a Hilbert space H. Show that the

expansion of an element ψ ∈ H with respect to this basis is unique

ψ =
∑
j

ajej =
∑
j

bjej =⇒ aj = bj for all j.

Furthermore, show that the complex coefficients aj = ψj := 〈ej | ψ〉. If ψ =
∑

j ψjej and
φ =

∑
j φjej , show that

〈ψ | φ〉 =
∑
j∈J

ψj φj .

2.2 Dual spaces and Dirac bra-ket notation

Definition 2.6. Let H be a complex Hilbert space. The dual space

H∗ =
{
ϕ | ϕ : H → C is a continuous and linear map

}
.

If H is a finite-dimensional space, then any linear map ϕ : H → C is continuous (exercise?).
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For any element ψ ∈ H, we can define an element 〈ψ| ∈ H∗, where

〈ψ| : H → C, 〈ψ|
(
φ
)

= 〈ψ | φ〉 ∈ C.

It follows from properties of the inner-product that for any a, b ∈ C 〈ψ|
(
aφ1 + bφ2

)
= a〈ψ|

(
φ1

)
+

b〈ψ|
(
φ2

)
, so 〈ψ| is linear. Similarly, by a previous exercise, if φn → φ, then

〈ψ|(φn) = 〈ψ | φn〉 → 〈ψ | φ〉 = 〈ψ|(φ).

Therefore 〈ψ| is continuous and, hence, an element in H∗.

Theorem 2.7 (Riesz Representation Theorem). Let H be a complex Hilbert space. There is a

bijective correspondence R : H → H∗ such that R(ψ) = 〈ψ| for all ψ ∈ H.

Using the Riesz Representation Theorem as a guide, we use a more symmetric way to denote elements
in H and the dual space H∗.

• A vector in the Hilbert space H is denoted as |ψ〉, the ket.

• A dual vector in H∗ is denoted as 〈ψ|, the bra.

We can pair a bra 〈ψ| with a ket |φ〉 to obtain a bra-ket 〈ψ | φ〉 ∈ C. The Riesz map R(|ψ〉) = 〈ψ|.
Note that R is anti-linear,

R(a|ψ〉+ b|φ〉) = R(|aψ + bφ〉) = 〈aψ + bφ| = a〈ψ|+ b〈φ| = aR(|ψ〉) + bR(|φ〉)

for any a, b ∈ C.

We will generally use the ket notation for elements |ψ〉 ∈ H, though will sometimes pass back and
forth ψ ∼ |ψ〉. For example, we will write ‖ψ‖ rather than ‖|ψ〉‖.
Given an orthonormal basis {ej}j∈J , we can therefore write

ψ =
∑
j∈J
〈ej | ψ〉 |ej〉 =

∑
j∈J
|ej〉〈ej | ψ〉.

Example 2.8. For the case H = Cn, we can naturally consider H∗ ∼= Cn, where the Riesz map

R


z1

z2
...
zn

 =
(
z1 z2 · · · zn

)
.

2.3 Linear operators

At this point, we now assume our Hilbert space H to be finite-dimensional and fix an orthonormal
basis {|e1〉, . . . , |en〉}. Because |ψ〉 =

∑
j |ej〉〈ej | ψ〉, we have that

∑
j |ej〉〈ej | = 1H the identity

operator.

Suppose that A : H → H is linear map. We write A|ψ〉 to denote the vector |Aψ〉. Using the linearity
of A and the inner-product, we can decompose

A|ψ〉 =
∑
j

|ej〉〈ej | Aψ〉 =
∑
j

|ej〉〈ej | A
(∑

k

|ek〉〈ek | ψ〉
)
〉

=
∑
j,k

|ej〉〈ej | Aek〉〈ek | ψ〉.
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That is,

A =
∑
j,k

|ej〉〈ej | Aek〉〈ek| =
∑
j,k

|ej〉Ajk〈ek|,

where {Ajk}nj,k=1 = {〈ej | Aek〉}nj,k=1 are complex-valued matrix coefficients of A with respect to the
orthonormal basis {ej}nj=1.

Definition 2.9. For a finite-dimensional space H, we denote by L(H) the vector space of all

linear operators A : H → H.

Example 2.10. For any |ψ〉 and |φ〉 ∈ H, we can define the linear operator

|ψ〉〈φ| : H → H, |ψ〉〈φ|(|η〉) = |ψ〉〈φ | η〉.

Let’s consider the matrix representation of this operator in the case H = Cn with canonical
orthonormal basis. Recalling Example 2.8, for |ψ〉 = (z1, . . . , zn) and |φ〉 = (w1, . . . , wn), then

|ψ〉〈φ| =

z1
...
zn

(w1 · · · wn
)

=

z1w1 · · · z1wn
...

. . .
...

znw1 · · · znwn

 .

Definition 2.11. 1. Given a linear operator A ∈ L(H), the adjoint A∗ : H → H is the linear
operator such that

〈ψ | Aφ〉 = 〈A∗ψ | φ〉 for all φ, ψ ∈ H.

If A = A∗, then A is self-adjoint (Hermitian).

2. A linear operator U : H → H is unitary if U∗U = UU∗ = 1H. That is, U is invertible with
its inverse given by the adjoint.

3. A linear operator P : H → H is an orthogonal projection if P = P ∗ = P 2.

Because we always work on Hilbert spaces, a projection P will always mean an orthogonal projection.
Given a unit vector |ψ〉, the linear operator Pψ = |ψ〉〈ψ| gives the projection on the subspace of H
spanned by |ψ〉.
We list a few properties of the adjoint. The proof is an exercise.

Lemma 2.12. 1. Let A and B be linear operators on H. Then

(A∗)jk = Akj , (cA)∗ = cA∗, (AB)∗ = B∗A∗,

where {Ajk} denotes the matrix coefficients and c ∈ C.

2. If H is finite-dimensional, a linear operator U : H → H is unitary

〈Uψ | Uφ〉 = 〈ψ | φ〉 for all φ, ψ ∈ H.

Remark 2.13. Part (2) of Lemma 2.12 fails whenH is infinite-dimensional. Namely, there are operators
V : H → H such that 〈V ψ | V φ〉 = 〈ψ | φ〉 but where V V ∗ 6= 1H.

A concept that will play an essential role in our understanding of quantum mechanics is the eigenvalues
(and eigenvectors) of a linear operator.

9



Definition 2.14. A number λ ∈ C is an eigenvalue of a linear operator A : H → H with

eigenvector |ψ〉 ∈ H if |ψ〉 6= 0 and A|ψ〉 = λ|ψ〉. The set of eigenvalues

σ(A) =
{
λ ∈ C

∣∣ (λ1H −A) is not invertible
}

is called the spectrum of the linear operator A.

One finds the eigenvalues of an operator by solving the characteristic polynomial equation,

(λ1H −A) is not invertible ⇐⇒ det
(
λ1H −A) = 0,

where det : Mn(C) → C is the determinant of a (square) matrix. The determinant of a matrix
A ∈Mn(C) is independent of the choice of orthonormal basis used to compute the coefficients Ajk =
〈ej | Aek〉. Hence the solutions to the polynomial equation det

(
λ1H − A) = 0 is independent of the

choice of orthonormal basis. Furthermore, if A is of size n × n, then pn(λ) = det
(
λ1H − A) can be

considered as a complex polynomial of order n in the variable λ. By the Fundamental Theorem of
Algebra, the equation

pn(λ) = det
(
λ1H −A) = 0 =⇒ n solutions, λ1, . . . , λn ∈ C,

where it may occur that λj = λk for some j 6= k (multiplicity).

A fixed eigenvalue λ ∈ C of A might have linearly independent eigenvalues. The span of eigenvectors
of λ is called the eigenspace of A for the value λ. We say that λ is a non-degenerate eigenvalue if its
eigenspace is one-dimensional. Otherwise, we say that λ is degenerate.

Exercise 2.4. 1. If A is self-adjoint, then σ(A) ⊂ R (eigenvalues are real).

2. If U is a unitary operator with eigenvalue λ, then |λ| = 1 (eigenvalues of unitary operators
lie on the complex unit circle).

3. If P = P ∗ = P 2, then σ(P ) = {0, 1}.

We say that a linear operator A is diagonalisable if there exists an orthonormal basis of eigenvalues
of A. That is, there is an othorthonormal basis {|ej,α〉}j,α such that

A|ej,α〉 = λj |ej,α〉, σ(A) = {λ1, . . . , λm}.

In the above, the index α is used to denote the possible degeneracy of an eigenvalue.

Theorem 2.15 (Spectral Theorem). A linear operator A : H → H is diagonalisable if and only

if it is normal, A∗A = AA∗.

The above theorem shows that self-adjoint and unitary operators are diagonalisable.

Given a diagonalisable operator A, the operator

Pλj :=
∑
α

|ej,α〉〈ej,α|

gives the (orthogonal) projection onto the λj-eigenspace of A. We also note the important property
that

PλjPλk = δj,kPλj .

We can also consider the matrix decomposition of A, where in the eigenvector orthonormal basis,

A =
∑
j,α

∑
k,β

|ej,α〉Aj,α,k,β〈ek,β|.

10



Because A|ej,α〉 = λj |ej,α〉, we have that Aj,α,k,β = λjδj,kδα,β. So we can simplify

A =
∑
j,α

∑
k,β

|ej,α〉Aj,α,k,β〈ek,β| =
∑
j,α

∑
k,β

|ej,α〉λjδj,kδα,β〈ek,β|

=
∑
j,α

λj |ej,α〉〈ej,α| =
∑
j

λj

(∑
α

|ej,α〉〈ej,α|
)

=
∑
j

λjPλj .

We call the formula A =
∑

j λjPλj the spectral decomposition of A into diagonal form. In particular,

A =

λ1

. . .

λm

 in the eigenvector orthonormal basis,

and where degenerate eigenvalues appear multiple times on the diagonal.

Examples 2.16. 1. When A = A∗, A =
∑

j λjPλj with λj ∈ R for all j.

2. When U is unitary, eigenvalues are complex with norm 1, so we write

U =
∑
j

eiθj |ej,α〉〈ej,α| =
∑
j

eiθjP
eiθj

with θj ∈ R for all j.

3. For a general normal operator T , T ∗T = TT ∗, we can write each non-zero eigenvalue in
polar form, λj = rje

iθj with rj = |λj | > 0 and θj ∈ R. Hence we can decompose

T =
∑
j

rje
iθj |ej,α〉〈ej,α| =

∑
j

rje
iθjPλj .

The determinant gives a map from linear operators on H to C. Another complex-valued map on linear
operators that we will use is the trace.

Definition 2.17. The trace of a linear operator A on H with orthonormal basis {ej}nj=1 is given

by

Tr(A) =
n∑
j=1

〈ej | Aej〉 ∈ C.

We leave it as an exercise to show that Tr is independent of the choice of orthonormal basis and is
such that Tr(AB) = Tr(BA) for any linear operators A and B on H.
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3 Postulates of quantum mechanics

We will now apply linear algebra to assemble the basics of quantum theory. We will do this in a rather
mathematical way, where we consider ‘Postulates’/axioms, which we take to be given and consider
the logical and physical implications from this.

For the reader who has studied quantum mechanics, throughout this document ~ = 1.

3.1 Pure states and observables

As previously mentioned, quantum mechanics takes place on a complex Hilbert space H. In what
follows, we will only consider finite-dimensional spaces. This restriction can be lifted, but it is sub-
stantially more technically demanding.

Postulate 1 (Observables and pure states). The elements |ψ〉 ∈ H with ‖ψ‖ = 1 are the pure

states of a quantum mechanical system. An observable is a physically measurable quantity which
is represented by a self-adjoint (Hermitian) operator A = A∗ on H.
The mean-value/expectation of the observable A in the pure state |ψ〉 is the quantity〈

A
〉
ψ

= 〈ψ | Aψ〉 ∈ R.

Put another way, an isolated quantum system is described by a fixed Hilbert space H. The possible
states that the system can reside in are given by unit vectors |ψ〉 ∈ H and the observables one can
measure are the self-adjoint operators. The condition ‖ψ‖ = 1 is a normalisation so that, for example,
〈1〉ψ = 1 for all states |ψ〉.
Remark 3.1. A crucial element of quantum theory is that measurement is always done with respect
to a state |ψ〉. Given A = A∗, different states |ψ〉 and |φ〉 may give different expectation values
〈A〉ψ 6= 〈A〉φ.

If A is an observable, then by the spectral decomposition, A =
∑

j λjPλj and

〈A〉ψ =
〈
ψ
∣∣∣(∑

j

λjPλj

)
ψ
〉

=
∑
j

λj〈ψ | Pλjψ〉

=
∑
j

λj〈ψ | P ∗λjPλjψ〉 =
∑
j

λj〈Pλjψ | Pλjψ〉

=
∑
j

λj
∥∥Pλjψ∥∥2

.

Because ‖ψ‖ = 1 and Pλj is the projection onto a subspace, ‖Pλjψ‖2 ∈ [0, 1], which we think of as the
probability that the measurement of A with respect to |ψ〉 returns the eigenvalue λj .

Postulate 2 (Measurement probability). The possible measurement values of an observable A

are given by the spectrum σ(A) ⊂ R.
For a pure state |ψ〉, the probability that a measurement of A with respect to |ψ〉 returns the
value λ ∈ σ(A) is given by

Pψ(λ) =
∥∥Pλψ∥∥2

= 〈Pλψ | Pλψ〉 = 〈Pλ〉ψ.

For a given observable A and pure state |ψ〉, the map Pψ : σ(A) → [0, 1], Pψ(λ) = ‖Pλψ‖2 indeed
defines a probability measure,∑

λ∈C
Pψ(λ) =

∑
λ

∑
α

〈ψ | eλ,α〉〈eλ,α | ψ〉 =
∑
λ,α

∣∣ψλ,α∥∥2
= ‖ψ‖2 = 1,
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where {eλ,α} is the orthonormal basis of eigenvectors of A and ψλ,α = 〈eλ,α | ψ〉 the complex coefficients
of ψ in this basis expansion.

Remarks 3.2. 1. If |ψ〉 and |φ〉 are pure states, then so is a|ψ〉 + b|φ〉 for any a, b ∈ C such that
‖aψ + bφ‖ = 1. This the superposition of quantum states.

2. If |ψ〉 is a pure state, so is eiθ|ψ〉 and 〈A〉ψ = 〈A〉eiθψ. So quantum states are invariant under

a global phase. On the other hand, the states a|ψ〉+ b|φ〉 and a|ψ〉+ eiθb|φ〉 may give different
measurement outcomes. So the relative phase of quantum states does matter.

Proposition 3.3. If a quantum system is prepared in the state |ψ〉, then the probability to

observe it with respect to the state |φ〉 is given by |〈ψ | φ〉|2.

Proof. The projection Pφ = |φ〉〈φ| is the projection onto the span of |φ〉. Therefore, to measure

|φ〉 in the state |ψ〉 we are precisely measuring Pψ(1) of the observable Pφ. Because |φ〉 is the
1-eigenvector of Pφ, we are therefore measuring

Pψ(1) = 〈ψ |
(
|φ〉〈φ|

)
ψ〉 =

∣∣〈ψ | φ〉∣∣2.
One can describe measurement in quantum mechanics is several ways that, when combined with the
other postulates, are equivalent to each other. For completeness, we also state measurement with
respect to an orthonormal basis.

Postulate (Measurement – orthonormal basis version). Each orthonormal basis {|ej〉}nj=1 ⊂ H
describes a measurement as follows. Given any state

|ψ〉 =

n∑
j=1

|ej〉〈ej | ψ〉,
n∑
j=1

∣∣〈ej | ψ〉∣∣2 = 1,

then the state |ψ〉 after measurement is |ej〉 with probability |〈ej | ψ〉|2.

Remark 3.4 (Observable vs orthonormal basis description of measuremements). Because any self-
adjoint operator A = A∗ is diagonalisable, there is a corresponding orthonormal basis {|ej,α〉} such
that A =

∑
j,α = λj |ej,α〉〈ej,α|. We can therefore decompose any pure state

ψ〉 =
∑
j,α

|ej,α〉〈ej,α | ψ〉

and measurement of |ψ〉 in this orthonormal basis will return |ej,α〉 with probability
∣∣〈ej,α | ψ〉∣∣2.

The knowledge that {|ej,α〉} comes from a spectral decomposition gives us extra information. Namely,
we have eigenvalues {λj}mj=1 that label every basis element. If λj has linearly independent eigenvalues,
then dim(PλjH) = l > 1. In this case |ej,1〉, . . . |ej,l〉 are all assigned the same value λj . So the
probability that a measurement of |ψ〉 in the orthonormal basis {|ej,α〉} will return any of these
vectors is given by

l∑
α=1

∣∣〈ej,α | ψ〉∣∣2 =

l∑
α=1

〈ψ | ej,α〉〈ej,α | ψ〉 =
〈
ψ
∣∣∣ l∑
α=1

(
|ej,α〉〈ej,α|

)
ψ
〉

= 〈ψ | Pλjψ〉 = 〈Pλj 〉ψ.

Hence, the probability for the measurement of |ψ〉 to return any of the vectors |ej,α〉 in a fixed
eigenspace PλjH (using the orthonormal basis approach to measurement) is the same as the probability
to measure the eigenvalue λj of A with respect to the state |ψ〉 (observable approach to measurement).
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Conversely, given any orthonormal basis {|ej〉}nj=1, we can define a self-adjoint observable A =∑
j j|ej〉〈ej |. Then the probability to measure the value j ∈ σ(A) in the state |ψ〉 is given by

Pψ(j) = 〈Pj〉ψ = 〈ψ | (|ej〉〈ej |)ψ〉 =
∣∣〈ej | ψ〉∣∣2,

which is the same as the probability of returning |ej〉 if we were to measure |ψ〉 in the orthonormal
basis {|ej〉}. To summarise, the two approaches to measurement represent the same probabilistic data.

There is a more general approach to measurement that is with respect to a set of measurement
operators {Mk}mk=1 ⊂ L(H), where

∑
kM

∗
kMk = 1H. In this picture, given the pure state |ψ〉, the

probability that a result k = 1, . . . ,m occurs is given by ‖Mkψ‖2 = 〈Mkψ | Mkψ〉. We recover the
previous picture in the case where Mk = |ek〉〈ek| for an orthonormal basis {|ek〉} or Mk = Pλk , a
spectral projection onto a fixed eigenspace of a self-adjoint operator.

The expectation 〈A〉ψ is probabilistic quantity. We can similarly consider the standard deviation/uncertainly
of a given observable A with respect to |ψ〉.

Definition 3.5. The uncertainty/standard deviation of an observable A in the state |ψ〉 is

∆ψ(A) =
√〈

(A− 〈A〉ψ1)2
〉
ψ

=
√〈

ψ
∣∣ (A− 〈A〉ψ1)2ψ〉.

Example 3.6. Suppose that |ψ〉 is an eigenvector of A, A|ψ〉 = λ|ψ〉. Then 〈A〉ψ = λ and

∆ψ(A) =
√〈

ψ
∣∣ (A− 〈A〉ψ1)2ψ〉 =

√〈
ψ
∣∣ (A− λ1)2ψ〉 = 0.

Exercise 3.1. Show that

∆ψ(A) = 0 ⇐⇒ A|ψ〉 = 〈A〉ψ|ψ〉.

The uncertainty ∆ψ(A) gives an indication of the spread of the possible values that may occur when
we measure A in the state |ψ〉. Indeed, If ∆ψ(A) 6= 0, then different measurements of A in the state |λ〉
may give different outcomes. The expectation 〈A〉ψ gives us the average/mean of these measurements,
but if ∆ψ(A) is large, then we may obtain measurements very far from 〈A〉ψ with non-zero probability.

This uncertainty of measurement is a key feature/property of quantum mechanics, as is evidenced by
the famous result below.

Proposition 3.7 (The uncertainty relation). For any pure state and observables A and B,

∆ψ(A)∆ψ(B) ≥ 1

2

∣∣〈[A,B]〉ψ
∣∣

Example 3.8. The most famous example of the uncertainty relation is the Heisenberg uncer-

tainty relation, which considers the position X and momentum D observables on the (infinite-
dimensional) Hilbert space L2(R), where

(Xψ)(x) = xψ(x), (Dψ)(x) = −iψ′(x), [X,D] = i

and so ∆X(ψ)∆ψ(D) ≥ 1
2 . This means if we measure the position with high certainty, then we

cannot simultaneously measure the momentum with high certainty.
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Given an observable A =
∑

j λjPλj and state |ψ〉, then we will measure the value λj with probability

Pψ(λj) = ‖Pλjψ‖2. If we measure the same state again, we will always get the value λj . That is, the
measurement alters the state |ψ〉.

Postulate 3 (Projection / collapse of ‘wave function’). If a measurement of the observable A

in the pure state |ψ〉 yields the eigenvalue λ, then the measurement has caused the transition

|ψ〉︸︷︷︸
before measurement

measure A−−−−−−→ Pλ|ψ〉
‖Pλψ‖︸ ︷︷ ︸

after measurement

.

We see that measurement fundamentally changes the quantum state. We can also perform operations
on a quantum state that are not as drastic. Indeed, if |ψ〉 is a state and U : H → H is unitary, then
‖Uψ‖ = ‖ψ‖ = 1 and so U |ψ〉 is also a state. We can therefore use unitary operators to consider the
evolution of a state as time progresses.

Postulate 4 (Time evolution – Hiesenberg picture). The time-evolved state |ψ(t)〉, t ∈ R, from

an initial state |ψ0〉 is given by |ψ(t)〉 = U(t)|ψ0〉, wherer U(t) is a unitary operator such that

i
d

dt
U(t) = H(t)U(t), U(0) = 1H, (3.1)

where H(t) is a self-adjoint operator, the Hamiltonian, that describes the observable energy of
the quantum system at time t. The operator U(t) is called the time-evolution unitary.

Exercise 3.2. Show that any solution U(t) to the Equation (3.1) is unitary and unique.

The Hamiltonian H(t) both specifies the possible energies of a quantum system as well as how it
evolves over time. As such, the Hamiltonian is often the most important observable to consider for a
given quantum system.

There is an equivalent formulation of Postulate 4 that works on the evolution of the states themselves.

Postulate (Time evolution – Schrödinger picture). The time-evolved state |ψ(t)〉, t ∈ R, from

an initial state |ψ0〉 is the solution to the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉, |ψ(0)〉 = |ψ0〉,

where H(t) is the Hamiltonian operator at time t.

While the Heisenberg picture of the time-evolution is a little more complicated (involving a differential
equation of linear operators rather than vectors), it is the more natural picture from the perspective of
quantum information and computing, where we perform unitary operations to transmit information
encoded in a quantum state. Because the Heisenberg and Schrödinger picture are equivalent and
describe the same process, we also call Equation (3.1) the Schrödinger equation.

Example 3.9. Suppose that we have a time-independent Hamiltonian, H(t) = H = H∗ for

all t. Taking the spectral decomposition H =
∑

j EjPEj where {E1, . . . , Em} are the energy
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eigenvalues, we then consider

U(t) =
∑
j

e−itEjPEj .

We leave it as an exercise to show that U(t) is unitary. We then directly check the Schrödinger
equation,

i
d

dt
U(t) =

∑
j

Eje
−itEjPj

=
(∑

j

EjPEj

)(∑
k

e−itEkPEk

)
(as PEjPEk = δj,kPEj )

= HU(t).

Also U(0) =
∑

j PEj = 1H and so U(t) is indeed the time evolution. We can also write

U(t) = e−itH :=
∑
j

e−itEjPEj =
∞∑
n=0

(−itH)n

n!
,

where the last equation is a computation using the spectral decomposition of H (exercise?).

If H(t) is time-dependent, finding the time-evolution U(t) is quite challenging in general. One might
guess that U(t) = exp

(
− i
∫ t

0 H(s)ds
)

would solve the equation. But this does not always work as
Hamiltonians at different times H(t) and H(t′) might not commute, [H(t), H(t′)] 6= 0. In such a
setting, one instead uses the so-called time-ordered exponential, which is beyond the scope of these
notes.

Conversely, one may have a family of unitary operators U(t) and may wish to find a Hamiltonian H(t)
such that U(t) solves the corresponding Schrödinger equation. When U(t) = U is constant in time,
this can be done by an taking an appropriate logarithm. Though we remark that the some care is
needed when taking the complex logarithm to avoid discontinuities.

Example 3.10. Suppose that H = C2 and H = σx =

(
0 1
1 0

)
. We see that H2 = 12 and so a

computation using the Taylor expansion gives that

U(t) = exp(−itσx) = cos(t)12 − iσx sin(t) =

(
cos(t) −i sin(t)
−i sin(t) cos(t)

)
.

We consider the state |0〉 =

(
1
0

)
. We first compute

〈σx〉|0〉 = 〈0 | σx0〉 =
〈(1

0

) ∣∣∣ (0
1

)〉
= 0

and so σx − 〈σx〉|0〉12 = σx and

∆|0〉(σx) =
〈
0|(σx − 〈σx〉|0〉12)2|0

〉
= 〈0 | 120〉 = 1.

Because ∆|0〉(σx) 6= 0, we see that we can’t sharply measure the observable σx in the the state
|0〉.

3.2 Mixed states

A pure state is determined by a fixed element |ψ〉 ∈ H. We now consider an ensemble of states
{|ψj〉}j∈J ⊂ H with probabilities {pj}j∈J ⊂ [0, 1] such that pj ∈ [0, 1] denotes the probability that the
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system is in the (pure) state |ψj〉. We also assume that this collection is ‘complete’ in the sense that∑
j pj = 1.

Suppose we are in the setting that the collection {|ψj〉}j forms an orthonormal basis of H. Then we
can define the operator

ρ =
∑
j

pj |ψj〉〈ψj |,

which will be self-adjoint and positive with eigenvalues {pj}j ⊂ [0, 1]. For such an operator

Tr(ρ) =
∑
k

〈
ψk

∣∣∣ (∑
j

pj |ψj〉〈ψj |
)
ψk

〉
=
∑
j

pj = 1.

We take the above properties and turn them into an abstract definition.

Postulate 5 (Mixed states). A general quantum mechanical system is described by a linear

operator ρ : H → H such that

1. ρ∗ = ρ and ρ ≥ 0, i.e. all eigenvalues are non-negative,

2. Tr(ρ) = 1.

We call ρ the density operator/matrix of the quantum state.

Remark 3.11. Given a Hilbert space H, we denote by

Dens(H) =
{
ρ : H → H | ρ = ρ∗, ρ ≥ 0, Tr(ρ) = 1

}
the set of density operators. A quantum state is therefore determined by an element ρ ∈ Dens(H).

Example 3.12. If |ψ〉 is a pure state, then ρψ = Pψ = |ψ〉〈ψ| is a density operator.

We note the following useful property. The proof is an exercise.

Lemma 3.13. If ρ ∈ Dens(H) and U : H → H is unitary, then UρU∗ ∈ Dens(H).

Suppose that {|ψj〉}j∈J ⊂ H is an orthonormal basis and {pj}j∈J ⊂ [0, 1] a collection of probabilities
the system is in state |ψj〉. One should be careful to not confuse

ρ =
∑
j∈J

pj |ψj〉〈ψj |︸ ︷︷ ︸
mixed state

∈ Dens(H), |ψ〉 =
∑
j∈J

√
pj |ψj〉︸ ︷︷ ︸

pure state

∈ H.

Let us rewrite the previous postulates considered for pure states in the more general language of mixed
states.
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Postulate (Density operator postulates). Let H be a Hilbert space describing a quantum me-

chanical system and ρ ∈ Dens(H) a quantum state.

1. The expectation of an observable A = A∗ in ρ is given by

〈A〉ρ = Tr(ρA) ∈ R.

2. The probability that a measurement of the observable A = A∗ in the state ρ returns the
value λ ∈ σ(A) is given by

Pρ(λ) = Tr(ρPλ) ∈ [0, 1], Pλ =
∑
α

|eλ,α〉〈eλ,α| eigenspace projection.

3. If we measure the observable A in the state ρ and obtain the value λ ∈ σ(A), this measure-
ment has caused the transition

ρ︸︷︷︸
before measurement

measure A−−−−−−→ PλρPλ
Tr(ρPλ)︸ ︷︷ ︸

after measurement

.

4. If ρ0 ∈ Dens(H) is a state at time t = 0, then the time-evolved state is given by ρ(t) =
U(t)ρ0U(t)∗, where U(t) is solves the Schrödinger equation,

i
d

dt
U(t) = H(t)U(t), U(0) = 1H.

5. The uncertainty of an observable A = A∗ in the state ρ is the quantity

∆ρ(A) =
√〈

(A− 〈A〉ρ1)2
〉
ρ
.

Exercise 3.3. 1. Check that for the case ρ = ρψ = |ψ〉〈ψ|, the postulates for ρ are equivalent
to the postulates for the pure state |ψ〉.

2. Check that the postulates for ρ ∈ Dens(H) are well-defined. Namely, show that for an
observable A = A∗ with eigenvalue λ ∈ σ(A),

〈A〉ρ = Tr(ρA) ∈ R, Pρ(λ) = Tr(ρPλ) ∈ [0, 1],
PλρPλ

Tr(ρPλ)
∈ Dens(H).

The Spectral Theorem (Theorem 2.15) gives us a canonical form for density operators.

Proposition 3.14. Let ρ ∈ Dens(H) be a density operator. Then there exist {pj}j∈J ⊂ [0, 1]

and and orthonormal basis {|ψj〉}j∈J such that

ρ =
∑
j∈J

pj |ψj〉〈ψj |,
∑
j∈J

pj = 1.

Proof. Because ρ is self-adjoint, there is a spectral decomposition ρ =
∑

k,α λk|ek,α〉〈ek,α|. Re-

calling that the trace can be computed by the sum of eigenvalues, if ρ ≥ 0 and Tr(ρ) = 1, it
must follow that λk ∈ [0, 1] for all k. We then define take the orthonormal basis {|ψj〉}j to be
{|ek,α〉}k,α. That is, if λk is non-degenerate, we take each eigenvalue {ek,1, . . . , ek,m} as a separate
ψj . Similarly, we define pj = λj , where we repeat eigenvalues when there is degeneracy. This
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gives us the desired decomposition.

Hence from our abstract picture of mixed states ρ ∈ Dens(H), we can recover the probabilistic picture
of a collection of pure states {|ψj〉}j with pj = λj ∈ σ(ρ) the probability the system is in the state
|ψj〉.
Proposition 3.14 gives a ‘canonical’ decomposition of a density matrix into an ensemble of pure states
{|ψj〉} ⊂ H with probabilities {pj} ⊂ [0, 1]. However, this decomposition is not unique.

Example 3.15. Suppose that {|ψ〉, |φ〉} ⊂ C2 are an orthonormal basis (e.g. |ψ〉 = |0〉 = ( 1
0 )

and |φ〉 = |1〉 = ( 0
1 )) and consider the density matrix

ρ =
2

3
|ψ〉〈ψ|+ 1

3
|φ〉〈φ|.

We may be tempted to assert that ρ describes a system that is in the state |ψ〉 with probability
2
3 and state |φ〉 with probability 1

3 . But this might not be the case. Define the states

|Ψ+〉 =
√

2
3 |ψ〉+

√
1
3 |φ〉, |Ψ−〉 =

√
2
3 |ψ〉 −

√
1
3 |φ〉.

Then the density operator describing quantum system prepared in the state |Ψ+〉 and |Ψ−〉 with
probability 1

2 each is given by

1

2
|Ψ+〉〈Ψ+|+

1

2
|Ψ−〉〈Ψ−| =

1

2

(√
2
3 |ψ〉+

√
1
3 |φ〉

)(√
2
3〈ψ|+

√
1
3〈φ|

)
+

1

2

(√
2
3 |ψ〉 −

√
1
3 |φ〉

)(√
2
3〈ψ| −

√
1
3〈φ|

)
=

2

3
|ψ〉〈ψ|+ 1

3
|φ〉〈φ| = ρ.

That is, the same density operator ρ can potentially describe many different quantum ensembles.

The following result gives a characterisation of what ensembles describe the same density operator.

Theorem 3.16 ([3, Theorem 2.6]). The orthonormal bases {|ψj〉}nj=1 and {|φk〉}nk=1 in H with

probabilities {pj}nj=1 for and {qk}nk=1 generate the same density operator ρ =
∑

j pj |ψj〉〈ψj | =∑
k qk|φk〉〈φk| if and only if there is a unitary operator U ∈ L(H) with matrix coefficients

{Ujk}nj,k=1 such that

√
pj |ψj〉 =

n∑
k=1

Ujk
√
qk|φk〉.

For one part of the proof, the unitary operator is defined via its matrix coefficients, Ujk =
√

pj
qk
〈φk | ψj〉.

The results can also be extended to the case of sets {|ψj〉}mj=1 and {|φk〉}nk=1 with m < n. In this case,
we extend the first set to {|ψ1〉, . . . , |ψm〉, 0, 0, . . . , 0} with m− n zeros added.

Exercise 3.4. 1. If ρ ∈ Dens(H) and |ψ〉 ∈ H, show that 〈ψ | (ρ− ρ2)ψ〉 ≥ 0.

2. Show that ρ ∈ Dens(H) is a pure state ρ = |ψ〉〈ψ| if and only if ρ2 = ρ.

3. Show that ρ ∈ Dens(H) describes a non-pure state if Tr(ρ2) < 1.
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Example 3.17. Suppose that ρ =
∑

j pj |ψj〉〈ψj | ∈ Dens(H) and A = A∗ is an observable.

We assume that A has no degenerate eigenvalues and consider the spectral decomposition of A,
A =

∑
k λk|ek〉〈ek|. We compute

Pρ(λk) =
〈
|ek〉〈ek|

〉
ρ

= Tr
(
ρ|ek〉〈ek|

)
=
∑
i

〈
ei | (ρ|ek〉〈ek)ei〉 = 〈ek | ρek〉

=
∑
j

〈ek | pjψj〉〈ψj | ek〉 =
∑
j

∣∣〈ψj | ek〉∣∣2.
By linearity, we also have shown that

〈A〉ρ =
∑
k

λk
〈
|ek〉〈ek|

〉
ρ

=
∑
k,j

λkpj
∣∣〈ψj | ek〉∣∣2.

We leave the case that A has degenerate eigenvalues as an exercise.

Remark 3.18. Once again, the quantum state ρ ∈ Dens(H) is not affected by a global phase. If
ρ =

∑
j pj |ψj〉〈ψj | and we consider |ψj〉 7→ |eiθjψj〉, then

ρ 7→
∑
j

pj |eiθjψj〉〈eiθjψj | =
∑
j

pje
iθje−iθj |ψj〉〈ψj | =

∑
j

pj |ψj〉〈ψj | = ρ.

3.3 The Qubit space C2

Let us now apply some of our acquired knowledge of the basics of quantum mechanics to the very
simple but import space of single Qubits, C2. Recall that a classical bit is an element x ∈ {0, 1}. The
element x can be considered as a logical check, where 0 represents yes/true and 1 represents no/false.

Definition 3.19. A Qubit is a pure state |ψ〉 ∈ C2. That is, |ψ〉 is a unit vector, ‖ψ‖ = 1.

Example 3.20 (Useful orthonormal bases of C2). We highlight a few orthonormal bases of C2

and set some notation.

1. The most canonical orthonormal basis, sometimes the canonical basis, can be described via

the ±1 eigenvectors of σz =

(
1 0
0 −1

)
,

|0〉 :=

(
1
0

)
, |1〉 =

(
0
1

)
, σz|y〉 = (−1)y|y〉 for y ∈ {0, 1}.

We can therefore write
σz =

∑
j

λjPλj = |0〉〈0| − |1〉〈1|.

2. We will also make use of the orthonormal basis that comes from the ±1 eigenvectors of

σx =

(
0 1
1 0

)
, where we use the special notation,

|+〉 =
1√
2

(|0〉+ |1〉) =
1√
2

(
1
1

)
, |−〉 =

1√
2

(|0〉 − |1〉)− 1√
2

(
1
−1

)
, σx|±〉 = (±1)|±〉.
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The vectors |0〉 and |1〉 are examples of Qubits, but recalling the principle of superposition, linear
combinations of pure states also give pure state. Therefore the vector

|x〉 = a|0〉+ b|1〉, a, b ∈ C, |a|2 + |b|2 = 1

is also a single Qubit. It is not a sum of two Qubits. Therefore, unlike the case of a classical bit
x ∈ {0, 1}, where there are two options, there are (uncountably infinitely) many possibilities for a
single Qubit |ψ〉 ∈ C2.

Example 3.21. Let’s consider σz as an observable (it is self-adjoint). Any observation of σz

with respect to a pure state/Qubit |ψ〉 will yield the value +1 or −1. For |ψ〉 = a|0〉+ b|1〉 with
|a|2 + |b|2 = 1, we see that

P|ψ〉(+1) = 〈|0〉〈0|〉|ψ〉 =
∣∣〈0 | ψ〉∣∣2 =

∣∣a〈0 | 0〉+ b〈0 | 1〉
∣∣2 = |a|2.

Similar computations give that P|ψ〉(−1) = |b|2 and 〈σz〉|ψ〉 = |a|2 − |b|2.

If we take a measurement of σz in the state |ψ〉 and return the value +1, then by the Projection
Postulate (Postulate 3),

|ψ〉 measure +1−−−−−−−→ P+1|ψ〉
‖P+1|ψ〉‖

,

where
P+1|ψ〉 = |0〉〈0|(a|0〉+ b|1〉) = a|0〉, ‖P+1|ψ〉‖ = |a|.

Therefore the measurement of +1 collapses |ψ〉 to the state

a

|a|
|0〉 = sgn(a)|0〉 = eikπ|0〉 ∼ |0〉,

where k ∈ Z and we have used that |ψ〉 ∼ eiα|ψ〉 by the global phase invariance of states. Similarly,
if we measure σz in with respect to |ψ〉 and yield the value −1, then |ψ〉 collapses to the state |1〉.

We also have a geometric interpretation of generic Qubits |ψ〉 = a|0〉+b|1〉 by considering a parametri-
sation of the coefficients a, b ∈ C with |a|2 + |b|2 = 1.

Exercise 3.5. Show that up to global phase equivalence |ψ〉 ∼ eiα|ψ〉 any Qubit can be written

as the pure state

|ψ(θ, φ)〉 = e−i
φ
2 cos

(
θ
2

)
|0〉+ ei

φ
2 sin

(
θ
2

)
|1〉, θ, φ ∈ R.

Suppose that a = (a1, a2, a3) ∈ R3. We define the matrix

a · σ = a1σ1 + a2σ2 + a3σ3 =

(
a3 a1 − ia2

a1 + ia2 −a3

)
,

which is a self-adjoint. We also recall the spherical coordinates in R3, where any non-zero vector
x ∈ R3 with ‖x‖ = r > 0 can be writtenxy

z

 =

r sin(θ) cos(φ)
r sin(θ) sin(φ)

r cos(θ)

 , θ ∈ [0, π], φ ∈ [0, 2π).

We are interested in the unit sphere, where r = 1, where we define

n̂(θ, φ) =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 , n̂(θ, φ) · σ =

(
cos(θ) sin(θ)e−iφ

sin(θ)e−iφ − cos(θ)

)
.
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Figure 1: Spherical coordinates, from Wikipedia.

Note that n̂(θ, φ) · σ is self-adjoint and unitary, (n̂(θ, φ) · σ)2 = 12. We can explicitly write down the
±1 eigenvectors of n̂(θ, φ) · σ, where

| ↑n̂〉 =

(
e
−iφ
2 cos( θ2)

e
iφ
2 sin( θ2)

)
= e−i

φ
2 cos

(
θ
2

)
|0〉+ ei

φ
2 sin

(
θ
2

)
|1〉, | ↓n̂〉 =

(
−e

−iφ
2 sin( θ2)

e
iφ
2 cos( θ2)

)
,

n̂(θ, φ) · σ| ↑n̂〉 = (+1)| ↑n̂〉, n̂(θ, φ) · σ| ↓n̂〉 = (−1)| ↓n̂〉.

The vector n̂(θ, φ) represents an element in SR3 , the unit sphere in R3. The corresponding vector | ↑n̂〉
is the ‘spin-up’ state for the spin in direction n̂(θ, φ).

Proposition 3.22. For any pure state |ψ〉 ∈ C2, there is a point n̂(θ, φ) ∈ SR3 such that

|ψ〉 = | ↑n̂〉. Hence there an equivalence between Qubits |ψ〉 and points on the Bloch sphere SR3.

We therefore have a geometric interpretation of Bloch states. For example, one finds that

n̂(0, 0) · σ = σz =⇒ | ↑n̂(0,0)〉 = |0〉, | ↓n̂(0,0)〉 = |1〉,

so the the Qubits |0〉 and |1〉 represent the north and south poles of the Bloch sphere. Similalry,

n̂(π2 , 0) · σ = σx =⇒ | ↑n̂(π
2
,0)〉 = |+〉, | ↓n̂(π

2
,0)〉 = |−〉,

so |±〉 are located at the intersection of the Bloch sphere with the x-axis in R3.

One may also ask if a geometric interpretation is possible for mixed states on C2 described by a density
operator ρ ∈ Dens(C2).

Proposition 3.23. Let BR3(0, 1) =
{
x ∈ R3 : ‖x‖ ≤ 1

}
denote the closed unit ball in R3. For

every x ∈ BR3(0, 1), there is a density operator

ρx =
1

2

(
12 + x · σ

)
=

1

2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
∈ Dens(C2)

Furthermore, any ρ ∈ Dens(C2) can be written as ρx for some x ∈ BR3(0, 1). The operator ρx is
a pure state ρx = |ψ〉〈ψ| if and only if ‖x‖ = 1.

That is, any state in C2 is described by an element in the unit ball of R3. The boundary of this ball
is the Bloch sphere that describes pure states/Qubits.
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Figure 2: The Bloch sphere SR3 [4, Fig. 2.1]

Proof. We take a generic density matrix ρ, where the condition that ρ = ρ∗ and Tr(ρ) = 1 means

that ρ is of the form

ρ =

(
a b
b c

)
, b ∈ C, a, c ∈ R, a+ c = 1.

We write a = 1
2(1 + x3) for x3 ∈ R, which implies that c = 1

2(1− x3). Then

ρ =
1

2

(
1 + x3 2b

2b 1− x3

)
=

1

2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
= ρx,

where 2b = x1 + ix2 ∈ C. Now the matrix ρx has eigenvalues 1
2(1 ± ‖x‖). The condition that

ρ ≥ 0 means that all eigenvalues must be non-negative. Therefore

1

2
(1± ‖x‖) ≥ 0 ⇐⇒ ‖x‖ ≤ 1.

Finally, one computes that

ρ2
x =

1

4

(
(1 + ‖x‖2)12 + 2x · σ

)
,

which implies that ρ2
x = ρx (and so ρx is pure) if and only if ‖x‖ = 1.

Let us now consider operators on the Qubit space C2. Recall that if |ψ〉 is a pure state, then so is U |ψ〉
for any unitary U , UU∗ = U∗U = 1. The quantum circuits and algorithms that we will consider will
be constructed from unitary operators on Qubit space (and multiple Qubit space). Hence we would
like to understand well the unitary operators on C2.

Example 3.24 (Hadmard transform). We have already seen the Hadmard transformation H,

where H|y〉 = 1√
2

(
|0〉 + (−1)y|1〉

)
for y ∈ {0, 1}. Written in matrix form (with respect to the

{|0〉, |1〉} orthonormal basis),

H =
1√
2

(
1 1
1 −1

)
.
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We can also write H as a sum,

H =
1√
2

(
|0〉〈0|+ |0〉〈1|+ |1〉〈0| − |1〉〈1|

)
=

1√
2

∑
x,y∈{0,1}

(−1)xy|x〉〈y|.

It is an easy check that H = H∗ and H2 = 12, so H is unitary and self-adjoint on C2.

Exercise 3.6. Let A = A∗ be a linear operator on a Hilbert space H such that A2 = 1. Show

that for all α ∈ R,

(a) eiαA =
∞∑
n=0

(itA)n

n!
= cos(α)12 + i sin(α)A, (b) eiαA unitary.

If we consider the matrix representation,

U =

(
a b
c d

)
unitary, =⇒ |a|2 + |b|2 = |c|2 + |d|2 = 1, ac+ bd = 0, (3.2)

where a, b, c, d ∈ C. For pure states, we could relate the condition |a|2 + |b|2 = 1 to the Bloch sphere.
Indeed, we have a similar description of unitary operators. Recall

n̂(θ, φ) =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 , n̂(θ, φ) · σ =

(
cos(θ) sin(θ)e−iφ

sin(θ)eiφ − cos(θ)

)
,

where n̂(θ, φ) · σ is unitary and self-adjoint. We can therefore use the previous exercise to define the
spin rotations,

Dn̂(α) := e−i
α
2
n̂(θ,φ)·σ = exp

(
− iα

2
n̂(θ, φ) · σ

)
,

which is unitary for all α ∈ R.

Exercise 3.7. Show that for all α, β ∈ R,

Dn̂(α)Dn̂(β) = Dn̂(α+ β)

It turns out that the spin rotations Dn̂(α) describe all unitary operators in C2 up to a global phase.

Theorem 3.25. If U is unitary on C2, then there exist α, ξ ∈ R and n̂(θ, φ) ∈ SR3, the Bloch

sphere, such that
U = eiξDn̂(α).

The proof of this statement is long and a little tedious, one does a careful study of the relations in
Equation (3.2) to find a spin-rotation that describes a generic unitary U up to the global phase eiξ.
We leave the details as an exercise to an enthusiastic reader.
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4 Tensor products and entanglement

So far we have studied a mathematics framework that allows us to consider states of quantum me-
chanical systems, such as Qubits |x〉 = a|0〉 + b|1〉 ∈ C2. We now turn our attention to composite
systems, where a Hilbert space H is comprised of sub-systems HA (Alice’s system) and HB (Bob’s
system).

The mathematical construction that allows us to consider such composite systems is the tensor product.
Loosely speaking, given Hilbert spaces H and K, the tensor product H⊗K is the Hilbert space that
is generated by the Cartesian product H×K of the sets H and K.

Tensor products and their properties lie at the heart of truly quantum effects, where ‘long-range
entanglement’ leads to phenomena that has no analogue in classical methods or using a classical
computer.

4.1 Tensor products of Hilbert spaces

Suppose that H and K are finite-dimensional Hilbert spaces. Our aim is to construct a new Hilbert
space from pairs of elements |ψ〉 ∈ H and |η〉 ∈ K. That is, the pair (ψ, η) ∈ H×K (as sets) gives an
element |ψ〉 ⊗ |η〉 ∈ H ⊗K.

Properties (Properties of the tensor ⊗). We want the map (ψ, η) 7→ |ψ〉 ⊗ |η〉 ∈ H ⊗ K to

satisfy the following properties:

(i) If a ∈ C, then for all |ψ〉 ∈ H and |η〉 ∈ K,

(a|ψ〉)⊗ |η〉 = a(|ψ〉 ⊗ |η〉) = |ψ〉 ⊗ (a|η〉)

(ii) If |ψ〉, |ψ′〉 ∈ H and |η〉, η′〉 ∈ K, then(
|ψ〉+ |ψ′〉

)
⊗ |η〉 = |ψ〉 ⊗ |η〉+ |ψ′〉 ⊗ |η〉, |ψ〉 ⊗

(
|η〉+ |η′〉

)
= |ψ〉 ⊗ |η〉+ |ψ〉 ⊗ |η′〉.

The above properties imply that we have a bilinear map H × K → H ⊗ K. The precise definition of
the tensor product vector space H ⊗K is a little technical, though intuitively it is the largest vector
space that is bilinear in H and K.

Definition/Theorem 4.1. The complex vector space H ⊗ K is the universal space such that

for any complex vector space E with a bilinear map B : H×K → E, there is a unique linear map
L : H⊗K → E such that L(|ψ〉 ⊗ |η〉) = B(|ψ〉, |η〉) for all (|ψ〉, |η〉) ∈ H ×K.

For convenience, we will also write |ψ ⊗ η〉 = |ψ〉 ⊗ |η〉.

Definition 4.2. The inner product of H⊗K is given by

〈ψ1 ⊗ η1 | ψ2 ⊗ η2〉H⊗K = 〈ψ1 | ψ2〉H 〈η1 | η2〉K.

In particular, ‖ψ ⊗ η‖ = ‖ψ‖ ‖η‖.

A consequence of our inner product on H⊗K is that |0H⊗ η〉 and |ψ⊗0K〉 are zero vectors in H⊗K.

Suppose that {|ej〉}nj=1 and {|fk〉}mk=1 are orthonormal bases of H and K respectively. Then because
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the tensor product is bilinear, we can decompose

|ψ〉 ⊗ |η〉 =
( n∑
j=1

ψj |ej〉
)
⊗
( m∑
k=1

ηk|fk〉
)

=
n∑
j=1

m∑
k=1

ψjηk
(
|ej〉 ⊗ |fk〉

)
=

n∑
j=1

m∑
k=1

ajk|ej ⊗ fk〉,

where ajk ∈ C for all j and k.

Exercise 4.1. Show that
{
|ej ⊗ fk〉

}n
j=1

m

k=1
is an orthonormal basis of H⊗K and the dimension

of H⊗K is nm.

Every ‘ket’ |ψ ⊗ η〉 ∈ H ⊗K has a ‘bra’ 〈ψ ⊗ η| ∈ (H⊗K)∗, where

|ψ ⊗ η〉 =
∑
j,k

ajk|ej ⊗ fk〉 =⇒ 〈ψ ⊗ η| =
∑
j,k

ajk〈ej ⊗ fk|.

Properties. Given a general element
∑

j,k ajk|ej ⊗ fk〉 ∈ H ⊗ K, one may ask if we can find

vectors |ψ〉 ∈ H and |η〉 ∈ K such that∑
j,k

ajk|ej ⊗ fk〉 = |ψ〉 ⊗ |η〉.

The answer is NO in general. This lack of simple decomposition has many interesting (but
counter-intuitive) implications.

Exercise 4.2. Show that 1√
2

(
|00〉 + |11〉

)
= 1√

2

(
|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉

)
∈ C2 ⊗ C2 can not be

written as a single product |ψ〉 ⊗ |φ〉 with |ψ〉 ∈ C2, |φ〉 ∈ C2.

Definition 4.3. A pure state |φ〉 ∈ H ⊗ K is called a product state if there exists |ψ〉 ∈ H and

|η〉 ∈ K such that |φ〉 = |ψ ⊗ η〉. Otherwise |φ〉 ∈ H ⊗K is called an entangled state.

Tensor products can be iterated. The proof of the following is an exercise.

Lemma 4.4. If HA, HB and HC are Hilbert spaces, then there is an isomorphism(
HA ⊗HB

)
⊗HC = HA ⊗

(
HB ⊗HC

)
The triple tensor has the inner product

〈ψA ⊗ ψB ⊗ ψC | φA ⊗ φB ⊗ φC〉 = 〈ψA | φA〉 〈ψB | φB〉 〈ψC | φC〉.

And if {|ej〉}nAj=1, {|fk〉}nBk=1, {|gl〉}nCl=1, then

|φA ⊗ φB ⊗ φC〉 =
∑
j,k,l

ajkl|ej ⊗ fk ⊗ gl〉, ajkl ∈ C
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Example 4.5 (2-Qubit space). Recalling the space of Qubits C2 = span{|0〉, |1〉}, we can con-

sider C2 ⊗ C2, which we call the space of 2-Qubits. We can label the orthonormal basis of this
vector space by hand,{

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉
}

=
{
|00〉, |01〉, |10〉, |11〉

}
=
{
|0〉, |1〉, |2〉, |3〉

}
,

where in particular we can identify span{|0〉, |1〉, |2〉, |3〉} = C4, where

|0〉 =


1
0
0
0

 , |1〉 =


0
1
0
0

 , |2〉 =


0
0
1
0

 , |3〉 =


0
0
0
1

 .

We also notice the following:

0 = 00 (binary), 1 = 01 (binary), 2 = 10 (binary), 3 = 11 (binary).

Exercise 4.3. Show that the Bell states

|Φ+〉 =
1√
2

(
|00〉+ |11〉

)
, |Φ−〉 =

1√
2

(
|00〉 − |11〉

)
,

|Ψ+〉 =
1√
2

(
|01〉+ |10〉

)
, |Ψ−〉 =

1√
2

(
|01〉 − |10〉

)
,

form an orthonormal basis of C2 ⊗ C2.

To extend what we do for iterated tensor products of C2, we recall the binary decomposition of
numbers more generally.

Lemma 4.6. For any natural number n ≥ 1, any number x ∈ {0, 1, . . . , 2n − 1} can be decom-

posed

x = xn−12n−1 + xn−22n−2 + · · ·+ x121 + x020 =
n−1∑
j=0

xj2
j ,

where xj ∈ {0, 1} for all j = 0, 1, . . . , n− 1.

We can therefore write x = xn−1xn−2 · · ·x1x0 as the binary representation of x ∈ {0, 1, . . . , 2n − 1}.

Examples 4.7. 1.

1001101110 = 29 + 26 + 25 + 23 + 22 + 21 = 622.

2.
10011110001111000001000111010100000111000000 = 10873802146240

3. The largest known prime number (at the time of writing) is 2136279841−1. This number can
therefore be written in binary as a string of 136, 279, 841 ones.

Example 4.8 (n-Qubit space). We now consider the space of n-Qubits, which is defined to be
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the n-fold tensor product of C2 with itself.

(C2)⊗n = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n times

=
n⊗
j=1

C2.

We know that this space is 2n-dimensional. We will use the binary decomposition of numbers to
label this basis. Namely, a basis element |x〉 = |xn−1 · · ·x1x0〉, where x ∈ {0, 1, . . . , 2n − 1} and

x =
n−1∑
j=1

xj2
j is its binary decomposition with xj ∈ {0, 1} for all j = 0, 1, . . . , n− 1. Hence we can

equate (C2)⊗n ∼= C2n by identifying the basis elements,

|x〉 = |xn−1 · · ·x1x0〉 = |xn−1〉 ⊗ |xn−2〉 ⊗ · · · ⊗ |x1〉 ⊗ |x0〉.

Making the identification with C2n ,

|0〉 =


1
0
...
0

 , |1〉 =


0
1
...
0

 , · · · , |2n − 1〉 =


0
0
...
1

 .

Putting this another way, we have the equivalent bases for n-Qubit space

{|x〉}2n−1
x=0 ∼ {|xn−1 · · ·x1x0〉}xj∈{0,1} ∼ {|xn−1 ⊗ · · ·x1 ⊗ x0〉}xj∈{0,1}.

This presentation also gives us an efficient way to write down inner-products, where for any
x, y ∈ {0, 1, . . . , 2n−1 − 1},

〈x | y〉 = 〈xn−1 · · ·x1x0 | yn−1 · · · y1y0〉 =
n−1∏
j=0

〈xj | yj〉 =

{
1, xj = yj for all j,

0 otherwise,

= δx,y.

4.2 Linear operators and the partial trace

The space H ⊗ K is a Hilbert space, so our theory of linear operators also applies to linear maps
T : H ⊗ K → H ⊗ K, T ∈ L(H ⊗ K). Of course, we would like to know if linear operator A ∈ L(H)
and B ∈ L(K) can be combined into a linear operator on the tensor product.

Definition 4.9. If A ∈ L(H) and B ∈ L(K), A ⊗ B : H ⊗ K → H ⊗ K is the linear operator

such that (A⊗B)(|ψ〉 ⊗ |η〉) = A|ψ〉 ⊗B|η〉 for all |ψ〉 ∈ H and |η〉 ∈ K. More generally,

(A⊗B)
( n∑
j=1

m∑
k=1

ajk(|ej〉 ⊗ |fk〉)
)

=
∑
j,k

ajk(A|ej〉 ⊗B|fk〉) =
∑
j,k

ajk|Aej ⊗Bfk〉.

Exercise 4.4. Show that (A⊗B)∗ = A∗ ⊗B∗ and Tr(A⊗B) = Tr(A) Tr(B).

Like vectors in the tensor product H ⊗ K, some but not all linear operators T ∈ L(H ⊗ K) can be
decomposed as a tensor A⊗B.
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Exercise 4.5. 1. Let |ψ1〉, |ψ2〉 ∈ H, |η1〉, |η2〉 ∈ K. Show that

|ψ1 ⊗ η1〉〈ψ2 ⊗ η2| =
(
|ψ1〉〈ψ2|

)
⊗
(
|η1〉〈η2|

)
.

2. Show that the matrix (with respect to the standard orthonormal basis of C4)

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ∈ L(C4)

can not be written in the form A⊗B with A,B ∈ L(C2).

Let us consider the matrix of a general operator T ∈ L(H⊗K) with respect to the orthonormal basis
{|ej ⊗ fk〉}nj=1

m

k=1
, where

T =
n∑

j,j′=1

m∑
k,k′=1

|ej ⊗ fk〉Tjkj′k′〈ej′ ⊗ fk′ |, Tjkj′k′ = 〈ej ⊗ fk | T (ej′ ⊗ fk′)〉.

In the case that T = A⊗B with A ∈ L(H), B ∈ L(K),

(A⊗B)jkj′k′ = 〈ej ⊗ fk | Aej′ ⊗Bfk′〉 = 〈ej | Aej′〉H 〈fk | Bfk′〉K = Ajj′Bkk′ .

To write (A⊗B) as a (nm× nm)-matrix, we need to fix a labelling, where H⊗K ∼= Cnm. We choose
a labeling analogous to what we have done for multi-Qubit systems (Example 4.8),

|e1 ⊗ f1〉 ↔


1
0
...
0

 , . . . , |e1 ⊗ fm〉 ↔


0
...

1 (mth slot)
...
0

 , |e2 ⊗ f1〉 ↔


0
...

1 ((m+ 1)st slot)
...
0

 ,

. . . , |ej ⊗ fk〉 ↔


0
...

1 (((j − 1)m+ k)th slot)
...
0

 , . . . , |en ⊗ fm〉 ↔


0
0
...
1

 . (4.1)
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Following this labeling, we can write

A⊗B =

A11B · · · A1nB
...

. . .
...

An1B · · · AnnB



=



A11

B11 · · · B1m
...

. . .
...

Bm1 · · · Bmm

 · · · A1n

B11 · · · B1m
...

. . .
...

Bm1 · · · Bmm


...

. . .
...

An1

B11 · · · B1m
...

. . .
...

Bm1 · · · Bmm

 · · · Ann

B11 · · · B1m
...

. . .
...

Bm1 · · · Bmm





=



A11B11 · · · A11B1m · · · An1B1m · · · A1nB1m
...

. . .
...

...
...

. . .
...

A11Bm1 · · · A11Bmm · · · A1nBm1 · · · A1nBmm
...

...
...

...
...

An1B11 · · · An1B1m · · · AnnB11 · · · AnnB1m
...

. . .
...

...
...

. . .
...

An1Bm1 · · · An1Bmm · · · AnnBm1 · · · AnnBmm


(4.2)

Definition 4.10. Following the labeling of the basis of H ⊗ K in Equation (4.1), the matrix

product A⊗B in Equation (4.2) is called the Kronecker product of A and B.

Example 4.11. Following the Kronecker product,

(
2 −1
0 3

)
⊗
(

1 2
3 4

)
=

2

(
1 2
3 4

)
(−1)

(
1 2
3 4

)
0

(
1 2
3 4

)
3

(
1 2
3 4

)
 =


2 4 −1 −2
6 8 −3 −4
0 0 3 6
0 0 9 12

 .

Like vector spaces, we can iterate the tensor product of operators, if Ai ∈ L(Hi) for all i = 1, . . . l, we
get a linear operator

A1 ⊗A2 ⊗ · · · ⊗Al =

l⊗
i=1

Ai ∈ L
( l⊗
i=1

Hi
)
.

Exercise 4.6. Let H ∈ L(C2) be the Hadamard operator, H|0〉 = 1√
2
(|0〉 + |1〉), H|1〉 =

1√
2
(|0〉 − |1〉).

1. Compute H⊗2 explicitly, both in terms of the basis {|00〉, |01〉, |10〉, |11〉} and the Kronecker
product of matrices.

2. Show that H⊗n ∈ L
(
(C2)⊗n

) ∼= L(C2n
)

can be written

H⊗n =
1

2n/2

2n−1∑
x,y=0

(−1)x·y|x〉〈y|, (−1)x·y = (−1)x0y0 · · · (−1)xn−1yn−1 ,
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where |x〉 = |xn−1 · · ·x1x0〉 and |y〉 = |yn−1 · · · y1y0〉 is the binary decomposition from
Example 4.8.

Suppose that A⊗B = (A⊗1K)(1H⊗B) ∈ L(H⊗K). The operators A⊗1K and 1H⊗B do not change
one part of the tensor product vector space, but the operator still acts on the full tensor product. In
contrast, given A⊗B, we can ‘trace out’ one of the tensors to obtain a linear operator on the reduced
Hilbert space,

A⊗B TrK7−−→ ATrK(B) ∈ L(H), A⊗B TrH7−−→ TrH(A)B ∈ L(K).

That is, we take the trace in one of the components of the tensor product, but ignore the other. Such
an operation is called the partial trace. An important distinction between the trace and partial trace
is its range

operator
Trace−−−→ complex number, operator

Partial trace−−−−−−−→ operator.

What is perhaps surprising is that the partial trace operation is also possible for more general operators
M ∈ L(H⊗K) that might not have a decomposition as A⊗B. To define this operation, we first take
a decomposition into matrix coefficients with respect to the orthonormal basis {|ej ⊗ fk〉}nj=1

m

k=1
,

M =
n∑

j,j′=1

m∑
k,k′=1

Mjkj′k′
(
|ej〉〈ej′ | ⊗ |fk〉〈fk′ |

)
.

Suppose we were to change the ‘ket-bra’ |fk〉〈fk′ | to a ‘bra-ket’ 〈fk′ | fk〉 = δk,k′ . Then we would
obtain the sum

n∑
j,j′=1

m∑
k,k′=1

Mjkj′k′
(
|ej〉〈ej′ | ⊗ δk,k′

)
=

n∑
j,j′=1

m∑
k=1

Mjkj′k|ej〉〈ej′ |,

which is now a linear operator on H. Similarly, we could switch |ej〉〈ej′ | to 〈ej′ | ej〉 = δj,j′ to obtain

n∑
j=1

m∑
k,k′=1

Mjkjk′ |fk〉〈fk′ | ∈ L(K).

Theorem 4.12. Let M ∈ L(H ⊗ K) and {|ej ⊗ fk〉}nj=1
m

k=1
an orthonormal basis of H ⊗ K.

Define the partial trace operators

TrK(M) =
n∑

j,j′=1

m∑
k=1

Mjkj′k|ej〉〈ej′ | ∈ L(H),

TrH(M) =

n∑
j=1

m∑
k,k′=1

Mjkjk′ |fk〉〈fk′ | ∈ L(K).

Then TrK(M) and TrH(M) do not depend on the choice of orthonormal bases, {|ej〉}mj=1 ⊂ H and
{|fk〉}mk=1 ⊂ K, and are the unique operators such that

TrH
(
ATrK(M)

)
= TrH⊗K

(
(A⊗ 1K)M

)
, for all A ∈ L(H),

TrK
(

TrH(M)B
)

= TrH⊗K
(
M(1H ⊗B)

)
, for all B ∈ L(K).

We will prove one of the defining relations and leave the other statements of the theorem as an
exercise.
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Proof. Let A ∈ L(H). Then we can calculate

TrH⊗K
(
(A⊗ 1K)M

)
=

n∑
c=1

m∑
d=1

〈
ec ⊗ fd | (A⊗ 1K)M(ec ⊗ fd)

〉
=

n∑
c=1

m∑
d=1

〈
ec ⊗ fd

∣∣∣ (A⊗ 1K)
(∑
j,j′

∑
k,k′

Mjkj′k′ |ej ⊗ fk〉〈ej′ ⊗ fk′ |
)
ec ⊗ fd

〉
=
∑
j,j′

∑
k,k′

〈
ej′ ⊗ fk′ | Aej ⊗ fk

〉
Mjkj′k′

=
∑
j,j′

∑
k

〈ej′ | Aej〉Mjkj′k

and compare to

TrH
(
ATrK(M)

)
=

n∑
c=1

〈ec | ATrK(M)ec〉

=

n∑
c=1

∑
j,j′

∑
k

〈ec | Aej〉〈ej′ | ec〉Mjkj′k

=
∑
j,j′

∑
k

〈ej′ | Aej〉Mjkj′k = TrH⊗K
(
(A⊗ 1K)M

)
.

The other defining relation is similar.

Example 4.13. Let us check that the partial trace for tensor products A⊗B really reduces to

the trace over one of the spaces. If M = A⊗B, then Mj,k,j′,k′ = Aj,j′Bk,k′ . Then

TrK(M) =
n∑

j,j′=1

m∑
k=1

Ajj′Bkk|ej〉〈ej′ |

=
( n∑
j,j′=1

Ajj′ |ej〉〈ej′ |
) m∑
k=1

Bkk = ATrK(B)

The relation TrH(A⊗B) = TrH(A)B is similar.

Example 4.14 (Partial trace in 2-Qubit space). We consider M on C4 ∼= C2 ⊗ C2 with basis

{|00〉, |01〉, |10〉, |11〉}, where

M =
∑

x,x′∈{0,1}

∑
y,y′∈{0,1}

Mxyx′y′ |xy〉〈x′y′| =


M0000 M0001 M0010 M0011

M0100 M0101 M0110 M0111

M1000 M1001 M1010 M1011

M1100 M1101 M1110 M1111

 .

To distinguish the two tensor components, we write C4 ∼= C2
A ⊗ C2

B. Then

TrB(M) =
∑

x,x′∈{0,1}

∑
y∈{0,1}

Mxyx′y|x〉〈x′|

= (M0000 +M0101)|0〉〈0|+ (M0010 +M0111)|0〉〈1|+ (M1000 +M1101)|1〉〈0|
+ (M1010 +M1111)|1〉〈1|.
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Written using matrices,
M0000 M0001 M0010 M0011

M0100 M0101 M0110 M0111

M1000 M1001 M1010 M1011

M1100 M1101 M1110 M1111

 TrB7−−→
(
M0000 +M0101 M0010 +M0111

M1000 +M1101 M1010 +M1111

)
.

Hence the partial trace is composed from the trace of M in different blocks.

Exercise 4.7. 1. Compute the matrix form of TrA(C) for the matrix M ∈ L(C4).

2. For any M ∈ L(H⊗K), show that

TrH
(

TrK(M)
)

= TrK
(

TrH(M)
)

= TrH⊗K(M) ∈ C.

3. If M = M∗ ∈ L(H⊗K), show that TrH(M) and TrK(M) are self-adjoint.

4.3 Quantum mechanics of composite systems

Let us return to quantum mechanics and the relevance of the tensor product operation.

Postulate 6 (Composite systems). The Hilbert space of pure states of a composite system

consisting of the subsystems H and K is described by the tensor product H⊗K.

The space H ⊗ K is a Hilbert space, so all previous postulates and constructions regarding states,
observables and measurement apply, where

|ψ〉 =
n∑
j=1

m∑
k=1

ajk|ej ⊗ fk〉,
n∑
j=1

m∑
k=1

|ajk|2 = 1

are the pure states and

ρ =
nm∑
l=1

pl|gl〉〈gl|, {gl}nml=1 orthonormal basis, pl ≥ 0,
nm∑
l=1

pl = 1

are the density operators describing mixed states. Of course, what is additionally of interest to us is
understanding the connection of the composite systems H⊗K in terms of the sub-systems H and K.

Example 4.15. As a warm-up let’s consider σz ⊗ σz on C2 ⊗ C2, where

(σz ⊗ σz)
1√
2

(|00〉 ± |11〉) =
1√
2

(
σz|0〉 ⊗ σz|0〉 ± σz|1〉 ⊗ σz|1〉

)
=

1√
2

(
|0〉 ⊗ 0〉 ± (−1)|1〉 ⊗ (−1)|1〉

)
=

1√
2

(|00〉 ± |11〉).

Hence both 1√
2
(|00〉+ |11〉) and 1√

2
(|00〉 − |11〉) and +1-eigenvectors of σz ⊗ σz. We see that

P1(σz ⊗ σz) =
1

2
(|00〉+ |11〉)(〈00|+ 〈11|) +

1

2
(|00〉 − |11〉)(〈00| − 〈11|)

= |00〉〈00|+ |11〉〈11|.
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In particular, |00〉 and |11〉 are also +1 eigenvectors of σz⊗σz and 1√
2
(|00〉±|11〉) ∈ span{|00〉, |11〉}.

Exercise 4.8. Suppose that ρH ∈ Dens(H) and ρK ∈ Dens(K) are density operators. Show

that ρH ⊗ ρK ∈ Dens(H⊗K).

The tensor product of operators allows us to consider measurables A⊗B and density operators ρH⊗ρK
from operators on the sub-systems H and K. We would also like to go the other direction. Given a
state or observable in the composite system H⊗K, what can be measured/observed in the subsystem
H or K? It is here that the partial trace is a useful operation to take us from the composite system
to a subsystem.

Example 4.16 (Partial measurements). Suppose that |ψ〉 ∈ H⊗K is a pure state and A = A∗ =∑
j λjPλj ∈ L(H) is an observable on the subsystem H. We can understand A in the composite

system via the tensor product A⊗1K. We leave it as an exercise to show that σ(A⊗1K) = σ(A)
and so the possible outcomes of a measurement of A in H are the same as the possible outcomes
of a measurement of A⊗1K in H⊗K. We can therefore ask what is the probability of measuring
λ ∈ σ(A ⊗ 1K) in the pure state ψ ∈ |ψ〉 ∈ H ⊗ K. The spectral projection of A ⊗ 1K onto the
λ-eigenspace is given by Pλ ⊗ 1K and so

Pψ(λ) =
∥∥(Pλ ⊗ 1K)ψ

∥∥2
= 〈Pλ ⊗ 1K〉ψ = TrH⊗K

(
(Pλ ⊗ 1K)|ψ〉〈ψ|

)
= TrH

(
Pλ TrK(|ψ〉〈ψ|)

)
,

where we have used the defining property of the partial trace. Hence the probability of measuring
λ ∈ σ(A⊗ 1K) in the state |ψ〉 can be determined by the spectral projection Pλ ∈ L(H) and the
partial trace TrK(|ψ〉〈ψ|) ∈ L(H).

We suppose that we take such a measurement and observe the value λ. Then by the projection
postulate,

|ψ〉 Measure λ−−−−−−→ (Pλ ⊗ 1K)|ψ〉
‖(Pλ ⊗ 1K)ψ‖

.

If |ψ〉 = |φH〉 ⊗ |φK〉 is a product state, then

(Pλ ⊗ 1K)(|φH〉 ⊗ |φK〉) = Pλ|φH〉 ⊗ |φK〉, =⇒ (Pλ ⊗ 1K)|ψ〉
‖(Pλ ⊗ 1K)ψ‖

=
( Pλ|φH〉
‖PλφH‖

)
⊗ |φK〉

and a measurement of an operator acting on the first tensor will not affect the second tensor.

Example 4.17. We expand upon the previous example. Consider a pure state
∑

j,k ajk|ej ⊗
fk〉 ∈ H ⊗ K and an observable A ∈ L(H) in the subsystem H. We can extend A to A ⊗ 1K to
obtain an observable on H⊗K, where

〈
A⊗ 1K

〉
ψ

=

n∑
j,j′=1

n∑
k,k′=1

〈aj′k′ej′ ⊗ fk′ | (A⊗ 1K)ajkej ⊗ fk〉

=
∑
j,j′

∑
k,k′

aj′k′ajk〈e′j | Aej〉H〈fk′ | fk〉K

=
∑
j,j′

∑
k

aj′kajk〈e′j | Aej〉H.

Using the partial trace, we can understand this expectation via quantities defined on H only,〈
A⊗ 1K

〉
ψ

= TrH⊗K
(
(A⊗ 1K)|ψ〉〈ψ|

)
= TrH

(
ATrK(|ψ〉〈ψ|)

)
= TrH

(
ATrK(ρψ)

)
,
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where the second equality is the defining property of TrK (see Theorem 4.12). We leave it as an
exercise to check that TrK(ρψ) ∈ Dens(H). We find that restricting a pure state |ψ〉 ∈ H ⊗ K
to H will give a mixed state TrK(|ψ〉〈ψ|) such that 〈A ⊗ 1K〉ψ = 〈A〉TrK(|ψ〉〈ψ|). An analogous
statement holds for the restriction to K and observables 1K ⊗B.

Similarly, if ρ ∈ Dens(H⊗K), then

〈A⊗ 1K〉ρ = TrH⊗K
(
(A⊗ 1K)ρ

)
= TrH

(
ATrK(ρ)

)
and one can show TrK(ρ) ∈ Dens(H), whence 〈A⊗ 1K〉ρ = 〈A〉TrK(ρ).

Exercise 4.9. Suppose that ρ ∈ Dens(H⊗K), A ∈ B(H) and B ∈ B(K). Show that

TrK(ρ) ∈ Dens(H), TrH(ρ) ∈ Dens(K), 〈A⊗ 1K〉ρ = 〈A〉TrK(ρ), 〈1H ⊗B〉ρ = 〈B〉TrH(ρ).

Definition/Theorem 4.18. If ρ ∈ Dens(H⊗K) is a density operator, we call the operators

ρH = TrK(ρ) ∈ Dens(H), ρK = TrH(ρ) ∈ Dens(K)

the reduced density operators of the composite system that describe the state ρ if only the subsystem
H or K is observed. In particular, for all A = A∗ ∈ L(A) and B = B∗ ∈ L(B),

〈A〉ρH = 〈A⊗ 1K〉ρ, 〈B〉ρK = 〈1H ⊗B〉ρ.

4.4 Application 1: Superdense coding

We consider a relatively simple example that shows the power of tensor products and entangled states.
We suppose there are two parties, Alice and Bob, who share a 2-Qubit |ψ〉 = 1√

2
(|00〉+|11〉) ∈ C2⊗C2.

(Note that |ψ〉 = |Φ+〉, one of the Bell states in C2 ⊗ C2.) Alice and Bob are now very far apart but
have access to one Qubit each: Alice can act on HA = C2 and Bob can act on HB = C2, but neither
have access to the full space HA ⊗HB = C2 ⊗ C2.

Alice wishes to send 2 classical bits of information to Bob, that is, one of the elements {00, 01, 10, 11}.
To do this, she designs a schema: she transforms the Qubit |ψ〉 to |ψ̃〉 = (A⊗1)|ψ〉 ∈ HA⊗HB, where
the unitary element A will depend on what classical 2-bit she wishes to send. Recall that

|ψ〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉), (A⊗ 1)|ψ〉 =
1√
2

(A|0〉 ⊗ |0〉+A|1〉 ⊗ |1〉)

and Alice uses the schema

Send 00 : |ψ〉 7→ (1⊗ 1)|ψ〉 = |ψ〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉), (do nothing),

Send 01 : |ψ〉 7→ (σz ⊗ 1)|ψ〉 =
1√
2

(σz|0〉 ⊗ |0〉+ σz|1〉 ⊗ |1〉) =
1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉)

Send 10 : |ψ〉 7→ (σx ⊗ 1)|ψ〉 =
1√
2

(|1〉 ⊗ |0〉+ |0〉 ⊗ |1〉),

Send 11 : |ψ〉 7→
((

0 1
−1 0

)
⊗ 1
)
|ψ〉 =

1√
2

(−|1〉 ⊗ |0〉+ |0〉 ⊗ |1〉) =
1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉).

Alice has therefore transformed |ψ〉 into |ψ̃〉, which is one of the four Bell states in C2 ⊗ C2,

|Φ+〉 =
1√
2

(
|00〉+ |11〉

)
, |Φ−〉 =

1√
2

(
|00〉 − |11〉

)
,

|Ψ+〉 =
1√
2

(
|01〉+ |10〉

)
, |Ψ−〉 =

1√
2

(
|01〉 − |10〉

)
.
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which form an orthonormal basis of C2 ⊗ C2.

Now, if Alice sends her part of the 2-Qubit to Bob, then Bob has access to the whole space HA ⊗HB
and can make a measurement using |ψ̃〉. In particular, Bob can make a measurement of the projections
onto each Bell state vector,

PΦ± = |Φ±〉〈Φ±|, PΨ± = |Ψ±〉〈Ψ±|,

Because |ψ̃〉 is one of the Bell states, one of these projections will return a value 1 for the measurement
and all the others will be 0. Bob will therefore know what transformation Alice has done to shared
2-Qubit |ψ〉 and will learn the classical 2-bit 00, 01, 10, or 11. To summarise, Alice has transmitted
two classical bits of information to Bob via a shared 2-Qubit in which Alice only acted on her subspace
HA. Such information transmission can not be done classically.

Exercise 4.10. Suppose that |ψ〉 is one of the Bell states, |Φ±〉 or |Ψ±〉. Show that

〈(A⊗ 1)〉ψ = 〈(A⊗ 1)〉Φ± = 〈(A⊗ 1)〉Ψ± .

The exercise shows that if a third party, Eve, intercepts Alice’s transmission of (A ⊗ 1)|ψ〉 to Bob,
then Eve cannot distinguish which state (A ⊗ 1)|ψ〉 is in as each expectation will return the same
value. This also shows that the information that Alice sends to Bob is ‘secure’ as a third party must
possess the entire 2-Qubit (from both the sender and receiver) to determine the transmission.

4.5 Application 2: Quantum teleportation

We again consider Alice and Bob, who share the 2-Qubit |Φ+〉 = 1√
2
(|00〉 + |11〉) and are far away

from each other. Alice wishes to send an arbitrary but fixed Qubit |ψ〉 = a|0〉 + b|1〉 ∈ C2 to Bob,
where a, b ∈ C and |a|2 + |b|2 = 1. Taking a transformation or measurement using |ψ〉 will change it,
so Alice needs to be careful to make sure the same Qubit |ψ〉 is transmitted to Bob. The procedure
to do this, called quantum teleportation, can be split up into several steps.

Step 0. Alice puts |ψ〉 into a composite system with the shared state |Φ+〉, i.e. we take the tensor
product

|ψ0〉 = |ψ〉 ⊗ |Φ+〉 = (a|0〉+ b|1〉)⊗ 1√
2

(|00〉+ |11〉)

=
1√
2

(
a|000〉+ a|011〉+ b|100〉+ b|111〉)

=
1√
2

(
a|00〉 ⊗ |0〉+ a|01〉 ⊗ |1〉+ b|10〉 ⊗ |0〉+ b|11〉 ⊗ |1〉

)
,

where the last vector is in HA⊗HB = C4⊗C2, the tensor product of spaces that Alice and Bob have
control over.

Step 1. Alice can manipulate |ψ0〉 in the space HA = C4. She uses the CNOT (controlled not) gate
UCN , where in the orthonormal basis {|x, y〉}x,y∈{0,1} of C4, UCN |x, y〉 = |x, y ⊕ x〉 (with addition
modulo 2). Explicitly,

UCN |00〉 = |00〉, UCN |01〉 = |01〉, UCN |10〉 = |11〉, UCN |11〉 = |10〉.

Written as a matrix in the computational basis

UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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Acting by UCN on HA, we obtain

|ψ1〉 = (UCN ⊗ 12)|ψ0〉 =
1√
2

(UCN ⊗ 12)
(
a|00〉 ⊗ |0〉+ a|01〉 ⊗ |1〉+ b|10〉 ⊗ |0〉+ b|11〉 ⊗ |1〉

)
=

1√
2

(
a|00〉 ⊗ |0〉+ a|01〉 ⊗ |1〉+ b|11〉 ⊗ |0〉+ b|10〉 ⊗ |1〉

)
.

Step 2. We then apply the Hadamard gate to the first Qubit; that is, we consider (H ⊗ 12 ⊗ 12)|ψ1〉.
First we write

|ψ1〉 =
1√
2

(
a|0〉(|00〉+ |11〉) + b|1〉(|10〉+ 01〉)

)
where we are using the shorthand notation |x〉|y〉 = |xy〉 = |x〉 ⊗ |y〉. Applying the Hadamard gate,

|ψ2〉 = (H ⊗ 12 ⊗ 12)|ψ1〉 =
1

2

(
a(|0〉+ |1〉)(|00〉+ |11〉) + b(|0〉 − |1〉)(|10〉+ |01〉)

)
=

1

2

(
a(|000〉+ |011〉+ |100〉+ |111〉) + b(|010〉+ |001〉 − |110〉 − |101〉)

)
=

1

2

(
|00〉(a|0〉+ b|1〉) + |01〉(a|1〉+ b|0〉) + |10〉(a|0〉 − b|1〉) + |11〉(a|1〉 − b|0〉)

)
,

where we have written the vector as an element in HA ⊗HB = C4 ⊗ C2.

Step 3. Alice can now take a measurement in HA = C4. In particular, she can measure P|00〉,
P|01〉, P|10〉 and P|11〉, the projection onto the span of each orthonormal basis vector. One of these
measurements will give the value 1 and all the others will be 0. From this measurement, the part of
|ψ2〉 in HA will collapse to whichever orthonormal basis element was detected.

Detect P|00〉 : |ψ2〉 −→ |ψ3〉 = |00〉(a|0〉+ b|1〉),
Detect P|01〉 : |ψ2〉 −→ |ψ3〉 = |01〉(a|1〉+ b|0〉),
Detect P|10〉 : |ψ2〉 −→ |ψ3〉 = |10〉(a|0〉 − b|1〉),
Detect P|11〉 : |ψ2〉 −→ |ψ3〉 = |11〉(a|1〉 − b|0〉).

Alice then needs to communicate the result of this measurement to Bob (which prevents faster-than-
light transmission of information).

Step 4. Bob is given the result of the measurement by Alice. He can then perform a unitary transfor-
mation on the Qubit |ψ3〉 in HB to obtain the original Qubit |ψ〉 = a|0〉 + b|1〉 that Alice wanted to
send.

00 : |ψ3〉 = |00〉(a|0〉+ b|1〉) = |00〉 ⊗ |ψ〉, (do nothing),

01 : (1⊗ σ1)|ψ3〉 = 1|01〉 ⊗ σ1(a|1〉+ b|0〉) = |01〉 ⊗ (a|0〉+ b|1〉) = |01〉 ⊗ |ψ〉,
10 : (1⊗ σ3)|ψ3〉 = 1|10〉 ⊗ σ3(a|0〉 − b|1〉) = |10〉 ⊗ (a|0〉+ b|1〉) = |10〉 ⊗ |ψ〉,
11 : (1⊗ σ3σ1)|ψ3〉 = 1|11〉 ⊗ σ3σ1(a|1〉 − b|0〉) = |11〉 ⊗ σz(a|0〉 − b|1〉) = |11〉 ⊗ |ψ〉.

To write this compactly, if the outcome is xy with x, y ∈ {0, 1}, then Bob applies σx3σ
y
1 to recover |ψ〉.

Diagrammatically, we can represent the procedure as follows

|ψ〉 H

xy

|Φ+〉
σy1 σx3 |ψ〉

where a wire with double-lines denotes a classical information channel.
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Let us explain further why quantum teleportation does not violate special relativity, which says that
information cannot travel faster than the speed of light. Before Alice takes her measurement in HA,
the system is in the state

1

2

(
|00〉(a|0〉+ b|1〉) + |01〉(a|1〉+ b|0〉) + |10〉(a|0〉 − b|1〉) + |11〉(a|1〉 − b|0〉)

)
=

1

2

(
|ψ00〉+ |ψ01〉+ |ψ10〉+ |ψ11〉

)
.

Taking the measurement will collapse this state to |ψxy〉 for some x, y ∈ {0, 1}. Each outcome has
probability 1

4 of occurring. From Bob’s perspective, the state after the measurement by Alice will
be in one of four unknown states, each with probability 1

4 . Therefore, before Bob receives Alice’s
transmission, he can describe the composite system via the density operator

ρ =
1

4

(
|ψ00〉〈ψ00|+ |ψ01〉〈ψ01|+ |ψ10〉〈ψ10|+ |ψ11〉〈ψ11|

)
∈ Dens(HA ⊗HB).

By taking the reduced density operator ρB = TrHA(ρ) ∈ Dens(HB), Bob can try and find out more
about the state before Alice’s message arrives. However, we find the following.

Exercise 4.11. Show that ρB = TrHA(ρ) = 1
21.

The exercise shows that Bob does not learn anything about the state |ψ〉 by considering ρB. Instead
he must wait for the result of Alice’s measurement to be relayed to him via a classical information
channel, whose transmission is limited by the speed of light.

If a classical communication channel is required between Alice and Bob, why does Alice simply not
take a measurement using |ψ〉 to determine its nature and then communicate this result to Bob? The
problem is that |ψ〉 is an arbitrary Qubit and so can correspond to any point on the Bloch sphere.
So there are uncountably many possibilities for the state |ψ〉 and it would take an infinite amount of
time to determine to communicate this information to Bob. So the use of the shared 2-Qubit |Φ+〉
and entanglement was crucial.

4.6 Schmidt decomposition

We start with a few more results from linear algebra.

Exercise 4.12. For any linear operator A ∈ L(H), show that Ker(A) = Ker(A∗A), where

Ker(A) = {|ψ〉 ∈ H | A|ψ〉 = 0}.

The following should be compared to the polar form of complex numbers z = eiθ|z|.

Lemma 4.19 (Polar decomposition). Let H be a finite-dimensional Hilbert space and A ∈ L(H),

then A = U |A|, where U ∈ L(H) is unitary and |A| ∈ L(H) is positive.

Proof (Proof sketch). We define |A| =
√
A∗A. Namely, A∗A is self-adjoint and so has a spectral

decomposition A∗A =
∑
j,α
µj |ej,α〉〈ej,α| with µj ≥ 0. We define

|A| =
√
A∗A =

∑
j,α

√
µj |ej,α〉〈ej,α|.

We then define, |fj,α〉 = 1√
µj
A|ej,α〉 for all j such that µj 6= 0. Using that |ej,α〉 are eigenvectors

of A∗A, one can check that {|fj,α〉} is an orthonormal set, which can then be completed into an
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orthonormal basis of H, which we also denote by {|fj,α〉}. Defining the operator

U =
∑
k,β

|fk,β〉〈ek,β|, U unitary,

we find that for µj 6= 0,

U |A||ej,α〉 = U
√
µj |ej,α〉 =

∑
k,β

|fk,β〉〈ek,β |
√
µjej,α〉 =

√
µj |fj,α〉 = A|ej,α〉.

For the case that µj = 0, |ej,k〉 ∈ Ker(A∗A) = Ker(
√
A∗A) = Ker(A) and so A|ej,α〉 = 0 =

U |A|ej,α〉. Because U |A| and A agree on an orthonormal basis, it follows that A = U |A|.

When A : Cn → Cm is a linear operator between spaces of different dimension (a non-square matrix),
then a polar decomposition A = U |A| is still possible, where |A| =

√
A∗A ∈ Mn×n(C) and U ∈

Mm×n(C) is such that U∗U = 1n.

Lemma 4.20 (Singular value decomposition). Let H be finite-dimensional and A ∈ L(H). Then

there exists unitary operators U and V and a positive and diagonalisable operator D such that
A = UDV

Note that the operator A does not have to be diagonalisable.

Proof. The result is a corollary of (and is equivalent to) the polar decomposition. Writing

A = U ′|A|, we can diagonalise U ′|A| = U ′WDW ∗, where D is diagonal and W is unitary. We
then let U = U ′W and V = W ∗, so A = UDV .

Exercise 4.13. Extend the polar and singular value decomposition to non-square matrices.

Returning to tensor products, given a pure state |ψ〉 ∈ H ⊗K, taking an orthonormal basis of H and
K, we can decompose

|ψ〉 =
∑
j,k

ajk|ej〉 ⊗ |fk〉.

Using the singular value decomposition, we can reduce this double-sum to a single sum of basis vectors
that depend on the original state |ψ〉. This is the Schmidt decomposition of a pure state in the tensor
product. We will state and prove this result for the case of H and K have the same dimension (so
H ∼= K).

Proposition 4.21 (Schmidt decomposition). Let |ψ〉 ∈ H ⊗ H. Then there are orthonormal

sets {|ẽl〉} and {|f̃l〉} in H and non-negative numbers λl ≥ 0 such that

|ψ〉 =
∑
l

λl|ẽl〉 ⊗ |f̃l〉.

Proof. The vector |ψ〉 has a generic decomposition |ψ〉 =
∑

j,k ajk|ej ⊗ fk〉 with ajk ∈ C for all

j, k. The coefficients {ajk}j,k then specify a matrix A for which we can take the singular value
decomposition A = UDV . We can then expand

ajk = (UDV )jk =
∑
l,m

UjlDlmVmk =
∑
l

UjlDllVlk =
∑
l

√
µlUjlVlk,

where we have used that D = W ∗|A|W is diagonal with eigenvalues
√
µj ≥ 0, i.e. Dlm = δl,m

√
µl.
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Substituting ajk back into our decomposition of |ψ〉,

|ψ〉 =
∑
j,k,l

√
µl UjlVlk|ej〉 ⊗ |fk〉 =

∑
l

√
µl

(∑
j

Ujl|ej〉
)
⊗
(∑

k

Vlk|fk〉
)

=:
∑
l

λl|ẽl〉 ⊗ |f̃l〉.

Because U and V are unitary operators, it follows that |ẽl〉 =
∑

j Ujl|ej〉 and |f̃l〉 =
∑

k Vlk|fk〉
are orthonormal sets.

We emphasise that the decomposition is via orthonormal sets {|ẽl〉} and {|f̃l〉}, which depend on the
state |ψ〉 ∈ H⊗H. So the decomposition is quite different to a generic decomposition with respect to
an orthonormal basis.

Exercise 4.14. Prove the Schmidt decomposition for |ψ〉 ∈ H⊗K, whereH and K have different

dimension.

If |ψ〉 ∈ H ⊗K is a product state |ψ〉 = |ψA〉 ⊗ |ψB〉 ∈ HA ⊗HB is a product state, then the Schmidt
decomposition is not necessary as |ψ〉 is already written as a single product of states. Therefore
the number of terms that appear in the Schmidt decomposition give us an insight into the level of
entanglement of state |ψ〉 ∈ H ⊗K.

Definition 4.22. For a pure state |ψ〉 ∈ H⊗K with Schmidt decomposition
∑

l λl|ẽl〉⊗ |f̃l〉, the

number of non-zero values of λl is called the Schmidt number for |ψ〉.

Exercise 4.15. Show that a pure state |ψ〉 ∈ H ⊗H has Schmidt number 1 if and only if it is

a product state.

For a pure state |ψ〉 ∈ HA ⊗ HB, the Schmidt decomposition also gives us an easy way to compute
the reduced density matrices ρA = TrHB (|ψ〉〈ψ|) and ρB = TrHA(|ψ〉〈ψ|). Namely,

ρB = TrHB (|ψ〉〈ψ|) = TrHA
(∑

l,l′

λlλl′ (|ẽl〉〈ẽl′ | ⊗ |f̃l〉〈f̃l′ |
)

=
∑
l

λ2
l |f̃l〉〈f̃l|

and similarly ρA =
∑

l λ
2
l |ẽl〉〈ẽl|. We see that ρA and ρB are in diagonal form with the same eigenvalues

λ2
l .

A closely related procedure to the Schmidt decomposition of a pure state is the purification of a non-
pure state. Given a state ρA ∈ Dens(HA), can we find an auxiliary Hilbert space HB and a pure state
|ψAB〉 ∈ HA⊗HB such that TrHB (|ψAB〉〈ψAB|) = ρA? That is, we would like to consider the possibly
non-pure state ρA as coming from a restriction of a pure state via the partial trace. It is an exercise
to show that such a purification of ρA ∈ Dens(HA) to |ψAB〉 ∈ HA ⊗HB is possible. The new Hilbert
space HB that appears in the purification is largely a mathematical object and may or may not have
any physical relevance.

4.7 The EPR experiment and Bell’s inequality

Let us briefly reflect on some of the implications of the theory that we have developed thus far. It
matches our day to day experience that if no one is around, the position of pen on a desk or a book in
a bookshelf has a definite value or property that is independent of whether it is observed or not. This
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is different to the theory of quantum mechanics that we have introduced. Instead, a physical property
of an object (e.g. the momentum, spin in the y-direction) does not have a definite value. Instead, this
must be observed by a measurement that will return certain values with certain probabilities.

The quantum mechanical description of reality was challenged by a thought experiment by the physi-
cists Einstein, Podolsky and Rosen (EPR). A simplified version of the thought experiment concerns
the entangled 2-Qubit |Ψ−〉 = 1√

2
(|01〉 − |10〉). We again consider the case that Alice and Bob share

this 2-Qubit and are very far from each other. Suppose that we consider the observable σz ⊗ σz. A
simple computation will gives that

(σz ⊗ σz)
1√
2

(|01〉 − |10〉) =
1√
2

(
(−1)|01〉 − (−1)|10〉

)
= − 1√

2
(|01〉 − |10〉)

and so |Ψ−〉 is a (−1)-eigenvector of σz ⊗ σz. So if Alice were to perform a measurement of σz on
her Qubit, if she observes ±1, then she knows with certainty that Bob must measure the value ∓1.
Therefore she knows the outcome of Bob’s measurement without the need for any communication
channel between the two parties.

|Ψ−〉 =
1√
2

(|01〉 − |10〉) Alice measures +1−−−−−−−−−−−→ |01〉 (Bob must measure -1),

|Ψ−〉 =
1√
2

(|01〉 − |10〉) Alice measures -1−−−−−−−−−−→ |10〉 (Bob must measure +1).

This basic result can be generalised further.

Exercise 4.16. Let | ↑n̂〉 = e
−iφ
2 cos( θ2)|0〉+e

iφ
2 sin( θ2)|1〉 and | ↓n̂〉 = −e

−iφ
2 sin( θ2)|0〉+e

iφ
2 cos( θ2)|1〉

denote the ±1 eigenvalues of n̂(θ, φ) · σ. Show that the pure state

1√
2
| ↑n̂↓n̂〉 − | ↓n̂↑n̂〉 =

1√
2

(
| ↑n̂〉 ⊗ | ↓n̂〉 − | ↓n̂〉 ⊗ | ↑n̂〉

)
∼ |Ψ−〉

where |ψ1〉 ∼ |ψ2〉 if |ψ2〉 = eiα|ψ1〉 for some α ∈ R. In particular, 1√
2
| ↑n̂↓n̂〉 − | ↓n̂↑n̂〉 is a

(−1)-eigenvector of (n̂(θ, φ) · σ)⊗ (n̂(θ, φ) · σ) and
〈
(n̂(θ, φ) · σ)⊗ (n̂(θ, φ) · σ)

〉
|Ψ+〉 = −1.

The exercise shows that any measurement of ±1 of (n̂(θ, φ) · σ) ⊗ (n̂(θ, φ) · σ) in Alice’s Qubit will
ensure that Bob measures ∓1. EPR argued that Alice’s measurement will give Bob’s Qubit an intrinsic
property independent of measurement and this is inconsistent with quantum mechanics.

We can further probe this question by considering a ‘classical’ and ‘quantum’ version of the same
experiment. The classical picture goes as follows. We have 4 quantities Q,R, S, T , which each have
an intrinsic and set physical property ±1 that can be measured. We emphasise that value ±1 is
already set before any experiment takes place and one simply makes an observation to determine this
number. A third party, Eve, prepares the quantities Q,R, S, T and sends Q,R to Alice and S, T to
Bob to measure (where Alice and Bob are very far apart). Because each value is either ±1, some basic
algebra will show that

QS +RS +RT −QT = (Q+R)S + (R−Q)T = ±2.

Depending on how objects Q,R, S, T are prepared, the outcome of each combination of ±1 for all
4 objects has a certain probability. (Note: this is still a classical system, where the probability is
determined by how Eve prepares each object, rather than the probability of a measurement outcome.)
This allows us to take a classical expectation, where one finds that

E
(
QS +RS +RT −QT

)
= E(QS) + E(RS) + E(RT )−E(QT ) ≤ 2,

the so-called Bell or CHSH (Clauser–Horne–Shimony–Holt) inequality. By repeating the experiment
enough times, Alice and Bob are able to determine the expectation of their measurement and determine
the left hand side of the Bell inequality with good accuracy.
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We now consider a quantum mechanical version of the above experiment. The third party Eve prepares
the 2-Qubit state |Ψ−〉 = 1√

2
(|01〉 − |10〉). The first Qubit is sent to Alice and the second is sent to

Bob, where the two take (quantum mechanical) measurements of the following observables

Q = σz, R = σx, S =
−1√

2
(σz + σx), T =

1√
2

(σz − σx).

Note that Q,R, S, T are all self-adjoint unitaries with eigenvalues ±1, so our set of observables matches
the classical experiment. In a quantum mechanical description, if Alice measures Q and Bob measures
S, then observable of interest in the composite system is Q⊗ S ∈ L(C2 ⊗ C2).

Exercise 4.17. Show that

〈Q⊗ S〉Ψ− =
1√
2
, 〈R⊗ S〉Ψ− =

1√
2
, 〈R⊗ T 〉Ψ− =

1√
2
, 〈Q⊗ T 〉Ψ− = − 1√

2
,

The exercise shows that

〈Q⊗ S〉Ψ− + 〈R⊗ S〉Ψ− + 〈R⊗ T 〉Ψ− − 〈Q⊗ T 〉Ψ− =
4√
2

= 2
√

2,

a violation of the Bell inequality. This incompatibility between classical and quantum approaches to
the same experiment was noted by Bell in the 1960s. In recent decades, experimental technology and
precision has reached a point that the EPR experiment can be carried out in such a way that the
expectations of all quantities are precise enough that one can determine if there is abound of 2 or
2
√

2, for example using polarised photons for Qubits. The experimental evidence is overwhelmingly in
favour of a quantum mechanical description, see [6] for example. In contemporary physics, we consider
phenomena that violate a version of Bell’s inequality to be truly quantum phenomena. In particular,
tensor products and entanglement are required to explain such physical systems.

There are, of course, many theoretical (and philosophical) implications of the violation of Bell’s in-
equality. In the context of this course, it is enough to recognise that a quantum mechanical description
of reality, which involves entanglement and a probabilistic approach to measurement and physical prop-
erties, is experimentally supported. The postulates of quantum mechanics do not always match our
daily experience with reality, but our day-to-day experience occurs at a particular length scale and
might not be applicable what happens at the scale of nanometres or galaxies.
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5 Quantum circuits

In this chapter, we turn to the question of using quantum mechanics as a tool of computation. Specif-
ically, given an n-Qubit system H = (C2)⊗n ∼= C2n , we aim to study various operations/algorithms
that can be implemented using the quantum mechanical techniques that we have previously studied.

An unsatisfying definition of a quantum circuit is any unitary operator U acting on (C2)⊗n. Such a
definition does not help with the question of how to build or realise such a circuit in the real world.
Instead, our aim is to understand how computational questions and unitary operations on Qubits
can be decomposed into a discrete collection of basic operations, which are easier to understand and
potentially realisable in a laboratory.

5.1 Classical logic gates and circuits

Before we begin our study of quantum gates and circuits, it is worth doing a brief review of the classical
setting. Here information is transmitted by a string of classical bits, an element (x1, . . . , xn) ∈ {0, 1}n.
We can think of each xj ∈ {0, 1} as representing a logical check, TRUE/FALSE or YES/NO.

Definition 5.1. A classical logical gate is a map

g : {0, 1}n → {0, 1}m,

(x1, . . . , xn)
g7−→ g(x1, . . . , xn) =

(
g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)

)
.

We say that g is reversible if it is a bijection.

We review some elementary examples.

Examples 5.2. 1. The identity gate

ID : {0, 1} → {0, 1}, ID(x) = x.

2. Addition modulo 2,

{0, 1}2 ⊕−→ {0, 1}, (x, y) 7→ x+ y mod 2 =: x⊕ y.

3. The NOT gate,
NOT : {0, 1} → {0, 1}, NOT(x) = 1⊕ x,

where NOT(0) = 1 and NOT(1) = 0.

4. The AND gate,

AND : {0, 1}2 → {0, 1}, AND(x, y) = xy,

where AND(0, 0) = AND(0, 1) = AND(1, 0) = 0 and AND(1, 1) = 1.

5. The OR gate
OR : {0, 1}2 → {0, 1}, OR(x, y) = x⊕ y ⊕ xy,

where OR(0, 0) = 0 and OR(0, 1) = OR(1, 0) = OR(1, 1) = 1.

6. The exclusive OR gate,

XOR : {0, 1}2 → {0, 1}, XOR(x, y) = x⊕ y.
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7. The COPY gate,

COPY : {0, 1} → {0, 1}2, COPY(x) = (x, x).

8. The TOFFOLI gate,

TOF : {0, 1}3 → {0, 1}3, TOF(x1, x2, x3) = (x1, x2, x1x2 ⊕ x3).

To build (classical) circuits, we need a procedure to construct new (classical) bits and gates.

Properties. To build new bits and gates from existing ones, we allow ourselves the following

operations,

1. (Padding) We can increase a string of bits {0, 1}n → {0, 1}n+l by inserting y1, . . . , yl ∈ {0, 1}
at chosen points in the string.

2. (Restriction/Reordering) For m ≤ n, we can reorder or restrict bits {0, 1}n → {0, 1}m by
(x1, . . . , xn) 7→ (xj1 , . . . , xjm).

Similarly, given gates g1, . . . , gK , we can build new gates by the following operations,

1. (Composition) For any j, k we can consider gj ◦ gk, padding and restricting as necessary so
that there are no domain issues.

2. (Cartesian products). For any gj : {0, 1}nj → {0, 1}mj and gk : {0, 1}nk → {0, 1}mk , we
have the gate

gj × gk : {0, 1}nj+nk → {0, 1}mj+mk = {0, 1}mj × {0, 1}mk ,
(gj × gk)

(
x1, . . . , xnj , xnj+1, . . . , xnj+nk

)
=
(
gj(x1, . . . , xnj ), gk(xnj+1, . . . , xnj+nk)

)
.

Given the classical gates g1, . . . , gK , a (finite) combination of the operations above is called a
logical circuit.

Definition 5.3. We say that a set of classical gates {g1, . . . , gK} is universal if any classical

gate g is a logical circuit of {g1, . . . , gK}. That is, g can be constructed from padding, restric-
tion/reordering, composition and Cartesian products of {g1, . . . , gK}.

We leave the proof of the following as an exercise to an enthusiastic reader.

Theorem 5.4 ([4, Example 5.5, Theorem 5.6]). 1. The TOFFOLI gate TOF is universal
and reversible.

2. The TOFFOLI gate can be constructed from ID, AND, XOR and COPY.

Example 5.5. The composition

TOF(1, 1, x) = (1, 1, 1⊕ x)
restrict−−−−→ 1⊕ x = NOT(x)

and so NOT(x) = r3 ◦ TOF(1, 1, x) = r3 ◦ TOF ◦ p(1,1)(x), where p(1,1)(x) = (1, 1, x) is the
padding operation.

Hence, the classical gates ID, AND, XOR and COPY are sufficient to construct any logical circuit.
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5.2 Single Qubit gates

A very rough description of a quantum circuit is as follows, we start with a n-Qubit |ψin〉 ∈ (C2)⊗n

and perform some operations to obtain an output n-Qubit |ψout〉 ∈ (C2)⊗n from which we can perform
a measurement or further operations. Hence, a quantum circuit should map pure states to pure states
and so must be implemented by a unitary transformation U ∈ L

(
(C2)⊗n

)
on n-Qubit space. Being

unitary, it therefore follows that any quantum logical circuit is reversible (which is not true for classical
gates).

Our task is therefore to understand unitary operators on (C2)⊗n. Of course, understanding arbitrary
unitary operators does not necessarily help us implement such a transformation in the real world.
So an important aspect of quantum circuits is to understand how to decompose unitary operators
into simpler pieces. In particular, we will show that any unitary operator can be decomposed into a
product of unitaries on the single Qubit space C2 and a few so-called controlled operations. With this
in mind, we first review some basic but important unitary transformations on C2.

Definition 5.6. For any k = 1, 2 . . ., we call a unitary operator U ∈ L
(
(C2)⊗k

)
a quantum gate

on k-Qubits.

Examples 5.7 (Single Qubit gates). We review some common unitary operations on C2. We

also their description using circuit diagrams. When an operator is written in terms of a matrix,
this is always with respect to the canonical/computational basis {|0〉, |1〉}.

1. The Phase-shift gate, P (α) for α ∈ R,

P (α) = |0〉〈0|+ eiα|1〉〈1|, P (α) =

(
1 0
0 eiα

)
, P (α)

2. The Pauli matrices σx = σ1 = X, σy = σ2 = Y and σz = σ3 = Z,

X = |0〉〈1|+ |1〉〈0|, X =

(
0 1
1 0

)
, X ,

Y = −i|0〉〈1|+ i|1〉〈0|, Y =

(
0 −i
i 0

)
, Y ,

Z = |0〉〈0| − |1〉〈1|, Z =

(
1 0
0 −1

)
, Z .

3. The Hadamard gate

H =
1√
2

∑
x,y∈{0,1}

(−1)xy|x〉〈y|, H =
1√
2

(
1 1
1 −1

)
, H .

4. Rotation around a unit vector n̂ ∈ SR3 ⊂ R3, the Bloch sphere,

Dn̂(α) = e−
iα
2 (n̂·σ) =

(
cos(α2 )− i sin(α2 )nz −i sin(α2 )(nx − iny)
−i sin(α2 )(nx + iny) cos(α2 ) + i sin(α2 )nz

)
, Dn̂(α)
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5. It will often suffice to consider rotations around the x, y and z-axes, where we use the
notation Rx(α) = Dx̂(α), Ry(α) = Dŷ(α), Rz(α) = Dẑ(α). Written as matrices,

Rx(α) =

(
cos(α2 ) −i sin(α2 )
−i sin(α2 ) cos(α2 )

)
, Ry(α) =

(
cos(α2 ) − sin(α2 )
− sin(α2 ) cos(α2 )

)
, Rz(α) =

(
e−

iα
2 0

0 e
iα
2

)
.

We also remark that R•(α) = e−
iα
2
σ• for • = x, y, z.

6. The identity is also a unitary operation and it is marked on a circuit diagram by straight
line (i.e. nothing is done to the Qubit),

1|x〉 = |x〉, .

7. An arbitrary unitary V on C2 is marked by a box on the circuit diagram,

V =

(
v00 v01

v10 v11

)
, V .

Exercise 5.1. Show that for any α, β ∈ R,

(a) P (α) = ei
α
2Rz(α)Ry(0)Rz(0), (b) X = ei

π
2Rz(β)Ry(π)Rz(π + β),

(c) H = e−i
π
2Rz(0)Ry

(π
2

)
Rz(−π).

Exercise 5.2. 1. Show that there exists ξ, α, β, γ ∈ R such that any single Qubit gate U can
be written as

U = eiξRz(α)Ry(β)Rz(γ).

2. If U is single Qubit gate, show that there is a ξ ∈ R and unitary operators A,B,C con-
structed from Ry and Rz such that ABC = 1 and

U = eiξAXBXC.

5.3 Controlled gates

Recall that the n-Qubit space has the canonical/computational basis via the binary representation of
numbers 0, 1, . . . , 2n − 1.{

|x〉
}2n−1

x=0
∼
{
|xn−1 · · ·x1x0〉}x0,...,xn−1∈{0,1} orthonormal basis of C2n ∼=

(
C2
)⊗n

,

where x = xn−12n−1 + · · ·+x12+x0. To understand the action of a unitary U on an arbitrary n-Qubit
|ψ〉 =

∑
x ax|x〉, it suffices to consider the action of U on this orthonormal basis.

To begin, let’s consider the space of 2-Qubits with basis {|00〉, |01〉, |10〉, |11〉}. Given any unitary
operator U , we can diagrammatically write its action on a 2-Qubit as

U ,

where the two lines going in/out represent the input/output Qubits. When we can factorise U =
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U1 ⊗ U2 with U1 and U2 unitary operators on single Qubit space, this gives a diagram

U1

U2

.

As much as possible, we would like to build more general quantum gates U via single Qubit gates. Of
course, not every operator T ∈ L(C4) can be factorised as A⊗B, but we can still obtain a larger class
of operations via so-called controlled gates.

Example 5.8 (Controlled-NOT). The single Qubit gate X = σ1 acts as a quantum NOT gate

as X|x〉 = |1⊕ x〉 for x ∈ {0, 1} (recall that we use the convention x⊕ y for addition modulo 2).
We can extend this operation to a controlled-NOT gate on 2-Qubit space

C(X)|x1x0〉 = C(X)(|x1〉|x0〉) = |x1〉|x1 ⊕ x0〉 = |x1〉Xx1 |x0〉,

where we use the shorthand notation |x1〉|x0〉 = |x1〉 ⊗ |x0〉. The operation of X on the second
Qubit only occurs if the first Qubit is set to |1〉, so this action is controlled by the first Qubit.
That is, the first Qubit is the control Qubit and the second Qubit is the target Qubit for the
NOT operation. Explicitly,

C(X)|00〉 = |00〉, C(X)|01〉 = |01〉, C(X)|10〉 = |11〉, C(X)|11〉 = |10〉.

This operation can be written as a matrix (in the canonical/computational basis),

C(X) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

we also use the special diagrammatic notation

.

We could also consider a controlled not operation where the second Qubit is the control and the
first Qubit is the target, C1(X)|x1x0〉 = Xx0 |x1〉|x0〉, i.e.,

C1(X)|00〉 = |00〉, C1(X)|01〉 = |11〉, C1(X)|10〉 = |10〉, C1(X)|11〉 = |01〉.

Written as a matrix and a diagram,

C1(X) =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ∼ .

With some care, we can interchange the role of the target and control Qubit when applying a controlled
NOT gate.

Exercise 5.3. Write the following equality of diagrams as an equality of operators and show it
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is true,

H H

H H

= .

Example 5.9 (Controlled-U gate). We can extend the idea of a controlled NOT gate to a

controlled gate for any single Qubit gate U . Namely, we apply U to a target Qubit if the control
Qubit is |1〉 and do nothing if the control Qubit is |0〉. Written mathematically,

C(U)|x1x0〉 = |x1〉Ux1 |x0〉, C1(U)|x1x0〉 = Ux0 |x1〉 |x0〉.

Written as a circuit,

C(U) ∼
U

, C1(U) ∼
U

Example 5.10 (0-Controlled-U gate). The controlled gate C(U) is such that we apply U to the

second Qubit if the first Qubit is |1〉. This choice is rather arbitrary and we can instead perform
operations if a Qubit is set to |0〉. Hence we define

0C
1(U)|x1x0〉 = |x1〉U1−x1 |x0〉, 0C

1(U) ∼
U

.

On a circuit diagram, we use a closed circle/dot to indicate a controlled operation subject to the
Qubit being set to |1〉 and an open circle/dot to indicate a controlled operation with the Qubit
set to |0〉. The choice of controlled-U vs 0-controlled-U is indeed quite minimal as we can always
write

U

=

X X

U

.

We would like to try and break down the controlled-U gate C(U) into simpler steps. First, recall
from part (2) of Exercise 5.2 that that there is some ξ ∈ R and unitary operators A,B,C such that
ABC = 12 and U = eiξAXBXC. We first consider U ′ = AXBXC and the operation

|x1x0〉 7→ |x1〉AXx1BXx1C|x0〉,
|x1〉 |x1〉

|x0〉 C B A AXx1BXx1C |x0〉

where we note that a circuit diagram goes left-to-right. That is, we apply C on the second Qubit first.
If x1 = 0, then AXx1BXx1C = ABC = 1 and so we do nothing to the second Qubit. If x1 = 1, then
we apply AXBXC = U ′ to the second Qubit as needed. Finally, we need to apply the phase eiξ in
a controlled way, |x1x0〉 7→ |x1〉 eix1ξ|x0〉. A computation will show that this operation is the same as
applying

(
1 0
0 eiξ

)
⊗ 12 = P (ξ)⊗ 12. Indeed, for any x ∈ {0, 1},(

1 0
0 eiξ

)
⊗ 12|0x〉 = |0x〉,

(
1 0
0 eiξ

)
⊗ 12|1x〉 = eiξ|1x〉.
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So written as a circuit diagram,

eiξ1

=

P (ξ)

.

Putting everything together, we can describe the controlled-U gate via the following operation

C(U) ∼
P (ξ)

C B A

(5.1)

Why have we done this procedure? The unitaries A,B and C such that ABC = 1 and U = eiξAXBXC
are constructed from rotations Ry(α) and Rz(β). So we have shown that any controlled-U gate can
be written as a combinations of controlled-NOT gates, Ry, Rz and the matrix

(
1 0
0 eiξ

)
. More generally,

our aim is to find a set of gates that are universal for n-Qubits: any unitary operator on n-Qubit
space can be decomposed into a combination of these basic gates.

Example 5.11 (Swap gate). We consider the unitary operation S|x1x0〉 = |x0x1〉 that swaps

the order of the two Qubits. In more detail

S|00〉 = |00〉, S|01〉 = |10〉, S|10〉 = |01〉, S|11〉 = |11〉, S =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

As a diagram, we write

S ∼ |x1〉 |x0〉
|x0〉 |x1〉

Exercise 5.4. Show that S can be written as a combination of controlled-NOT gates,

=

Let us now generalise controlled gates to a system of n Qubits. As a first step, we need to specify
how many Qubits are control Qubits and how many are target Qubits. Taking k control Qubits and
l target Qubits with k + l = n, we can split |x〉 = |xn1 · · ·xn−k〉 |xn−k−1 · · ·x1x0〉 = |x(k)〉|x(l)〉. Then
for any l-Qubit gate U , we define

Ck,l(U)|x(k)〉|x(l)〉 = |x(k)〉Ux(k) |x(l)〉, Ux(k) = Uxn−1···xn−k =

{
U, xn−1 = . . . = xn−k = 1,

1, otherwise.

Hence, we only apply U if all control Qubits are in the state |1〉. We can similarly define for a k-Qubit
gate U ,

Ck,l(U)|x(k)〉|x(l)〉 = Ux(l) |x(k)〉 |x(l)〉, Ux(l) = Ux0···xl−1 .
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For example, when k = 3, l = 2, we write this as a diagram

C3,2(U) ∼

U

.

Note that a controlled operation involves all Qubits, but this includes cases where we wish to do
nothing to a Qubit. For example, if U is an m-Qubit gate but where the last Qubit is unaffected (the
general case can be done by rearranging Qubits by the isomorphism H⊗K ∼= K ⊗H). Then there is
some other (m− 1)-Qubit gate Ũ such that

U |xm−1 · · ·x1x0〉 = Ũ |xm−1 · · ·x2x1〉 |x0〉

and U = Ũ ⊗ 12.

Similarly, if Ck,l(U) is a controlled gate and there is a factorisation U = U1 ⊗ U2, then we can write
Ck,l(U) = Ck,l(U1 ⊗ 1)Ck,l(1⊗ U2). As a simple example,

= .

Example 5.12 (Quantum TOFFOLI gate). The TOF operation is also well-defined as a 3-Qubit

gate,
Q-TOF : |x2x1x0〉 = |x2〉 |x1〉 |x2x1 ⊕ x0〉.

We can understand this gate as a controlled operation with two control Qubits. If x2 or x1 = 0,
then nothing is done to the Qubit. If x2 = x1 = 1, then we perform a NOT operation on the third
Qubit, |x0〉 7→ |1⊕x0〉. Hence the quantum TOFFOLI gate can be considered as a controlled-NOT
operation with 2 control Qubits.

Q-TOF = =

X

Exercise 5.5. Show that the quantum TOFFOLI gate can be decomposed as follows:

P1

P ∗1 P ∗1 P2

H P ∗1 P1 P ∗1 P1 H

where P1 = P (π4 ) and P2 = P (π2 ).
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Properties. By adding some additional ‘work’ Qubits, we can decompose Ck,l(U) as a combi-

nation of Q-TOF gates and C1,l(U). We work on the (k + (k − 1) + l)-Qubit space. Our aim is
to use the additional (k − 1)-Qubits to decompose a controlled gate of k-Qubits into steps.

We assume that the extra (k − 1) work Qubits are all set to |0〉 and fix the control Qubits
|xn−1 · · ·xn−k〉. Using a Q-TOF gate for |xn−1xn−2〉, we can transform the first work Qubit
to |xn−1xn−2〉. We then apply Q-TOF to |xn−3〉 and the first work Qubit |xn−1xn−2〉 to get
|xn−1xn−2xn−3〉 for the second work Qubit. Continuing this procedure, the (k− 1)th work Qubit
gets transformed to |xn−1 · · ·xn−k〉. So we can apply C1,l(U) to the final work Qubit and tar-
get Qubits. Because Q-TOF is invertible (with itself as its inverse), we can then undo all the
operations on the work Qubits. A diagram for k = 5 is shown below.

l

|xn−1〉

|xn−2〉

|xn−3〉

|xn−4〉

|xn−5〉

|0〉

|0〉

|0〉

|0〉

control

|xn−1〉

|xn−2〉

|xn−3〉

|xn−4〉

|xn−5〉

work

|0〉

|0〉

|0〉

|0〉

|xn−6 · · ·x1x0〉 U Uxn−1···xn−5 |xn−6 · · ·x1x0〉

5.4 Principles of circuit diagrams

Our circuit diagram notation for quantum gates has largely been introduced by example. For com-
pleteness, let us therefore more explicitly state how we construct and use these diagrams.

Properties. 1. Unless otherwise stated, the input Qubits are elements of the
canonical/computational basis of n-Qubit space. There are exceptions such as the
example of quantum teleportation, but these cases are explicitly labelled as such. Further-
more, we can always transform our input Qubits into other elements of other orthonormal
bases by applying the appropriate transformation (e.g. applying the Hadamard gate to
transform {|0〉, |1〉} to {|+〉, |−〉}).
Hence, the input of a n-Qubit appearing in a circuit diagram is one of the elements
{|x〉}2n−1

x=0 ∼ {|xn−1 · · ·x1x0〉}xj∈{0,1}.

2. Each Qubit is represented by a straight line. For multiple Qubit systems, these lines
are stacked vertically.

|x1〉

|x0〉
|x〉=|x1x0〉= ∼ |x1〉 ⊗ |x0〉.
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Each individual Qubit may be labelled, but often will not be. Operations/gates that affect
only one Qubit will only appear on the corresponding line,

|x1〉

|x0〉 U
∼ (12 ⊗ U)|x〉 = |x1〉 ⊗ U |x0〉.

Gates that act on multiple Qubits therefore appear over multiple lines.

U ∼ U |x〉.

A controlled gate influences a particular Qubit only when there is an explicit control or
target mark on the Qubit’s line. For example, the operation

U

does not affect the middle Qubit, while

U

affects all three Qubits. For large systems, we also use the notation

l ∼ |xl−1 · · ·x1x0〉,
l

U ∼ U |xl−1 · · ·x1x0〉.

3. Diagrams are read left-to-right. Some care is needed as this the opposite of how we
write the action of linear operators,

|x〉 A B ∼ BA|x〉.

Measurement

Given a n-Qubit system, we may wish to perform a measurement on one of the Qubits. To describe
this, given any j ∈ {0, 1, . . . , n− 1} and • ∈ {x, y, z}, it is helpful to introduce the notation

σ
(j)
• = 1

⊗(n−1−j)
2 ⊗ σ• ⊗ 1⊗j2 , σ

(j)
• |xn−1 · · ·x1x0〉 = |xn−1 · · ·xn−j−1〉σ•|xj〉 |xj−1 · · ·x1x0〉.

That is, σ
(j)
• acts by σ• on the jth Qubit and leaves the others alone. For a fixed • ∈ {x, y, z}, we have

that σ
(j)
• σ

(k)
• = σ

(k)
• σ

(j)
• and so we can sharply and simultaneously measure any σ

(j)
• for any Qubit.

We can therefore consider the observable σ
(j)
z = P

(j)
|0〉 −P

(j)
|1〉 , where a measurement of σ

(j)
z will collapse

the jth Qubit to |0〉 or |1〉 with a certain probability for each outcome. We write such a measurement
in a circuit diagram as
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Like the input of a quantum circuit, unless otherwise stated, the symbol corresponds to a

measurement of σ
(j)
z . Measurements of other operators can be achieved by performing the relevant

transformation prior to the final measurement. For example, because H|x〉 = |±〉 for x ∈ {0, 1},

H

will produce the same result as a measurement of σ
(j)
x .

Generally speaking a measurement is a non-reversible operation that collapses a Qubit to one of at most
two possibilities. Put another way, a measurement will turn quantum information, encoded by Qubits,
into classical information, encoded by classical bits. Like the example of quantum teleportation, this
classical information may still be used for quantum operations. In such cases, we use a double-line to
denote a classical information channel.

Properties. 1. Deferred measurement. If a measurement is performed in the middle of
a quantum circuit, this can be replaced with a controlled gate with measurement at the end
of the circuit. For example, we can rephrase the circuit diagram for quantum teleportation
as follows.

|ψ〉

|ψ〉 H

xy

|Φ+〉
σy1 σx3

=

|ψ〉

|ψ〉 H

|Φ+〉
X Z

Writing the diagram without the classical information channel removes the physical inter-
pretation of Alice communicating the result of her measurement to Bob, but mathematically
the two diagrams represent the same procedure. Put more simply,

U

=

U

where the second diagram refers to the use of a measurement to apply/not apply a quantum
gate.

2. Implicit measurement. At the end of a quantum circuit, we assume that any Qubits
that have not been measured are then measured. Specifically, unless stated otherwise, we

measure σ
(j)
z at the end of all wires which have not been measured. Because all these

operators commute, there is no uncertainty introduced in this operation. If the output
Qubit is |xl−1 · · ·x1x0〉, then this will output the classical l-bit xl−1 · · ·x1x0.

5.5 Universal quantum gates

As previously stated, our aim is to try and understand any quantum circuit from a smaller set of
concrete gates. We first make this notion precise.
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Definition 5.13. Let {U1, . . . , UK} be a set of quantum gates such that Uj is unitary on nj-

Qubit space. We denote by Gate(U1, . . . , UK) the set of quantum gates that are generated by
U1, . . . , UK in the following sense:

1. U1, . . . , UK ∈ Gate(U1, . . . , UK) and 1⊗n ∈ Gate(U1, . . . , UK) for all n ∈ N.

2. If V1, V2 ∈ Gate(U1, . . . , UK), then V1V2, V1 ⊗ V2 ∈ Gate(U1, . . . , UK).

We say that a set of quantum gates {U1, . . . , UK} is universal if any unitary element U ∈
L
(
(C2)⊗n

)
is such that U ∈ Gate(U1, . . . , UK).

Our task is therefore to find a simple but universal set of quantum gates. We have learned from
Exercise 5.2 that for any single Qubit gate V ,

V ∈ Gate
(
{eiξ12, Ry(α), Rz(β) | ξ, α, β ∈ R}

)
.

Let us therefore use the special notation,

M = {eiξ12 | ξ ∈ R}, Ry = {Ry(α) | α ∈ R}, Rz = {Rz(β) | β ∈ R}.

To extend this result to higher-order gates, we first note the following.

Lemma 5.14. Let V be a quantum gate on 2-Qubits. Then for any k ∈ N,

Ck,1(V ) ∈ Gate
(
M,Ry,Rz, C

1(X)
)
.

Proof. Recall from Equation (5.1) that we can decompose C(V ) = C1(V ) as follows

C(V ) ∼
P (ξ)

C B A

with P (ξ), A,B,C ∈ Gate
(
M,Ry,Rz

)
. This shows the result for k = 1. For the general case,

we saw in the previous subsection that Ck,1(V ) can be decomposed into a combination of Q-TOF
gates and C1(V ). Furthermore, by Exercise 5.5, Q-TOF ∈ Gate

(
M,Ry,Rz, C

1(X)
)

and so we
are done.

Corollary 5.15. For any k ∈ N and quantum gate on 2-Qubits V ,

Ck,1(V ), 0C
k,1(V ) ∈ Gate

(
M,Ry,Rz, C

1(X)
)
.

Proof. The identity

U

=

X X

U
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shows that 0C
1(V ) ∈ Gate

(
M,Ry,Rz, C

1(X)
)
. Analogous to the case of C(V ), we can write

C1(V ) ∼
C B A

P (ξ)

,

which along with the identity

H H

H H

=

shows that C1(V ) ∈ Gate
(
M,Ry,Rz, C

1(X)
)
. The higher-order case again follows from a com-

bination of Q-TOF and controlled-V gates.

We now consider the question of how to decompose general quantum gates on n-Qubits. To do this,
we show that a unitary matrix can be decomposed into a product of so-called 2-level unitary matrices.
Then, implementing 2-level unitary matrices can be decomposed as a combination of controlled gates
and 2-Qubit gates. Both of these parts require several steps.

Decomposition into two-level gates

We consider U to be a generic d × d unitary matrix. Our aim is to decompose U = U1 · · ·Uk with
k = O(d2). and each Uj of the form below.

Definition 5.16. We say that a d× d matrix V is a two-level unitary matrix if it is unitary and

acts non-trivially on at most two rows and columns.

The definition is best illustrated through examples.

Example 5.17.

V (1,3) =


v00 0 v10 0
0 1 0 0
v10 0 v11 0
0 0 0 1

 ,

(
v00 v01

v10 v11

)
unitary.

where we have two non-trivial entries in the first and third rows and columns.

U (2,5) =



1 0 0 0 0 0
0 u00 0 0 u01 0
0 0 1 0 0 0
0 0 0 1 0 0
0 u10 0 0 u11 0
0 0 0 0 0 1

 ,

(
u00 u01

u10 u11

)
unitary

with non-trivial entries in the second and fifth rows and columns. Generally V (p,q) will have
non-trivial entries in the p and qth rows and columns

Theorem 5.18. Any d × d unitary matrix U with d ≥ 2 can be factorised U = U1 · · ·Uk with

each Uj a two-level unitary and k = O(d2).
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We start with a lemma.

Lemma 5.19. Let v ∈ Cd be a unit vector. There exist unitary two-level unitary matrics

U1, . . . , Um with m ≤ d such that

U∗m · · ·U∗1 v =


1
0
...
0

 .

Proof. We prove the statement via induction on the number of non-zero entries in v. If v has

one non-zero entry, say vj = eiβ (as ‖v‖ = 1), then take

U =


0 · · · e−iβ · · · 0
...

. . .
...

eiβ 0 0
...

. . .
...

0 · · · 0 · · · 1

 , Uv =


1
0
...
0

 .

If v has ≥ 2 non-zero entries, say a and b, then we consider

1

α



α · · · · · · · · · 0
...

. . .
...

a∗ · · · b∗

...
...

b · · · a
...

...
0 α





...

a
...
b

...


=



...

α
...
0

...


, α =

√
|a|2 + |b|2.

The matrix on the left will act trivially on the other rows of v. So this operation reduces the
amount of non-zero entries of v by one. We can continue this procedure up to d − 1 times to
obtain a v with one non-zero entry, which we can then transform to (1, 0, . . . , 0).

Proof (Proof of Theorem 5.18). We proceed via induction on d, where U is unitary d×d matrix.

If d = 2, then there is nothing to do. If d ≥ 2, we let v be the first column of U . Then by the
previous lemma, there is a two-level unitary U1 such that

U∗1 v =


1
0
...
0

 , U∗1U =


1 0 · · · 0
0
... U ′
0

 ,

where U ′ is a unitary (d− 1)× (d− 1) matrix. Applying the induction hypothesis, U ′ = U2 · · ·Uk
with each Uj a two-level matrix. Therefore we have that

U∗1U = U2 · · ·Uk, =⇒ U = U1 · · ·Uk.

Example 5.20. The following unitary on 2-Qubit space
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U =
1

2


1 1 1 1
1 i −1 −1
1 −1 1 −1
1 −i −1 i


can be decomposed as

U = W
(4,3)
1 W

(4,2)
2 W

(4,1)
3 W

(3,2)
4 W

(3,1)
5 W

(2,1)
6 ,

where

W1 =
1√
2

(
−i 1
−1 i

)
, W2 =

1√
3

(√
2 −i
−i

√
2

)
, W3 =

1√
2

(√
3 −1

1
√

3

)
,

W4 =
1

4

(
−(i+ 1)

√
3 3− i

−(3 + i) (i− 1)
√

3

)
, W5 =

1√
3

(√
2 −1

1
√

2

)
, W6 =

1√
2

(
1 1
−i i

)
.

Implementing two-level unitaries

Thanks to Theorem 5.18, our task of decomposing a general quantum gate on n-Qubits has reduced
to understanding how to implement two-level unitaries.

Exercise 5.6. Show that for V =

(
v00 v01

v10 v11

)
a unitary matrix,

V (n−1,n) =

12n−2
v00 v01

v10 v11

 = Cn−1,1(V ) =

n−1

V
=

V

The exercise shows that certain two-level unitaries can be written as a controlled-V -gate, where V is
the gate on 2-Qubits that enters the two-level unitary. Any two-level unitary can be put in this form
via a conjugation of permutation matrices,

n
Ṽ = (n−3) P−1 P

V

A permutation is any bijective map σ : {0, 1, . . . , 2n − 1} → {0, 1, . . . , 2n − 1}, which then induces a
unitary map Uσ|x〉 = |σ(x)〉. Given a set of size 2n, there are 2n! possible permutations, an unfath-
omable number for n moderately large. To find the right permutation for a given two-level unitary,
we use so-called gray codes. Given the binary representations x = xn−1 · · ·x1x0, y = yn−1 · · · y1y0 ∈
{0, 1, . . . , 2n − 1}, a gray code is a sequence of binary numbers connecting x to y such that the any
member of the sequence differs by the previous by exactly one bit.

Example 5.21. For x = 011001 and y = 001110, we can construct the gray code
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x = 0 1 1 0 0 1

0 0 1 0 0 1

0 0 1 1 0 1

0 0 1 1 1 1

0 0 1 1 1 0 = y.

For x, y ∈ {0, 1, . . . , 2n − 1}, then their binary representations differ by at most n (classical) bits.
Hence the gray code is a sequence {gm}km=1 with g0 = x, gk = y and k ≤ n + 1. We then use this
gray code to perform a permutation between the Qubits |x〉 and |y〉. We give a rough explanation of
this procedure and skip some details. Suppose gm and gm−1 differ in the ith slot. Then we can map
|gm〉 7→ |gm−1〉 by a controlled gate at the ith Qubit, which is conditional on all other Qubits being
the same as those in gm−1 and gm. We do this step by step, first swapping g1 with g2, g2 with g3 and
so on until we reach gk−1,

|g1〉 7→ |gm−1〉, |g2〉 7→ |g1〉, . . . , |gk−1〉 7→ |gk−2〉,

where other basis elements |x〉 are left unchanged if x = xn−1 · · ·x1x0 /∈ {gm}km=1. For the last step,
we implement a controlled-V gate. If gk−1 and gk differ on the jth Qubit, then we apply a controlled-V
gate with the jth Qubit as the target, conditional on all other Qubits having the same values as those
which appear in both gk and gk−1. Lastly, the permutations are undone and we have achieved an
implementation of the two-level unitary. Importantly, the steps in the permuatation are done via a
series of controlled gates, which we know can be handled with controlled-NOT and single Qubit gates.

Example 5.22. Suppose we have a 3-Qubit system and wish to implement the two-level unitary,

Ṽ =



1
1

v00 v01

1
1

1
1

v10 v11


, V =

(
v00 v01

v10 v11

)
,

which acts non-trivially on the basis elements |2〉 = |010〉 and |7〉 = |111〉. We construct a gray
code, labeling each Qubit,

A B C

0 1 0

0 1 1

1 1 1.

To implement Ṽ as a controlled-V gate, we first swap C from 0 to 1 dependent on A = 0 and
B = 1,

A

B

C

.

Because 011 and 111 differ at the first Qubit A, we then apply V to the Qubit A conditional on
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B = 1 and C = 1,

A V

B

C

.

Finally, we reverse the permutations to obtain an implementation of Ṽ ,

Ṽ =

V

.

The controlled-V and Q-TOF-like gates that appear in the implementation of Ṽ can all be further
decomposed in terms of single Qubit gates and controlled-NOT. Putting everything together, we have
arrived at the following theorem.

Theorem 5.23. The set of quantum gates{
M,Ry,Rz, C

1(X)
}

=
{
eiξ12, Ry(α), Rz(β), C1(X) : ξ, α, β ∈ R

}
are universal.

There are some severe limitations with the above theorem.

1. The set of universal gates is uncountably infinite. This is unavoidable as the set of unitary
operators on Cd is also an uncountably infinite space, but is not so practical from the perspective
of implementing a quantum circuit in a laboratory.

2. A decomposition of a generic unitary U ∈ L
(
(C2)⊗n

)
takes several steps. Implementing a two-

level unitary requires (at most) 2(n− 1) controlled operations to permute the Qubits and then
an application of controlled-V . Each controlled operation and controlled-V requires O(n) gates.
So to implement Ṽ requires O(n2) gates. Similarly, decomposing a 2n × 2n unitary matrix
into two-level unitaries requires O((2n)2) = O(42) two-level unitary operations. Putting this all
together, a generic quantum gate on n qubits requires O(n24n) single-Qubit and controlled-NOT
gates. As n increases, this becomes intractable very quickly. So the construction of a quantum
algorithm is often quite different from this generic decomposition.

5.6 Approximating quantum gates by a finite generating set

The set {U ∈ L(Cm) | U unitary} is uncountably infinite even in the case m = 1. So any hope of
exactly describing any unitary on n-Qubit space by a finite generating set is lost. Instead our aim is
to find a finite set of operators {U1, . . . , Ur} such that any unitary operator can be approximated by
an element in Gate(U1, . . . , Ur) up to arbitrary precision. We first make this notion precise.
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Definition 5.24 (Approximating unitary operators). 1. Let U and V be unitary operators
on a Hilbert space H. The error of implementing V instead of U is given by the quantity

E(U, V ) = sup
ψ∈H, ‖ψ‖=1

∥∥(U − V )|ψ〉
∥∥.

2. We say that the unitary gates {U1, . . . , Ur}, Uj ∈ L
(
(C2)⊗nj

)
are a finite universal set if for

any unitary gate U ∈ L
(
(C2)⊗n

)
and ε > 0, there is some V ∈ Gate

(
U1, . . . , Ur

)
such that

E(U, V ) < ε.

Exercise 5.7. 1. Let U, V be unitary operators on H and |ψ〉 a pure state. Show that for
any orthogonal projection P on H,∣∣〈P 〉U |ψ〉 − 〈P 〉V |ψ〉∣∣ ≤ 2E(U, V ).

2. Let U1, . . . , Um, V1, . . . , Vm be unitary operators on H. Show that

E
(
UmUm−1 · · ·U1, VmVm−1 · · ·V1

)
≤

m∑
j=1

E(Uj , Vj).

We saw in the previous subsection that the set of gates{
M,Ry,Rz, C

1(X)
}

=
{
eiξ12, Ry(α), Rz(β), C1(X) : ξ, α, β ∈ R

}
is universal. In particular, this set is determined solely by single-Qubit gates and the controlled-NOT
gate. So to find a finite universal set, it suffices to find a finite universal set for single-Qubit gates.
We also recall Theorem 3.25, which says that for any U ∈ L(C2), there is some ξ, α ∈ R and point
n̂ ∈ SR3 , the Bloch sphere such that

U = eiξDn̂(α) = eiξe−i
α
2

(n̂·σ).

The first thing we will do is ignore the global phase eiξ1 as we consider |ψ〉 and eiξ|ψ〉 as representing
the same physical state. So our aim is to find a finite approximating set of unitaries for the general
spin rotations Dn̂(α).

Lemma 5.25. Let n̂1 and n̂2 be fixed and non-parallel unit vectors in the Bloch sphere SR3. Then

for any n̂ ∈ SR3 and α ∈ R, there is some β, γ, δ ∈ R such that Dn̂(α) = Dn̂1(β)Dn̂2(γ)Dn̂1(δ).

Proposition 5.26. For any α ∈ R and ε > 0 there is some V ∈ Gate
(
P (π4 ), H

)
such that

E(Dn̂(α), V ) < ε.

Proof (Proof sketch). Up to a global phase rotation (which we ignore), we have that

P (π4 )HP (π4 )H = exp
(
− iπ

8
σz
)

exp
(
− iπ

8
σx
)

= cos2
(π

8

)
12 − i sin

(π
8

)(
cos
(π

8

)
(σx + σz) + sin

(π
8

)
σy
)

= Dn̂0(θ), n̂0 =
(

cos(π8 ), ], sin(π8 ), cos(π8 )
)

and θ ∈ R is such that cos( θ2) = cos2(π8 ). Such a θ is an irrational number. If we then consider the
product Dn̂0(θ)k = Dn̂0(kθ), the irrationality of θ implies that sequence of numbers {kθ mod 2π |
k = 0, 1, 2, . . .} will be dense in the interval [0, 2π). Hence Dn̂0(β) can be approximated arbitrarily
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well by Dn̂0(θ)k for some k ∈ N. In particular, for any ε > 0, there is some k ∈ N such that
E
(
Dn̂0(β), Dn̂0(θ)k

)
< ε/3. We also note that for any α ∈ R.

HDn̂0(α)H = Dn̂1(α), n̂1 =
(

cos(π8 ), − sin(π8 ), cos(π8 )
)
.

We can similarly approximate E
(
Dn̂1(β), Dn̂1(θ)k

)
< ε/3 for some k ∈ N. Because n̂0 and n̂1 are

not parallel, then we can apply Lemma 5.25 to say that for any n̂ ∈ SR3 and α ∈ R,

Dn̂(α) = Dn̂0(β)Dn̂1(γ)Dn̂0(δ),

where each term in the right-hand side can be approximated by a unitary in Gate
(
P (π4 ), H

)
. and

so there is some k1, k2, k3 ∈ N such that

E
(
Dn̂(α), Dn̂0(θ)k1Dn̂1(θ)k2Dn̂0(θ)k3

)
= E

(
Dn̂0(β)Dn̂1(γ)Dn̂0(δ), Dn̂0(θ)k1Dn̂1(θ)k2Dn̂0(θ)k3

)
≤ E

(
Dn̂0(β), Dn̂0(θ)k1

)
+ E

(
Dn̂1(γ), Dn̂1(θ)k2

)
+ E

(
Dn̂0(δ), Dn̂0(θ)k3

)
< ε,

where Dn̂0(θ)k1Dn̂1(θ)k2Dn̂0(θ)k3 ∈ Gate
(
P (π4 ), H

)
.

We therefore have the following.

Corollary 5.27. The unitary gates
{
P (π4 ), H,C1(X)

}
are a finite universal set.

While it is certainly helpful that we can approximate single Qubit gates arbitrarily well by elements
in Gate

(
P (π4 ), H

)
, there is also an issue of scale. Suppose it takes O(21/ε) gates from

{
P (π4 ), H

}
to

approximate U ∈ L(C2) up to an error of ε. Then if we want to approximate a unitary gate on m
Qubits, we will require O(m2m/ε) gates built from

{
P (π4 ), H,C1(X)

}
. This is far from ideal as the

number of gates required scales exponentially as we increase the number of Qubits. So building a
quantum algorithm on a system of, say, 10 Qubits would be very challenging.

Thankfully, the approximation of single gate unitaries by by elements in Gate
(
P (π4 ), H

)
is much more

efficient. This improvement follows from the Solovay–Kitaev Theorem, which more generally concerns
finite approximations of elements in the group SU(d).

Theorem 5.28 (Solovay–Kitaev Theorem (special case), [3, Appendix 3]). A single Qubit gate

can be approximated up to an error ε using O
(

logc(1/ε)
)

gates constructed from {P (π4 ), H}, where
c ≈ 2 is a constant.

The Solovay–Kitaev Theorem implies that a gate on m Qubits can be approximated up to error ε
by O

(
m logc(m/ε)

)
gates from {P (π4 ), H,C1(X)}, a substantial improvement over the exponential

increase.
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6 Quantum algorithms

In the previous section, we studied quantum gates and their decomposition into simpler parts. Equipped
with this knowledge, we can now use these quantum gates to solve problems. Very loosely speaking,
our aim is to find quantum circuits that transform an input pure state |ψin〉 ∈ (C2)⊗n to an output
state |ψout〉(C2)⊗n, where a measurement of |ψout〉 (or the state itself) is telling us useful information.

6.1 Binary addition

The first operation we define is a basic addition of basis vectors. Given numbers x, y ∈ {0, 1, . . . , 2n−1},
we define a binary addition by taking a mod 2 addition in every component of the binary decomposition

x⊕ y = xn−1 · · ·x1x0 ⊕ yn−1 · · · y1y0 = (xn−1 ⊕ yn−1) · · · (x1 ⊕ y1)(x0 ⊕ y0).

That is, xj ⊕ yj ∈ {0, 1} is the usual binary addition.

Example 6.1. Suppose n = 5 and we consider the binary addition of

20⊕ 25 = 10100⊕ 11001 = 01101 = 13.

Note that 13 = (20 + 25) mod 32. But generally binary addition will not implement addition
modulo 2n. Indeed 4⊕ 4 = 00100⊕ 00100 = 00000 = 0 6= 8 mod 32.

Definition 6.2. We define the map on the canonical basis,

(C2)⊗n ⊗ (C2)⊗n → (C2)⊗n, |x〉 ⊗ |y〉 7→ |x⊕ y〉 =
⊗
j

|xj ⊕ yj〉.

We also define the operator

U⊕ : (C2)⊗n ⊗ (C2)⊗n → (C2)⊗n ⊗ (C2)⊗n, U⊕(|x〉 ⊗ |y〉) = |x〉 ⊗ |y ⊕ x〉.

The mod 2 addition is quite naturally defined. Furthermore, the linear operator U⊕ can be easily
implemented by a composition of controlled-NOT gates, which also shows it is unitary. The circuit
diagram for n = 4 is shown below.

|x3〉 |x3〉
|x2〉 |x2〉
|x1〉 |x1〉
|x0〉 |x0〉

|y3〉 |y3 ⊕ x3〉

|y2〉 |y2 ⊕ x2〉

|y1〉 |y1 ⊕ x1〉

|y0〉 |y0 ⊕ x0〉

A more challenging task is to construct a quantum circuit for addition modulo 2n, |x〉 ⊗ |y〉 7→
|x〉 ⊗ |(x+ y) mod 2n〉. We leave this as an exercise for the interested reader.
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6.2 Logic gates and quantum parallelism

In what follows, we will freely pass between the following presentations

• The natural number 0 ≤ x ≤ 2n − 1 for some n ∈ N,

• The binary decomposition x =
∑n−1

j=0 xj2
j ∼ xn−1 · · ·x1x0,

• An element in the cartesian product {0, 1}n, x ∼ (xn−1, . . . , x1, x0) ∈ {0, 1}n.

Definition 6.3. Let f : {0, 1}n → {0, 1}m be a function with n ≥ m. We define the operator

Uf on the canonical basis such that

Uf : (C2)⊗n ⊗ (C2)⊗m → (C2)⊗n ⊗ (C2)⊗m, Uf |x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ f(x)〉.

We emphasise that the function f : {0, 1}n → {0, 1}m need not be a bijection. Despite this generality
for f , we still have the following.

Lemma 6.4. The operator Uf is unitary.

Proof. The operator is defined by its action on an othonormal basis and so is linear. Because

our Hilbert space is finite-dimensional, it suffices to show that 〈UfΨ | UfΦ〉 = 〈Ψ | Φ〉 for any
Ψ,Φ ∈ (C2)⊗n⊗(C2)⊗m. We take a decompositon Ψ =

∑
j,k Ψjk|j⊗k〉 and Φ =

∑
j′k′ Φj′k′ |j′⊗k′〉

and compute

〈UfΨ | UfΦ〉 =
∑
j,j′

∑
k,k′

ΨjkΦj′k′〈Uf (j ⊗ k) | Uf (j′ ⊗ k′)〉

=
∑
j,j′

∑
k,k′

ΨjkΦj′k′〈j ⊗ k ⊕ f(j) | j′ ⊗ k′ ⊕ f(j′)〉

=
∑
j

∑
k,k′

ΨjkΦjk′〈k ⊕ f(j) | k′ ⊕ f(j)〉(C2)⊗m

=
∑
j

∑
k,k′

ΨjkΦjk′

m−1∏
l=0

〈kl ⊕ f(j)l | k′l ⊕ f(j)l〉C2

=
∑
j

∑
k,k′

ΨjkΦjk′

m−1∏
l=0

δkl,k′l

=
∑
j

∑
k

ΨjkΦjk = 〈Ψ | Φ〉.

Let us now consider the question of evaluating a given function f : {0, 1}n → {0, 1}m via a quantum
circuit. To do this, we use the Hadamard operator, where

H⊗n =
1

2n/2

2n−1∑
x,y=0

(−1)x·y|x〉〈y|, =⇒ H⊗n|0〉⊗n =
2n−1∑
x=0

|x〉.

We can therefore apply Uf to the sum of states
∑

x |x〉⊗|y〉 to obtain
∑

x |x〉⊗|y⊕f(x)〉. In particular,
we find that

Uf (H⊗n ⊗ 12m)|0〉⊗n ⊗ |0〉⊗m =
1

2n/2

2n−1∑
x=0

Uf (|x〉 ⊗ |0〉) =
1

2n/2

2n−1∑
x=0

|x〉 ⊗ |f(x)〉.
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Or written pictorially,

n

m

|0〉 H⊗n

Uf

1
2n/2

∑
x|x〉

|0〉 |f(x)〉

x x

y y ⊕ f(x)

.

Therefore with an application of this quantum circuit, we obtain an output state which includes the
information of all values of the classical logical gate f : {0, 1}n → {0, 1}m. This simultaneous evaula-
tion of a function is called quantum parallelism and is not something that can be easily reproduced
on a classical computer. However, we can only learn information about the output state by taking
a measurement. If we choose to measure the projections Px = |x〉〈x| for all x, this output state will
collapse into a single value |x′〉 ⊗ |f(x′)〉 for some x′ ∈ {0, 1, . . . , 2n − 1}. So we learn the value of
f at a single value, certainly something that a classical computer is also capable of doing! Instead,
the challenge of constructing quantum algorithms comes from how to use properties like quantum
parallelism with the limitation that any measurement of an output state will collapse the Qubit into
something much simpler.

6.3 The Deutsch–Jozsa algorithm revisited

Let us return to the example used at the very start of these notes, the Deutsch–Jozsa algorithm.
Though we now consider a slightly more complicated setting. Given I ⊂ R a function f : I → R, we
define the support of f , supp(f) = {x ∈ I : f(x) 6= 0}. We can use this notion to define a balanced
function f : {0, 1}n → {0, 1}.

Definition 6.5. We say that a logic gate f : {0, 1}n → {0, 1} is balanced if |supp(f)| = 1
22n =

2n−1. That is, supp(f) is half the size of the domain.

If a function is balanced, then f(x) = 1 for half of all x ∈ {0, 1}n. Similarly f(x′) = 0 for the remaining
half of x′ ∈ {0, 1}n.

Suppose we are given a function f : {0, 1}n → {0, 1} that we know to be either constant, f(x) =
c ∈ {0, 1} for all x ∈ {0, 1}n, or balanced. We would like to determine the nature of f (constant or
balanced) in as few steps as possible. If we are given a classical computer and a constant function, we
will need to evaluate f(x) for 2n−1 + 1 different values of x to know with absolute certainty that it is
constant. With a quantum computer, we can answer the question via a single quantum circuit, the
Deutsch–Jozsa algorithm.

While we will explain the details of the procedure, we first provide the circuit diagram and encourage
the reader to work out the details for themselves. Like the previous subsection, we will freely pass
between a presentation of numbers {0, 1, . . . , 2n − 1} as elements of the set {0, 1}n and vice verca.

n|0〉 H⊗n

Uf

H⊗n

P|0···0〉

|1〉 H

x x

y y ⊕ f(x)

The Deutsch–Jozsa algorithm uses a slightly modified version of quantum parallelism. We take H =
(C2)⊗(n+1) with initial state |0〉⊗n ⊗ |1〉. Applying H⊗(n+1) will transform this state to

1√
2n+1

2n−1∑
x=0

|x〉 ⊗ (|0〉 − |1〉).
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For a fixed x ∈ {0, 1, . . . , 2n − 1}, we note that

Uf
(
|x〉 ⊗ (|0〉 − |1〉)

)
= |x〉 ⊗ (|f(x)〉 − |1⊕ f(x)〉) =

{
|x〉 ⊗ (|0〉 − |1〉), f(x) = 0,

−|x〉 ⊗ (|0〉 − |1〉), f(x) = 1

= (−1)f(x)|x〉 ⊗ (|0〉 − |1〉))

and therefore taking the sum over x,

UfH
⊗(n+1)

(
|0〉⊗n ⊗ |1〉

)
=

1√
2n+1

2n−1∑
x=0

(−1)f(x)|x〉 ⊗ (|0〉 − |1〉).

We now apply the gate H⊗n ⊗ 12, where by the formulas

H⊗n =
1

2n/2

2n−1∑
y,z=0

(−1)y·z|y〉〈z|, H⊗n|x〉 =
1

2n/2

2n−1∑
y=0

(−1)y·x|y〉,

one finds that

(H⊗n ⊗ 12)UfH
⊗(n+1)

(
|0〉⊗n ⊗ |1〉

)
=

1

2n

2n−1∑
x,y=0

(−1)f(x)(−1)x·y|y〉 ⊗ 1√
2

(|0〉 − |1〉).

We now take a measurement of the first n-Qubits. In particular, we measure the projection onto
the state |0〉⊗n. The probability the first n-Qubits are in this state is determined by the (modulus
squared) of the coefficient of |0 · · · 0〉. We find that

c0···0 =
2n−1∑
x=0

(−1)f(x)

2n
=

{
±1, f constant,

0, f balanced,

Thus, by taking a measurement of the first n-Qubits, we are able to distinguish the cases of a balanced
and constant function.

6.4 Quantum search algorithm

The quantum search algorithm, also called the Grover search algorithm, provides a method to find a
specific object (a needle) in a large unordered set (a haystack) of size N . Our aim is to find a method
such that the probability we have found the object/solution x∗ after k steps is greater than 1

2 . Using
classical methods, this can be done in k = O

(
N
2 ) steps. Using Grover’s algorithm the probability to

find x∗ is greater than 50% after k = O(
√
N) steps. For large systems, e.g. N ∼ 1010, this difference

is substantial.

To formalise the problem, we take N = 2n for some n and consider the set {0, 1, . . . , 2n− 1}.2 Within
this set, the objects we are looking for are given by a solution subset S ⊂ {0, 1, . . . , 2n − 1} of size
m < N/2. (If m ≥ N/2, then picking a random element will give x ∈ S with probability ≥ 50%.) We
can therefore define the orthogonal projections on n-Qubit space,

PS =
∑
x∈S
|x〉〈x|, 1− PS = PS⊥ =

∑
x/∈S

|x〉〈x|.

We can similarly define a function that will indicate if we have found a solution

g : {0, 1, . . . , 2n − 1} → {0, 1}, g(x) =

{
1, x ∈ S,
0, x /∈ S.

We can therefore implement the function via the unitary Ug on (C2)⊗n ⊗ C2,

Ug|x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ g(x)〉.

2If N 6= 2n, we can always add extra elements N + 1, N + 2, . . . until we reach 2n
′

for some n′.
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Exercise 6.1. Show that for any pure state |ψ〉 ∈ (C2)⊗n,

Ug(|ψ〉 ⊗ |−〉) = (1− 2PS)|ψ〉 ⊗ |−〉, PS =
∑
x∈S
|x〉〈x|,

where |−〉 = 1√
2
(|0〉 − |1〉)

We can now describe the procedure to implement the quantum search. We set N = 2n take the
following initial state

|Ψ0〉 = |ψ0〉 ⊗ |−〉, |ψ0〉 =
1

2n/2

N∑
x=0

|x〉 = H⊗n|0〉⊗n.

Exercise 6.2. Let θ ∈ [0, π2 ] be such that sin(θ) =
√

m
N . Show that

|ψ0〉 = cos(θ)|ψS⊥〉+ sin(θ)|ψS〉,

where

|ψS〉 =
1√
m

∑
x∈S
|x〉, |ψS⊥〉 =

1√
N −m

∑
x/∈S

|x〉.

Definition 6.6. Given the function g : {0, 1, . . . , N} and initial state |Ψ0〉 = |ψ0〉 ⊗ |−〉, the

Grover iteration is the operator

G ∈ L
(
(C2)⊗n ⊗ C2

)
, G =

(
(2|ψ0〉〈ψ0| − 1)⊗ 12

)
Ug.

It is straightforward to verify that (2|ψ0〉〈ψ0| − 1) and therefore G is a unitary operator.

Lemma 6.7. For j ∈ N, Gj |Ψ0〉 = |ψj〉 ⊗ |−〉, where

|ψj〉 = cos((2j + 1)θ)|ψS⊥〉+ sin((2j + 1)θ)|ψS〉.

Proof (Proof sketch). The proof is via induction with the case j = 0 proved in Exercise 6.2. We

let θj = (2j + 1)θ and consider the inductive step, where

Gj+1|Ψ0〉 =
(
(2|ψ0〉〈ψ0| − 1)⊗ 12

)
Ug
(
(cos(θj)|ψS⊥〉+ sin(θj)|ψS〉)⊗ |−〉

)
=
(
2|ψ0〉〈ψ0| − 1

)(
cos(θj)|ψS⊥〉+ sin(θj)|ψS〉

)
⊗ |−〉

=
(

cos(θj)
(
2|ψ0〉〈ψ0 | ψS⊥〉 − |ψS⊥〉

)
− sin(θj)

(
2|ψ0〉〈ψ0 | ψS〉 − |ψS〉

))
⊗ |−〉

= |ψj+1〉 ⊗ |−〉.

The identities 〈ψ0 | ψS⊥〉 = cos(θ) and 〈ψ0 | ψS〉 = sin(θ) and some trigonometric formulas for
sin and cos can be used to simplify

|ψj+1〉 =
(

cos(θj) cos(2θ)− sin(θj) sin(2θ)
)
|ψS⊥〉+

(
cos(θj) sin(2θ) + sin(θj) cos(2θ)

)
|ψS〉

= cos(θj + 2θ)|ψS⊥〉+ sin(θj + 2θ)|ψS〉
= cos(θj+1)|ψS⊥〉+ sin(θj+1)|ψS〉

66



as required.

We can think of the Grover iteration Gj |Ψ0〉 =
(

cos((2j + 1)θ)|ψS⊥〉 + sin((2j + 1)θ)|ψS〉
)
⊗ |−〉 as

rotating the initial state |ψ0〉 between the two orthogonal subspaces PS⊥H and PSH. In particular,
we can find a value j that maximises sin((2j + 1)θ), where

P
(
Measurement of PS with |ψj〉 returns value 1

)
=
∥∥PS |ψj〉∥∥2

= sin2((2j + 1)θ).

If a measurement of PS in the state Gj |Ψ0〉 returns 1, then |ψj〉 will collapse to the state |x〉 for some
x ∈ S. So we have found the desired object. Note that sin2(θ) = m

N and by repeated actions of
the Grover operator G, we can increase sin2((2j + 1)θ) and take |ψj〉 such that the probability of a
successful search is high.

Lemma 6.8 ([4, Lemma 6.29]). For a ∈ R, let bac denote the smallest integer ≤ a. Then for

jN =

⌊
π

4 sin−1
(√

m
N

)⌋ ,
we have that

P
(
Measurement of PS with |ψjN 〉 returns value 1

)
≥ 1− m

N
.

We also note that jN = O
(√

N
m

)
for N →∞.

Our precise value for jN required both a knowledge of N and m the size of the solution set S. In the
case the value m is unknown (but is still a non-zero number), the algorithm can be modified so that
for 0 ≤ j ≤ b

√
Nc+ 1,

P
(
Measurement of PS with |ψj〉 returns value 1

)
≥ 1

4
,

see [4, Theorem 6.32].

6.5 Quantum Fourier transform

Exercise 6.3. Write a report on the quantum Fourier transform and some of its applications.

(See [3, Chapter 5] or [4, Chapter 5] for example.)

6.6 Quantum cryptography

Exercise 6.4. Write a report on the BB84 (or any other) model of quantum cryptography.

(See [2, Section 7.5] or [4, Chapter 6] for example.)
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7 Elements of quantum information theory

In the last section of these notes, we briefly look at some of the fundamental objects that appear in
quantum information theory. Quantum information does not have a clean and unambiguous definition.
It may refer to any study of the transmission of data or information via a quantum mechanical
process. The study of quantum gates, quantum computation and quantum algorithms would therefore
be considered a special case of quantum information. A more specific characterisation of quantum
information is often in direct comparison with classical information theory. Namely what are the
fundamental objects of information that can be transmitted, what is the process that sends quantum
information, what physical or theoretical limits are there on such transmissions, what are the effects
of noise/errors, etc.

We will not be so concerned with providing a precise definition of quantum information and will
instead focus on introducing some common objects that appear in the study of quantum information.
The content in this section represents a tiny segment of this much larger theory. Many more details
can be found in [3, Part III] for example.

7.1 Quantum operations and channels

As we have studied, the basic element of a quantum system described by a Hilbert space HA is a state
ρA ∈ Dens(HA). We can change this state by taking a time evolution, ρA 7→ UρAU

∗, or by taking a

measurement, ρA 7→
PλρAPλ

Tr(ρAPλ)
for some eigenspace projection Pλ of an observable A = A∗ ∈ L(HA).

We now consider these processes but where our system HA and state is in interaction with some
environment or external system HB. Such an space HB may be used to encode:

1. The interaction of our system with an external environment that may change the state. For
example, the space HB can be used to give a mathematical description of a noisy system which
may introduce errors or change the state ρA.

2. The introduction of an extra system as a resource. For example, the introduction of work qubits
to assist with implementation of a quantum gate.

Mathematically, we combine our state ρA ∈ Dens(HB) with the new system HB via a state ρB ∈
Dens(HB) and the tensor product,

ρA 7→ ρA ⊗ ρB ∈ Dens(HA ⊗HB).

We can now consider the evolution of the composite system ρA⊗ρB in HA⊗HB. Namely, for unitary
operator U ∈ L(HA ⊗ HB), we have the evolution U(ρA ⊗ ρB)U∗ ∈ Dens(HA ⊗ HB). If this is the
only process we do on the composite state, we can then return to just the initial system HA via the
partial trace,

TrB
(
U(ρA ⊗ ρB)U∗

)
∈ Dens(HA).

Because U(ρA ⊗ ρB)U∗ ∈ Dens(HA ⊗HB), we know that TrB
(
U(ρA ⊗ ρB)U∗

)
is a density operator

by Theorem 4.18. Hence, the map

Φ : Dens(HA)→ Dens(HA), Φ(ρA) = TrB
(
U(ρA ⊗ ρB)U∗

)
is well-defined for any ρB ∈ Dens(HB) and unitary U ∈ L(HA ⊗HB). We can extend the above map
Φ to a map on any linear operator.

Lemma 7.1. Let ρB ∈ Dens(HB) and U ∈ L(HA ⊗HB). Define the map

Φ : L(HA)→ L(HA), Φ(T ) = TrB
(
U(T ⊗ ρB)U∗

)
.

Then Φ is linear, trace-preserving and completely positive, for any k ∈ N and positive operator
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S ∈ L(Ck ⊗H), the operator (1k ⊗ Φ)(S) ∈ L(Ck ⊗H) is positive.

Proof. The linearity of Φ is a simple check. Using the properties of the partial trace,

TrA
(
Φ(T )

)
= TrA

(
TrB(U(T ⊗ ρB)U∗)

)
= TrA⊗B

(
U(T ⊗ ρB)U∗

)
= TrA⊗B

(
T ⊗ ρB

)
= TrA(T ) TrB(ρB) = TrA(T ),

which shows that Φ is trace-preserving. To show Φ is completely positive, we first note that the
map 1k ⊗ Φ is still given via the partial trace TrB,

1k⊗Φ(S) = TrB
(
U(S⊗ρB)U∗

)
, U ∈ L(Ck⊗HA⊗HB), TrB : L(Ck⊗HA⊗HB)→ L(Ck⊗HA).

The result follows because the partial trace preserves positivity, R ∈ L(H ⊗ K) positive implies
that TrK(R) is positive.

The map Φ provides an example of a quantum channel, a trace-preserving and completely positive
map. More generally, we can consider maps between operators on different Hilbert spaces.

Definition 7.2. Let H and K be finite-dimensional Hilbert spaces. A quantum channel is a

linear, trace-preserving and completely positive map

Φ : L(H)→ L(K), TrK
(
Φ(T )

)
= TrH(T ) for all T ∈ L(H).

In particular, Φ : Dens(H)→ Dens(K).

A quantum channel is one example of an operation that we can do a state ρA ∈ Dens(HA). Because
all properties of a density operator are preserved, it is a particularly nice example. But there are
other processes we may wish to consider for the composite state ρA ⊗ ρB ∈ Dens(HA ⊗ HB). For
example, we may wish to take a measurement in the environment HB before taking the partial trace
to HA. Suppose we measure the observable 1HA ⊗ B ∈ L(HA ⊗ HB) and return the eigenvalue
λ ∈ σ(B) = σ(1HA ⊗ B). Then if PB is the corresponding eigenspace projection, then the projection
postulate says that the composite state will collapse to

ρA ⊗ ρB
measurement−−−−−−−−→ (1A ⊗ PB)(ρA ⊗ ρB)(1A ⊗ PB)

Tr((1A ⊗ PB)(ρA ⊗ ρB))
,

where we write 1A = 1HA for simplicity. More generally still, we might take a measurement after
having evolved the composite state ρA ⊗ ρB,

ρA ⊗ ρB 7→ U(ρA ⊗ ρB)U∗ 7→ (1A ⊗ PB)U(ρA ⊗ ρB)U∗(1A ⊗ PB)

Tr((1A ⊗ PB)U(ρA ⊗ ρB)U∗)
.

We can once again restrict to HA, our ‘primary system’ by taking the partial trace over HB. So in
total we have a map

ρA 7→
TrB((1A ⊗ PB)U(ρA ⊗ ρB)U∗(1A ⊗ PB))

Tr((1A ⊗ PB)U(ρA ⊗ ρB)U∗)
∈ Dens(HA)

where we have used the fact TrB is linear. Let us briefly ignore the denominator term, which is used
for normalisation and just consider the map ρA 7→ TrB

(
(1A ⊗ PB)U(ρA ⊗ ρB)U∗(1A ⊗ PB)

)
. Then

TrA
(

TrB
(
(1A ⊗ PB)U(ρA ⊗ ρB)U∗(1A ⊗ PB)

))
= TrA⊗B

(
(1A ⊗ PB)U(ρA ⊗ ρB)U∗

)
≤ TrA⊗B

(
U(ρA ⊗ ρB)U∗

)
= TrA⊗B(ρA ⊗ ρB) = 1.
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So ignoring the denominator, we have a map that preserves positivity and is such that

0 ≤ TrA
(

TrB
(
(1A ⊗ PB)U(ρA ⊗ ρB)U∗(1A ⊗ PB)

))
≤ 1.

If we let V = (1A ⊗ PB)U , then we see that our map can be written as TrB
(
V (ρA ⊗ ρB)V ∗

)
, where

V ∗V = U∗(1⊗ PB)U = 1⊗ P ′ ≤ 1A⊗B

and we recall that T ≤ S if S − T is positive.

Definition 7.3. Let H and K be finite-dimensional Hilbert spaces. A quantum operation is a

linear completely positive map Φ : L(H)→ L(K) such that TrK
(
Φ(T )

)
≤ TrH(T ) for any positive

operator T ∈ L(H). (In particular, TrK
(
Φ(ρA)

)
≤ 1 for any ρ ∈ Dens(H).)

We see that quantum channels are a special case of quantum operations.

Exercise 7.1. Let HB be a finite-dimensional Hilbert space and ρB ∈ Dens(H). Then for any

operator V ∈ L(HA ⊗HB) such that V ∗V ≤ 1A⊗B, show that

Φ(T ) = TrB
(
V (T ⊗ ρB)V ∗

)
∈ L(HA), T ∈ L(HA)

defines a quantum operation.

Remark 7.4. The partial trace and other quantum operations are maps between operators on Hilbert
spaces. This is in contrast to observables, which are operators between Hilbert spaces. However, we
can reconcile these viewpoints. Recall that L(H) is also a Hilbert space with inner-product 〈A | B〉 =
Tr(A∗B). Then, we can understand a quantum channel as a positive linear map between the Hilbert
spaces,

Φ : L(H)→ L(K), Φ ≥ 0, ‖Φ‖ = sup
A∈L(H),‖A‖=1

∥∥Φ(A)
∥∥ ≤ 1.

Consider a quantum channel Φ : L(HA) → L(HA). We have seen that such channels are often
constructed by embedding an operator in a larger tensor product HA ⊗HB and then restricting via
the partial trace. A striking and property of quantum operations is that we can understand this map
using only information from the Hilbert space HA.

Theorem 7.5 (Kraus’ Theorem, [3, Theorem 8.1, 8.3]). Let HA and HB be Hilbert spaces of

dimension n and m respectively. If Φ : L(HA)→ L(HB) is a quantum operation, then there exist
linear operators {Kj}Mj=1, where Kj : HA → HB and M ≤ nm such that for all T ∈ L(HA),

Φ(T ) =

M∑
j=1

KjTK
∗
j ,

M∑
j=1

K∗jKj ≤ 1HA .

If Φ is a quantum channel, then
∑

jK
∗
jKj = 1HA.

The equality Φ(T ) =
∑M

j=1KjTK
∗
j is sometimes called the operator-sum representation of Φ and the

operators {Kj}Mj=1 are sometimes called Kraus operators. We will not prove Kraus’ Theorem, though
will make a few remarks. To construct the operators Kj , one uses the Riesz Representation Theorem
(Theorem 2.7) and the action of 1n ⊗ Φ on the density matrix |Ψ〉〈Ψ| built from the ‘maximally
entangled state’ |Ψ〉 =

∑
j |ej ⊗ ej〉 ∈ HA ⊗HA.
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Let us also remark on the generality of Kraus’ Theorem. Suppose that H = Cn and consider a family
of unitaries, {Xi}mi=1. Then for any set of probabilities {pi}mi=1, we can define Ki =

√
piXi and the

quantum channel

Φ(T ) =
m∑
i=1

piXiTX
∗
i ,

m∑
i−1

K∗iKi =
m∑
i=1

piX
∗
iXi =

m∑
i=1

pi1n = 1n.

Recall Theorem 3.16, which characterises when different ensembles are represented by the same density
operator. Similarly, the Kraus operators of a quantum operation are not unique and we can characterise
this non-uniqueness.

Theorem 7.6 ([3, Theorem 8.2]). Let Φ : L(H)→ L(K) be a quantum operation. Then

Φ(T ) =
M∑
j=1

KjTK
∗
j =

M∑
j=1

LjTL
∗
j ⇐⇒ Kj =

M∑
k=1

ujkLk

such that {ujk}Mj,k=1 forms a unitary matrix.

Let us return to our motivating example, the interaction of a state ρA with an environment where in
the composite system HA ⊗HB, an evolution or measurement may take place,

ρA 7→ TrB
(
(1A ⊗ PB)U(ρA ⊗ ρB)U∗(1A ⊗ PB)

)
=

M∑
j=1

KjρAK
∗
j .

We obtain a quantum channel when PB = 1B, no information is lost from the interaction of ρA
with the environment. When we do take a (non-trivial) measurement, then we generally have that
TrA

(
Φ(A)

)
< 1 and the operation Φ is not sufficient to give a complete description on what has

happened to the state ρA.

Let us try and obtain a more concrete understanding of the operator-sum representation. Suppose
we have a quantum channel, so

∑
jK
∗
jKj = 1A. By further supplementing our ‘environment’ Hilbert

space HB and taking a purification, we can assume that ρB = |f1〉〈f1| for some state |f1〉 ∈ HB. Using
the Gram–Schmidt procedure, |f1〉 can be completed to an orthonormal basis {|fk〉}mk=1 ⊂ HB. We
can therefore consider the observables 1A ⊗ |fk〉〈fk| for any k So we can evolve our composite state
and consider such a measurement,

ρA ⊗ |f1〉〈f1| 7→ U(ρA ⊗ |f1〉〈f1|)U∗ 7→ (1A ⊗ |fk〉〈fk)U(ρA ⊗ |f1〉〈f1|)U∗(1A ⊗ |fk〉〈fk).

The probability that a measurement of 1A ⊗ |fk〉〈fk| returns 1 is given by the trace

P1(1A ⊗ |fk〉〈fk|) = TrA⊗B
(
(1A ⊗ |fk〉〈fk)U(ρA ⊗ |f1〉〈f1|)U∗

)
= TrB

(
|fk〉〈fk|TrA(U(ρA ⊗ |f1〉〈f1|)U∗)

)
= TrA

(
KkρAKk

)
.

If we let ρ
(k)
A =

KkρAKk

TrA
(
KkρAKk

) be the normalised state, then

Φ(ρA) =
M∑
j=1

KjρAK
∗
j =

M∑
j=1

P1(1A ⊗ |fj〉〈fj |) ρk.

That is, the operator-sum decomposition gives a probabilistic expansion of the state ρA coming from
its exposure to an environment where possible measurements can be taken.
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Figure 3: Bit-flip channel on the Bloch ball [3, Figure 8.8].

Example 7.7 (Bit-flip channel). We consider H = C2, where we recall that any state ρ ∈
Dens(C2),

ρ ∼ ρx =
1

2

(
12 + x · σ

)
=

1

2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
∈ Dens(C2),

where x ∈ BR3(0, 1), the closed unit Ball in R3. Let us consider a quantum channel that encodes
the introduction of a possible error. Namely, starting from a state |x〉, the channel will change
|x〉 to |1⊕ x〉 with probability p ∈ [0, 1] and leave it as is with probability 1− p. We describe this
channel via its operator-sum representation,

Φ(ρ) = pXρX + (1− p)ρ.

Therefore, we can take Kraus operators K1 =
√
pX and K2 = (1− p)12. A simple computation

will give that

Φ(ρx) = Φ

(
1

2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

))
=
p

2

(
1− x3 x1 + ix2

x1 − ix2 1 + x3

)
+

1− p
2

(
1 + x3 x1 − ix2

x1 + ix2 1− x3

)
=

1

2

(
1 + (1− 2p)x3 x1 − i(1− 2p)x2

x1 + i(1− 2p)x2 1− (1− 2p)x3

)
.

A plot of this bit-flip transformation on the unit ball for p = 0.7 is given In Figure 3.

Exercise 7.2. Explore the geometric effects of quantum operations on states in single Qubit

space via the equivalence of ρ ∈ Dens(C2) with points in the Bloch ball {x ∈ R3 | ‖x‖ ≤ 1}.

7.2 Measures of quantum information

In the previous subsection we introduced quantum operations, the basic transformation that can be
done to a quantum state ρ ∈ Dens(H) such that the quantum information it contains is all or partially
preserved. Of course, if a quantum state undergoes a transformation ρ 7→ Φ(ρ), then it would be
useful to keep track of how far we have moved from our original state. This is particularly important
for keeping track of possible errors and noise so that these issues can be corrected.
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Classical trace distance and fidelity

It will be useful to briefly review the classical setting. While we have a good analogy with a Qubit |x〉 =
|xn−1 · · ·x1x0〉 with a classical bit xn−1 · · ·x1x0, what is the classical analogue of a density operator
ρ ∈ Dens(H)? Recall that any density operator has a canonical decomposition as an orthonormal
basis of pure states, where there is an associated probability of being in any state of the ensemble,

ρ =
n∑
j=1

pj |ψj〉〈ψj |, pj ∈ [0, 1],
n∑
j=1

pj = 1.

So any density operator gives rise to a probability distribution via its spectrum Pρ = {pj}nj=1 = σ(ρ).
These note are not an introduction to probability theory, an enormous topic in its own right. But in the
context of finite-dimensional spaces and operators, it will suffice to consider a probability distribution
as any collection of numbers {pj}mj=1 such that pj ∈ [0, 1] for all j and

∑m
j=1 pj = 1.

We will therefore take the classical analogue of a density operator ρ to be given by a probability
distribution P = {pj}nj=1. Classical information is contained in a process X that can produces out-

comes x1, . . . , xn with probability p1, . . . , pn.3 We can therefore ask for various notions of distance
between probability distributions as encoding something like the difference between packets of classical
information.

Definition 7.8. Let P = {pj}mj=1 and Q = {qk}mk=1 be finite probability distributions.

1. The trace distance between P and Q is given by

D(P,Q) =
1

2

n∑
j=1

|pj − qj | ∈ [0,∞)

2. The fidelity of the probability distributions is the number

F (P,Q) =

n∑
j=1

√
pjqj

To define the trace distance and fidelity, we require the probability P and Q to have the same number
of elements. However, we can always put ourselves in this situation by adding 0s to the smaller of the
two sets until they are the same size.

Exercise 7.3. Show that the trace distance is a metric, i.e. D(P,Q) = 0 if and only if P = Q,

D(P,Q) = D(Q,P) and
D(P,Q) ≤ D(P,R) +D(R,Q)

for any probability distributions P, Q and R.

The fidelity is not a metric, indeed F (P,P) = 1. Instead we can think of the fidelity as an inner-
product of probability vectors

F (P,Q) = 〈ψP | ψQ〉, ψP =


√
p1
...√
pn

 , ψQ =


√
q1
...√
qn

 .

Note also that ‖ψP‖ = 1 = ‖ψQ‖. So we can also think of F (P,Q) = cos(θ) with θ the angle between
the unit vectors ψP, ψQ ∈ Rn.

3A more comprehensive framework to approach classical information is via the theory of random variables. But our
aim is to keep the necessary background in probability theory to a minimum.
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Quantum trace distance

Let us now return to the quantum world and consider a fixed Hilbert space H and density operators
ρ, ν ∈ Dens(H). Recall that for any operator T ∈ L(H), T ∗T is self-adjoint and therefore diago-
nalisable, T ∗T =

∑
j µjPj . We then define |T | =

√
T ∗T =

∑
j
√
µjPj , which is used in the polar

decomposition, T = U |T |. In particular, the operator |ρ− ν| = |ν − ρ| is well-defined and positive.

Definition 7.9. The trace distance of quantum states is a map

D : Dens(H)⊕2 → [0,∞), D(ρ, ν) =
1

2
Tr
(
|ρ− ν|

)
.

Example 7.10. Let’s consider the case that ρ and ν are simultaneously diagonalisable (e.g. the

commutator [ρ, ν] = 0). Then

ρ =

n∑
j=1

pj |ψj〉〈ψj |, ν =

n∑
j=1

qj |ψj〉〈ψj |, |ρ− ν| =
n∑
j=1

|pj − qj ||ψj〉〈ψj |

and so

D(ρ, ν) =
1

2
Tr
( n∑
j=1

|pj − qj ||ψj〉〈ψj |
)

=
1

2

n∑
j=1

|pj − qj | = D(P,Q).

Therefore we recover the classical trace distance in the special case where our density operators
are simultaneously diagonalisable.

Example 7.11 (Trace distance on the Bloch ball). Let us consider H = C2, where we then take

density operators

ρx =
1

2
(12 + x · σ), ρy =

1

2
(12 + y · σ)

for points x,y ∈ R3 with length ≤ 1. We note that

ρx − ρy =
1

2
(x− y) · σ.

It is simple to show that σ
(
(x− y) · σ

)
= ±‖x− y‖. In particular,

∣∣(x− y) · σ
∣∣ will have ‖x− y‖

as a double-eigenvalue and hence Tr
(∣∣(x− y) · σ

∣∣) = 2‖x− y‖. Thus

D(ρx, ρy) =
1

2
Tr
(
|ρx − ρy|

)
=

1

4
Tr
(∣∣(x− y) · σ

∣∣) =
1

2
‖x− y‖.

So in this example the trace distance of states is half the Euclidean distance of points in the Bloch
ball in R3.

Exercise 7.4. Show that quantum trace distance is a metric (cf. Exercise 7.3).

To show properties of the (quantum) trace distance, we first recall a useful result from linear alge-
bra/functional analysis. The proof is an exercise (hint: use the spectral decomposition).

Lemma 7.12. Let A = A∗ ∈ L(H). Then there are positive operators T, S ∈ L(H) such that
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A = T − S and TS = ST = 0.

Corollary 7.13. Let ρ, ν ∈ Dens(H), then there are positive operators T, S ∈ L(H) such that

|ρ− ν| = T + S and TS = ST = 0.

Proof. By the previous lemma, ρ− ν = T − S with TS = 0. Hence

(ρ− ν)2 = T 2 + S2 = (T + S)2 =⇒ |ρ− ν| = T + S.

A natural question to ask is whether the trace distance changes under the time evolution of states.

Lemma 7.14. Let ρ, ν ∈ Dens(H).

1. For any unitary U ∈ L(H), D(ρ, ν) = D
(
UρU∗, UνU∗

)
.

2.
D(ρ, ν) = max

{
Tr
(
P (σ − ν)

) ∣∣P = P ∗ = P 2 ∈ L(H)
}

Proof. It is simple to verify that (UρU∗ − UνU∗)2 = U(ρ − ν)2U∗ and so |UρU∗ − UνU∗| =

U |ρ− ν|U∗. Hence Tr(|ρ− ν|) = Tr(|UρU∗ − UνU∗|), which shows part (1).

For part (2), we have that 0 = Tr(ρ) − Tr(ν) = Tr(ρ − ν) = Tr(T − S) and so Tr(T ) = Tr(S),
where T and S come from the decomposition in Corollary 7.13. Then

D(ρ, ν) =
1

2
Tr
(
|ρ− ν|

)
=

1

2
Tr(T + S) = Tr(T ).

For any projection P ∈ L(H),

Tr
(
P (ρ− ν)

)
≤ Tr

(
P (T − S)

)
≤ Tr(PT ) ≤ Tr(T ) = D(ρ, ν).

We now let PT be the projection onto Ker(T )⊥, where SPT = 0 and TPT = T . Then

Tr
(
PT (ρ− ν)

)
= Tr

(
PT (T − S)

)
= Tr(PTT )− Tr(PTS) = Tr(T ) = D(ρ, ν)

and therefore D(ρ, ν) = max
{

Tr(P (σ − ν))
∣∣P = P ∗ = P 2 ∈ L(H)

}
.

Hence a unitary evolution of states will not affect the trace distance between states. Another natural
question is the effect on the trace distance when a quantum operation is applied. Perhaps surprisingly,
quantum operations are contractive under the trace distance.

Theorem 7.15. Let ρ, ν ∈ Dens(H) and Φ : L(H)→ L(H) be a quantum operation. Then

D
(
Φ(ρ), Φ(ν)

)
≤ D(ρ, ν).

Proof. We again use the description |ρ− ν| = T + S from Corollary 7.13. Then by properties of

the trace distance and quantum operations,

D(ρ, ν) = Tr(T ) ≥ Tr
(
Φ(T )

)
= Tr

(
PΦ(T )Φ(T )

)
≥ Tr

(
PΦ(T )(Φ(T )− Φ(S))

)
= Tr

(
PΦ(T )Φ(T − S)

)
= Tr

(
PΦ(T )(Φ(ρ)− Φ(ν))

)
= D

(
Φ(ρ),Φ(ν)

)
,
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Figure 4: Objects become less distinguishable when only partial information is available. [3, Figure
9.5].

where PΦ(T ) is the projection onto the Ker(Φ(T ))⊥.

The theorem says that any physical process that transmits some quantum information does not increase
the distance between states. Applying a quantum operation, we may lose information about the states.
So states cannot become more distinguishable when we only have partial information, see Figure 4.

As an example, consider ρA, νA ∈ Dens(HA) and ρB ⊗ νB ∈ Dens(HB). Then

D(ρA, νA) = D
(

TrB(ρA ⊗ ρB), TrB(νA ⊗ νB)
)
≤ D

(
ρA ⊗ ρB, νA ⊗ νB

)
as TrB is an example of a quantum operation.

Quantum fidelity

We now consider the quantum analogue of fidelity of a probability distribution.

Definition 7.16. Let ρ, ν ∈ Dens(H). Then the fidelity is given by

F (ρ, ν) = Tr
(√

ρ1/2νρ1/2
)

The definition needs a few comments. First, notice that ρ1/2νρ1/2 is a positve operator as for any
|ψ〉 ∈ H,

〈ψ | ρ1/2νρ1/2ψ〉 = 〈ρ1/2ψ | ν1/2ν1/2ρ1/2ψ〉 = 〈ν1/2ρ1/2ψ | ν1/2ρ1/2ψ〉 ≥ 0.

This means that
√
ρ1/2νρ1/2 is well-defined and positive. Using the fact that

√
UAU∗ = U

√
AU∗ for

any unitary U ∈ L(H) and A ≥ 0, we also have the property that

F (ρ, ν) = F
(
UρU∗, UνU∗

)
for any unitary U ∈ L(H).

Example 7.17. We consider the case that [ρ, ν] = 0 and so are simultaneously diagonalisable.

Then √
ρ1/2νρ1/2 =

√
ρν =

m∑
j=1

√
pjqj |ψj〉〈ψj |,

where σ(ρ) = {pj}mj=1 and σ(ν) = {qj}mj=1. Hence we have that

D(ρ, ν) = Tr
( m∑
j=1

√
pjqj |ψj〉〈ψj |

)
=

m∑
j=1

√
pjqj = D(Pρ,Qν),

where Pρ and Qν are the probability distributions associated to ρ and ν. So in this special case,
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we recover the classical fidelity.

Example 7.18. Suppose that ρ = |ψ〉〈ψ| for some |ψ〉 ∈ H. Then ρ1/2 = |ψ〉〈ψ| and for any

ν ∈ Dens(H),

F (|ψ〉〈ψ|, ν) = Tr
(√
〈ψ | νψ〉 |ψ〉〈ψ|

)
=
√
〈ψ | ρψ〉 =

√
〈ρ〉ψ.

When ν is also pure, ν = |φ〉〈φ|, then

F
(
|ψ〉〈ψ|, |φ〉〈φ|

)
=
√
〈ψ | φ〉〈φ | ψ〉 =

∣∣〈ψ | φ〉∣∣.
We see that for pure states F (ρψ, νφ) = F (νφ, ρψ). It is not obvious at all that F (ρ, ν) = F (ν, ρ) for
more general density operators. But this will follow as an application of Uhlmann’s Theorem, which
we will not prove.

Theorem 7.19 (Uhlmann’s Theorem, [3, Theorem 9.4]). Let ρ, ν ∈ Dens(H). Then

F (ρ, ν) = max
{∣∣〈Ψρ | Φν〉

∣∣ : Ψρ,Φν ∈ H ⊗K are purifications of ρ and ν respectively
}
.

Uhlmann’s Theorem shows us that F (ρ, ν) = F (ν, ρ) as well as that F (ρ, ν) ∈ [0, 1] for any ρ, ν ∈
Dens(H). In particular, like the classical case, we can think of F (ρ, ν) = cos(θ) for some angle θ
between the quantum states ρ, ν. That is, we define θ(ρ, ν) = cos−1

(
F (ρ, ν)

)
.

The following should be compared to Theorem 7.15.

Theorem 7.20 ([3, Theorem 9.6, Exercise 9.18]). Let ρ, ν ∈ Dens(H) and Φ : L(H)→ L(H) a

quantum channel. Then

F
(
Φ(ρ), Φ(ν)

)
≥ F (ρ, ν), θ

(
Φ(ρ), Φ(ν)

)
≤ θ(ρ, ν).

We have introduced two notions of distance between quantum states, a metric D and 0 ≤ F ≤ 1 such
that F (ρ, ρ) = 1. If D(ρ, ν) is small, then we would also expect |1− F (ρ, ν)| to also be small.

Exercise 7.5. Let |ψ〉 and |φ〉 be pure states in H with density operators ρψ and ρφ. Show that

D
(
ρψ, νφ) =

√
1− F (ρψ, νφ)2.

For more general density operators ρ and ν, we can take a purification |Ψρ〉 and |Φν〉 in H⊗K such
that F (ρ, ν) =

∣∣〈Ψρ | Φν〉
∣∣. Then using the previous exercise,

D(ρ, ν) = D
(

TrK(|Ψρ〉〈Ψρ|), TrK(|Φν〉〈Φν |)
)
≤ D

(
|Ψρ〉〈Ψρ|, |Φν〉〈Φν |

)
=

√
1− F

(
|Ψρ〉〈Ψρ|, |Φν〉〈Φν |

)2
=
√

1− F (ρ, ν)2.

So we can say that F (ρ, ν)→ 1 implies that D(ρ, ν)→ 0.

Example 7.21. An obvious application of the trace distance and fidelity is to see to what

extent a quantum operation changes a state, namely we consider D
(
ρ,Φ(ρ)

)
and F

(
ρ,Φ(ρ)

)
. As

a simple example, we consider the depolarising quantum channel. We fix H = Cn and consider
an operation that sends the state ρ to 1

n1n with probability p ∈ [0, 1] and does nothing otherwise,

Φ(ρ) =
p

n
1n + (1− p)ρ.
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It is clear that the states ρ and Φ(ρ) commute and so the trace distance and fidelity can be
computed classically via the probability distributions

ρ ∼ {qj}nj=1,
p

n
1n + (1− p)ρ ∼

{ p
n

+ (1− p)qj
}n
j=1

,

where we have used the fact that

p

n
1n + (1− p)ρ =

n∑
j=1

( p
n

+ (1− p)qj
)
|ψj〉〈ψj |.

Hence

D
(
ρ,Φ(ρ)

)
=

1

2

n∑
j=1

∣∣ p
n

+ (1− p)qj − qj
∣∣ = p

n∑
j=1

∣∣ 1
n
− qj

∣∣.
In particular we see that D

(
ρ,Φ(ρ)

)
increases as the depolarisation probability p increases. Sim-

ilarly

F
(
ρ,Φ(ρ)

)
=

n∑
j=1

√( p
n

+ (1− p)qj
)
qj .

In the case that ρ = |ψ〉〈ψ|, then we can further simplify

F
(
ρψ,Φ(ρψ)

)
=
√
〈ψ | Φ(ρψ)ψ〉 =

√〈
ψ |
( p
n

1n + (1− p)|ψ〉〈ψ|
)
ψ
〉

=

√
p

n
+ (1− p) =

√
1− n− 1

n
p.

When we are in the space of single Qubits, n = 2 the fidelity reduces to
√

1− p
2 .

7.3 Entropy of quantum states

Entropy is a word used in various fields, from thermodynamics and statistical mechanics to ecology
and computer science. Here we will be interested in understanding entropy in the context of (quantum)
information theory. To begin, we first consider the classical setting and Shannon entropy.

Shannon entropy

Recall that our classical analogue of a quantum state ρ ∈ Dens(H) is a probability distribution {pj}nj=1,
pj ∈ [0, 1] and

∑
j pj = 1. This probability distribution distributes information in the following sense:

we have some quantity X, which may take certain values x1, . . . , xn with probability p1, . . . , pn. By
learning the outcome of X, we have gained some information. We would like to quantify the amount
of information we obtain (on average) by learning the value of X.

Suppose that p1 = 1 and p2 = . . . = pn = 0. Then we know that X will take value x1 and we gain
no meaningful information by learning this quantity. On the other hand. Suppose that xj describes a
very unlikely event, such as the numbers of a winning lottery ticket. Then learning this value would
be very useful! Hence we expect the information gained from learning the value xj to be related to
1
pj

. We want this quantity to be zero when pj = 1, so we therefore consider pj log
(

1
pj

)
= −pj log(pj)

with the convention that 0 log(0) = 0. By taking the probabilistic expectation over such quantities,
we learn the average information gained by learning an outcome of X.
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Definition 7.22. The Shannon entropy of a finite probability distribution P = {pj}nj=1 is given

by

H(P) = −
n∑
j=1

pj log(pj),

where we use the convention 0 log(0) := 0.

We should clarify that in the context of information theory, one typically takes log(x) = log2(x). The
base of the logarithm does not play a crucial role in the basic properties of the Shannon entropy, so
we will not emphasise this point. The convention 0 log(0) := 0 is partially justified by noting that
lim
x→0+

x log(x) = 0.

Example 7.23. Suppose that we have fair coin, so a coin flip will give heads/tails with proba-

bility 1
2 . The associated probability distribution is {1

2 ,
1
2} and

H(P) = −2
1

2
log2

(1

2

)
= log2(2) = 1.

On the other hand, if we have an unfair coin, say the probability of heads is 3
4 , then

H(P̃) = −3

4
log
(3

4

)
− 1

4
log
(1

4

)
= −3

4

(
log(3)− log(4)

)
+

1

4
log(4)

= log(4)− 3

4
log(3) = 2− 3

4
log(3) ≈ 0.811.

Taking a less fair coin means that we are more likely to be able to predict the outcome. So
we gain less information by learning the value of an outcome. This is reflected in the fact that
H(P̃) < H(P). Indeed, for a binary probability distribution {p, 1 − p}, the Shannon entropy is
maximised when p = 1

2 .

Given probability distributions P and Q, we can compare H(P) and H(Q). A more direct comparison
can be done via the relative entropy.

Definition 7.24. Let P = {pj}nj=1 and Q = {qj}nj=1 be probability distributions. The relative

entropy is given by

H(P | Q) =
n∑
j=1

pj log
(pj
qj

)
= −H(P)−

n∑
j=1

pj log(qj),

where we use the convention 0 log(0) = 0 and −pj log(0) = +∞ if pj > 0.

Example 7.25. Let’s consider two binary probability distributions P = {p, 1 − p} and Q =

{q, 1− q} with p, q ∈ (0, 1). Then

H(P | Q) = p log
(p
q

)
+ (1− p) log

(1− p
1− q

)
= p
(

log(p)− log(q)
)

+ (1− p)
(

log(1− p)− log(1− q)
)
.

We see that H(P | Q) = 0 when p = q, i.e. P = Q.
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Theorem 7.26. The relative entropy is non-negative, H(P | Q) ∈ [0,+∞], and H(P | Q) = 0

if and only if P = Q.

Proof. We will make use of the inequality log2(x) ≥ 1
ln(2)(1 − x) with equality if and only if

x = 1. We then compute

H(P | Q) =

n∑
j=1

pj log
(pj
qj

)
= −

n∑
j=1

pj log
( qj
pj

)
≥ 1

ln(2)

n∑
j=1

pj
(
1− qj

pj

)
=

1

ln(2)

∑
j

(pj − qj)

=
1− 1

ln(2)
= 0.

We have the equality H(P | Q) = 0 if and only if
qj
pj

= 1 for all j, i.e. P = Q.

Von Neumann entropy

We now consider a notion of entropy for quantum states ρ ∈ Dens(H). This should reproduce the
Shannon entropy when we consider the probability distribution Pρ = σ(ρ). Hence

H(Pρ) = −
∑
λ∈σ(ρ)

λ log(λ) = −Tr
(
ρ log ρ

)
.

So we take the following as our definition.

Definition 7.27. The von Neumann entropy of ρ ∈ Dens(H) is given by

S(ρ) = −Tr
(
ρ log(ρ)

)
= −

n∑
j=1

pj log(pj), ρ =

n∑
j=1

pj |ψj〉〈ψj |,

where we use the convention 0 log(0) = 0.

Example 7.28. If ρ = |ψ〉〈ψ| is a pure state, then S(|ψ〉〈ψ|) = − log(1) = 0. Conversely, if

H = Cn and ρ = 1
n1n is the maximally mixed state, then

S
(

1
n1n

)
= −

n∑
j=1

1

n
log
( 1

n

)
= log(n).

For other states ρ ∈ Dens(Cn), 0 ≤ S(ρ) ≤ log(n).

Example 7.29 (Quantum channels can increase or decrease entropy). Let ν ∈ Dens(K) and

define the map
Φν : L(H)→ L(K), Φν(T ) = Tr(T ) ν.

It is straightforward to show that ν is a quantum channel. For an arbitrary ρ ∈ Dens(H), S(ρ)
and S(ν) = S

(
Φν(ρ)

)
are independent of each other. So in general the entropy can increase or
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decrease under a quantum channel.

Exercise 7.6. Show that the depolarising channel, Φ(ρ) = p
n1n + (1 − p)ρ for ρ ∈ Dens(Cn)

and p ∈ [0, 1], is such that S
(
Φ(ρ)

)
≥ S(ρ).

Exercise 7.7. Let P = {pj}nj=1 be a probability distribution and {ρj}nj=1 ⊂ Dens(H). Show

that
n∑
j=1

pjS(ρj) ≤ S
( n∑
j=1

pjρj

)
≤

n∑
j=1

pjS(ρj) +H(P).

Definition 7.30. For ρ, ν ∈ Dens(H), the relative entropy

S(ρ | ν) = Tr
(
ρ log(ρ)

)
− Tr

(
ρ log(ν)

)
= −S(ρ)− Tr

(
ρ log(ν)

)
and where S(ρ | ν) = +∞ if Ker(ν) ∩Ker(ρ)⊥ 6= {0}.

We remark that S(ρ | ν) 6= S(ν | ρ) in general.

Theorem 7.31 (Klein’s inequality). The relative entropy is non-negative, S(ρ | ν) ∈ [0,∞] and

S(ρ | ν) = 0 if and only if ρ = ν.

Proof. We take the canonical decomposition of the density operators, ρ =
∑

j pj |ψj〉〈ψj | and

ν =
∑

k qk|φk〉〈φk|. Then by definition

S(ρ | ν) =

n∑
j=1

pj log(pj)− Tr
(
ρ log(ν)

)
=

n∑
j=1

pi log(pi)−
n∑
j=1

〈ψj | ρ log(ν)ψj〉

=
n∑
j=1

pj log(pj)−
n∑
j=1

〈ρψj | log(ν)ψj〉 =
n∑
j=1

pj log(pj)−
n∑
j=1

pj〈ψj | log(ν)ψj〉

=
n∑
j=1

pj log(pj)−
n∑

j,k=1

pj〈ψj |
(

log(qk)|φk〉〈φk|
)
ψj〉

=

n∑
j=1

pj

(
log(pj)−

n∑
k=1

Pjk log(qk)
)
,

where Pjk = |〈ψj | φk〉|2 ≥ 0. We also note that

∑
j

Pjk =
n∑
j=1

〈φk | ψj〉〈ψj | φk〉 = 〈φk | φk〉 = 1

and similarly
∑

k Pjk = 1. By the concavity of the logarithm

n∑
k=1

Pjk log(qk) ≤ log
(∑

k

Pjkqj

)
= log(rj), rj =

∑
k

Pjkqj
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with equality if and only if there is some k such that Pjk = 1. Then

S(ρ | ν) =
n∑
j=1

pj

(
log(pj)−

n∑
k=1

Pjk log(qk)
)

≥
n∑
j=1

pj
(

log(pj)− log(rj)
)

=

n∑
j=1

pj log
(pi
ri

)
.

Using the identity

n∑
j=1

rj =
n∑

j,k=1

〈φk | ψj〉〈ψj | φk〉 = 1,

we see that R = {rj}nj=1 is also a probability distribution and

S(ρ | ν) ≥
n∑
j=1

pj log
(pi
ri

)
= H(P | R) ≥ 0,

where we have used the non-negativity of the classical relative entropy (Theorem 7.26). We also
obtain equality S(ρ | ν) = 0 if and only if for each j ∈ {1, . . . , n} there is a k ∈ {1, . . . , n} such
that Pjk = 1 and P = R. Considering {Pjk}nj,k=1 as a matrix, the condition on P is equivalent
to the matrix P having a 1 in every column. This implies that P is a permutation matrix and
is just a relabeling of the eigenstates of ρ and ν. Rearranging the labelling as necessary, we can
assume that P = 1n, which also implies rj = qj . Therefore S(ρ | ν) if and only if pj = qj for all
j, which means that the eigenvalues of ρ and ν are same and, hence, ρ = ν.

Example 7.32 (Subadditivity of the entropy in composite systems). Take ρA ∈ Dens(HA) and

ρB ∈ Dens(HB) and a state in the composite system ρ ∈ Dens(HA⊗HB) such that TrB(ρ) = ρA
and TrA(ρ) = ρB. The product state ρA ⊗ ρB is an example of such a ρ ∈ Dens(HA ⊗HB), but
there may be other examples in general. Let us therefore compare these systems by computing

S
(
ρ
∣∣ ρA ⊗ ρB) = −S(ρ)− TrA⊗B

(
ρ log(ρA ⊗ ρB)

)
.

We first note that

log(ρA ⊗ ρB) =
∑
j,k

log(pAj q
B
k )(|ψAj 〉〈ψAj | ⊗ |φBk 〉〈φBk |)

=
∑
j,k

(
log(pAj ) + log(qBk )

)
(|ψAj 〉〈ψAj | ⊗ |φBk 〉〈φBk |)

=
(∑

j

log(pAj )|ψAj 〉〈ψAj |
)
⊗
(∑

k

|φBk 〉〈φBk |
)

+
(∑

j

|ψAj 〉〈ψAj |
)
⊗
(∑

k

log(qBk )|φBk 〉〈φBk |
)

= log(ρA)⊗ 1B + 1A ⊗ log(ρB),

which we then use to compute

−TrA⊗B
(
ρ log(ρA ⊗ ρB)

)
= −TrA⊗B

(
ρ(log(ρA)⊗ 1B + 1A ⊗ log(ρB))

)
= −TrA⊗B

(
ρ(log(ρA)⊗ 1B)

)
− TrA⊗B

(
ρ(1A ⊗ log(ρB)

)
= −TrA

(
TrB(ρ) log(ρA)

)
− TrB

(
TrA(ρ) log(ρB)

)
= −TrA

(
ρA log(ρA))− TrB

(
ρB log(ρB)

)
= S(ρA) + S(ρB).
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And therefore

S
(
ρ
∣∣ ρA ⊗ ρB) = −S(ρ)− TrA⊗B

(
ρ log(ρA ⊗ ρB)

)
= −S(ρ) + S(ρA) + S(ρB).

Applying Klein’s inequality,
S(ρ) ≤ S(ρA) + S(ρB)

with equality if and only if ρ = ρA ⊗ ρB.

Example 7.33 (Entropy on the Bloch ball). Let us consider two states ρx, ρy ∈ Dens(C2),

where

ρx =
1

2
(12 + x · σ), ρy =

1

2
(12 + y · σ), x,y ∈ R3, ‖x‖ ≤ 1, ‖y‖ ≤ 1.

For the entropy of a single state, we use that σ(ρx) = 1
2(1± ‖x‖) and so

S(ρx) = −Tr
(
ρx log(ρx)

)
= −1 + ‖x‖

2
log
(1 + ‖x‖

2

)
− 1− ‖x‖

2
log
(1− ‖x‖

2

)
.

So the entropy is purely determined by the length ‖x‖. We see that S(ρx) is maximal when
‖x‖ = 0, vanishes for ‖x‖ = 1 and is decreasing for 0 < ‖x‖ < 1.

For the relative entropy, a very long and somewhat tedious computation gives that

S(ρx | ρy) =
1

2
log(1− ‖x‖2) +

‖x‖
2

log
(1 + ‖x‖

1− ‖x‖

)
− 1

2
log(1− ‖y‖2)− x · y

2‖y‖
log
(1 + ‖y‖

1− ‖y‖

)
.

See [1, Appendix A], for example.

Lastly, we wish to examine how the entropy is effected by measurements or quantum channels.

Theorem 7.34 (Projective measurements increase entropy). Let {Pj}mj=1 ∈ L(H) be a set of

projections such that PjPk = δj,kPj and
∑

j Pj = 1H. Given a state ρ ∈ Dens(H), we let
ρ′ =

∑
j PjρPj. Then S(ρ′) ≥ ρ(S) with equality if and only if ρ = ρ′.

Proof. Using the the fact that {Pj}nj=1 are an orthogonal and complete set of projections, we

use the properties of the trace to find that

−Tr(ρ log(ρ′)) = −Tr
(∑

j

Pjρ log(ρ′)
)

= −Tr
(∑

j

Pjρ log(ρ′)Pj

)
= −Tr

(∑
j

PjρPj log(ρ′)
)

= −Tr
(
ρ′ log(ρ′)

)
= S(ρ′),

where we have used that [Pj , ρ
′] =

∑
k[Pj , PkρkPk] = 0. We can then use Klein’s inequality, where

0 ≤ S(ρ | ρ′) = −S(ρ)− Tr(ρ log(ρ′)) = −S(ρ) + S(ρ′)

and hence S(ρ′) ≥ S(ρ).

In contrast to projective measurements increasing entropy, the relative entropy is monotonic under
quantum channels.
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Theorem 7.35 (Monotonicity of the relative entropy, [5]). Let ρ, ν ∈ Dens(H) and Φ : L(H)→
L(H) be a quantum channel. Then

S
(
Φ(ρ) | Φ(ν)

)
≤ S(ρ | φ).

Exercise 7.8. Write a report on conditional entropy and mutual information in the classical

and quantum setting.
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A The complex number system

Remark A.1. The following notes is taken from the lecture notes for G30 Complex Analysis course.
More detail is given than what is needed for the special mathematics lecture, where we just need basic
properties (conjugate, norm, polar form and Euler’s formula).

Not every real polynomial has real solutions, for example x2 + 1 = 0. One motivation for defining
complex numbers is that it precisely solves this problem: every degree n polynomial anx

n + · · · a1x+
a0 = 0 has exactly n complex solutions in general. However, it will take us some time before we can
prove this statement.

A.1 Basic definitions and properties

Definition A.2. A field is a set F and operations (+, ·) such that for any a, b, c ∈ F,

a+ (b+ c) = (a+ b) + c, a · (b · c) = (a · b) · c, a+ b = b+ a, a · b = b · a,
a · (b+ c) = a · b+ a · c.

Furthermore, there are unique elements 0, 1 ∈ F such that

a+ 0 = a, a · 1 = a.

Finally, for every a ∈ F and b ∈ F with b 6= 0, there are unique elements (−a) and b−1 such that

a+ (−a) = 0, b · b−1 = 1.

Examples of fields include the real numbers R and the rational numbers Q =
{
m
n |m,n ∈ Z, n 6= 0

}
.

If p ∈ N is a prime number, then Zp = {0, 1, . . . , p − 1} is a field with addition and multiplication
given modulo p.

Definition/Theorem A.3. There exists a field C = R ⊕ iR, with ±i := ±
√
−1 the solutions

to the polynomial x2 + 1 = 0.

We typically write a generic complex number z = x + iy ∈ C with x, y ∈ R. In particular, we define
x = Re(z), y = Im(z) ∈ R.

Addition and multiplication are defined as

(a+ ib) + (c+ id) = (a+ c) + i(b+ d),

(a+ ib)(c+ id) = ac+ i(ad+ bc) + i2bd = (ac− bd) + i(ad+ bc),

where we have used that i2 = −1, which we take as a definition. Note that (−i)2 = (−1)2i2 = −1 as
well.

The additive identity for C is 0 = 0 + i0 and the multiplicative identity is 1 = 1 + 0i.

We see that a complex number z = x + iy = 0 if and only if x2 + y2 = 0. If z = x + iy 6= 0, then a
simple check will show that

1

x2 + y2
(x+ iy)(x− iy) =

x2 + y2

x2 + y2
= 1, =⇒ z−1 =

1

x2 + y2
(x− iy) =

x

x2 + y2
+ i

−y
x2 + y2

.

Checking the other properties to show that C is a field are straightforward computations.

Complex numbers can be written as an ordered pair of real numbers x + iy ∼ (x, y), where one can
define

(a, b) + (c, d) = (a+ b, c+ d), (a, b) · (c, d) = (ac− bd, ad+ bc),

though generally we use the convention z = x+ iy ∈ C.
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Example A.4. The inverse i−1 = −i, indeed i(−i) = −i2 = −(−1) = 1.

Remark A.5. We can also think of C as a vector space over the field C. Namely, we define scalar
multiplication α · z = αz for α, z ∈ C. As a complex vector space, C is one-dimensional and any
non-zero complex number is a basis for C.

Analogously to real numbers, we can take powers zn for n ∈ Z as follows,

zn =


n times︷ ︸︸ ︷

z · z · . . . · z, n > 0,

1, n = 0,

(z−1)−n, n < 0 and z 6= 0.

Like real numbers, we can also use the binomial formula/expansion to take powers of sums: if z, w ∈ C
and n > 0 then

(z + w)n =
n∑
j=0

(
n

j

)
zjwn−j ,

(
n

0

)
= 1,

(
n

j

)
=
n(n− 1) · · · (n− j + 1)

j!
. (A.1)

Definition A.6 (Complex conjugate). The complex conjugate is a map C 3 z 7→ z ∈ C,

(x+ iy) = x− iy.

We collect some basic properties of the complex conjugate, which are all simple checks to prove.

Lemma A.7. For any z, z1, z2 ∈ C,

z = z, z1 ± z2 = z1 ± z2, z1z2 = z1 z2,

Re(z) =
1

2
(z + z), Im(z) =

1

2i
(z − z), zz ∈ R.

Because C = R ⊕ iR, we can think of R as a subfield of C with the embedding x 7→ x + i0. For any
z ∈ C, we have that

z ∈ R ⇐⇒ z = z, z ∈ iR ⇐⇒ z = −z

We also equip C with a norm/modulus/absolute value,

|z| =
√
zz =

√
x2 + y2, z = 0 ⇐⇒ |z| = 0.

One can check, for example, that |z1 + z2| ≤ |z1|+ |z2|. The complex conjugate and norm also give us
the nice formula

z−1 =
z

|z|2
, z ∈ C \ {0}.

Examples A.8. The number z =
4− 3i

2 + i
is a complex number, though it is not immediately

obvious how to write this as z = x+ iy. We can simplify z by some algebraic manipulation,

4− 3i

2 + i

2− i
2− i

=
8 + 4i− 6i+ 3

4 + 1
=

11− 2i

5
=

11

5
− i2

5
.

Using what we know about i, we can compute higher powers easily,

(−i)637 = (−i)(−i)636 = (−i)(−1)318 = −i.
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A.2 Polar form and the complex plane

Complex numbers z = x + iy ∈ C are built from a pair of real numbers, i.e. an element (x, y) ∈ R2.
So it is natural to consider them as geometrically on a two-dimensional plane.

Definition A.9. Given z ∈ C and z 6= 0, z has the polar form,

z = r
(

cos(ϕ) + i sin(ϕ)
)
, r = |z|, ϕ = angle with real axis = arg(z).

Examples A.10.

1 + i =
√

2
(

cos(π4 ) + i sin(π4 )
)
,

6− 3i =
√

45
(

cos(−π
6 ) + i sin(−π

6 )
)

=
√

45
(

cos(π6 )− i sin(π6 )
)

More generally, the complex conjugate z 7→ z will give a reflection of z along the real axis,

The polar decomposition of z is not unique. Indeed,

r(cos(ϕ) + i sin(ϕ)) = r′(cos(ϕ′) + i sin(ϕ′)) ⇐⇒ r = r′ and ϕ− ϕ′ = 2πk, k ∈ Z.

This means the argument arg(z) is not well-defined in general and takes multiple values. We define
the Principal Value of the argument as the angle Arg(z) ∈ (−π, π] (note the capital ‘A’), which is
unique.

Proposition A.11. Given z1 = r1(cos(θ1) + i sin(θ1)), z2 = r2(cos(θ2) + i sin(θ2)),

z1z2 = r1r2

(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
.
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That is, the absolute values are multiplied and the arguments are added.

The statement is proved by a computation that uses the addition formulas for sin and cos. We leave
the details as an exercise. The key point is that, when taking products, the absolute values multiply
and the arguments add. This is particularly useful for taking powers, where(

r(cos(θ) + i sin(θ)
)n

= rn(cos(nθ) + i sin(nθ)).

Definition A.12. We call ζ ∈ C an nth root of z if ζn = z. In particular, if ζn = 1, we call ζ

an nth root of unity.

Theorem A.13. For each n ∈ N there are exactly n distinct nth roots of unity.

More generally, if z ∈ C \ {0} and n ∈ N, there are exactly n different nth roots of z, {ζj}n−1
j=0 ,

ζnj = z for all j ∈ {0, 1, . . . , n− 1}.

Proof (Proof sketch). We will outline the proof of the first statement. Suppose that ζn = 1, i.e.

ζ is a root of unity. Using Proposition A.11, we know that

1 = |1| = |ζn| = |ζ|n, =⇒ |ζ| = 11/n = 1.

Let ϕ = arg(ζ). We again use Proposition A.11 and note that

arg(1) = arg(ζn) = n arg(ζ) = nϕ, arg(1) = 2πk, k ∈ Z, =⇒ ϕ =
2πk

n

By taking k = 0, 1, . . . , n− 1, we obtain n distinct solutions for ϕ. Putting this together gives us
all roots of unity

{ζj}n−1
j=0 , ζj = cos

(
2πj

n

)
+ i sin

(
2πj

n

)
.

We remark that we can write ζj = (ζ1)j with ζ1 the first non-trivial root of unity. The roots of unity
are spaced evenly around the unit circle. For example, the solutions to z5 = 1 are sketched below.

A.3 Sequences and series

To talk about analysis and continuity on C, we need to talk about sequences and what it means to
converge. Because C = R⊕iR, we can use results that we already know about R and R2 to understand
properties of C.
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Definition A.14. 1. We say that a sequence {zn}n≥0 ⊂ C converges to an element z ∈ C if
for all ε > 0 there is some N ∈ N such that

|zn − z| < ε, for all n ≥ N.

2. We say that a sequence {zn}n≥0 ⊂ C is a Cauchy sequence if for all ε > 0 there is some
N ∈ N such that

|zn − zm| < ε, for all n, m ≥ N.

Definition A.15. Let V be a vector space over a field F with a norm ‖ · ‖. We say that V is

complete if any Cauchy sequence {vn}n≥0 converges to an element v ∈ V .

The real numbers R and rational numbers Q are vector spaces over the fields R and Q respectively. As
vector space R is complete, the rational numbers Q are not. Indeed, we can take sequences of rational
numbers that converge to e or π.

The notion of completeness can be extended to metric spaces, a set X with a notion of distance
d(x, y) ≥ 0 for all x, y ∈ X.4 An open interval (a, b) ⊂ R with d(x, y) = |x− y| is a metric space, but

it is not complete. For example, consider the sequence an =
1

n
in the set (0, 1). The sequence an is

Cauchy, but it converges to 0, which is not an element of the set (0, 1).

Theorem A.16. The complex numbers C are complete.

To show the above theorem, we use the following result as well as the fact that R is complete.

Lemma A.17. A sequence zn → z ∈ C if and only if Re(zn) → Re(z) ∈ R and Im(zn) →
Im(z) ∈ R.

We also note that if zn → z ∈ C, then |zn| → |z| ∈ R and zn → z ∈ C.

Furthermore, C is complete in this norm (every Cauchy sequence converges).

Definition A.18. The (infinite) series is defined

∞∑
j=0

zj = lim
n→∞

Sn, Sn =
n∑
j=0

zj .

We say that a series is absolutely convergent if

∞∑
j=0

|zj | <∞.

As in the case of real analysis,

∞∑
j=0

|zj | <∞ =⇒
∞∑
j=0

zj well defined in C.

4A more precise definition of metric space is beyond the scope of this course.
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Example A.19. The geometric series converges for all |z| < 1,

∞∑
n=0

zn = 1 + z + z2 + · · · = 1

1− z
, |z| < 1.

Lemma A.20 (Cauchy’s multiplication Theorem). Suppose that

∞∑
n=0

an, and

∞∑
n=0

bn

are absolutely convergent. Then

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=

∞∑
j=0

( j∑
k=0

akbj−k

)
and the series on the right-hand side is absolutely convergent.

Definition/Theorem A.21. The series

exp(z) =
∞∑
n=0

zn

n!
, sin(z) =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1, cos(z) =

∞∑
n=0

(−1)n

(2n)!
z2n

are absolutely convergent for all z ∈ C. Furthermore for all z, w ∈ C,

exp(z + w) = exp(z) exp(w), exp(iz) = cos(z) + i sin(z)

cos(z) =
1

2

(
exp(iz) + exp(−iz)

)
, sin(z) =

1

2i

(
exp(iz)− exp(−iz)

)
.

A comparison of the series formula for exp(z) with exp(x) with x ∈ R shows that exp(z) extends the
real series expansion of exp(x) to the complex plane. This is similarly true for sin and cos.

We will omit the proof that the series for exp, sin and cos converge. Though let us check a few of the
properties and leave the rest as an exercise.

We first show exp(z+w) = exp(z) exp(w), where we start with the right-hand side and apply Lemma
A.20.

exp(z) exp(w) =

∞∑
n=0

( n∑
j=0

zjwn−j

j!(n− j)!

)
=

∞∑
n=0

1

n!

( n∑
j=0

(
n

j

)
zjwn−j

)
as

1

j!(n− j)!
=

1

n!

(
n

j

)

=

∞∑
n=0

1

n!
(z + w)n using the binomial expansion, Eq. (A.1)

= exp(z + w).
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We similarly show the identity sin(z) = 1
2i

(
exp(iz)− exp(−iz)

)
,

1

2i

(
exp(iz)− exp(−iz)

)
=

1

2i

∞∑
n=0

((iz)n

n!
− (−iz)n

n!

)
=
∞∑
n=0

znin−1

n!

(1− (−1)n

2

)
.

The quantity
(1−(−1)n

2

)
will vanish unless n is odd. We therefore let n = 2m + 1 and note that

in−1 = i2m+1−1 = i2m = (−1)m. Therefore we can simplify the series to

1

2i

(
exp(iz)− exp(−iz)

)
=
∞∑
m=0

(−1)mz2m+1

(2m+ 1)!
= sin(z).

A.4 The complex exponential and the logarithm

The expression exp(iz) = cos(z) + i sin(z) is particularly useful as it allows us to simplify the polar
form of complex numbers,

z = |z|
(

cos(θ) + i sin(θ)
)

= |z| exp(iθ) = |z| exp(iθ + 2πik), k ∈ Z.

For example, the unit circle in the complex plane T = {z ∈ C | |z| = 1} can be neatly characterised as
exp(iθ) for θ ∈ (−π, π] (or θ ∈ R).

We will also write ez = exp(z), though unless otherwise stated ez will refer to the series expansion and
not the complex power of the real number e (more on this below). As a bonus, we get the aesthetically
pleasing equation

eiπ + 1 = 0.

Much like the polar form is not unique, the complex exponential is not injective,

ez = ew ⇐⇒ z − w = 2πik, k ∈ Z.

We see that the exponential is a periodic function, like sin and cos on the real axis. This is not
suprising given that eiz = cos(z) + i sin(z). Note also that ez 6= 0 for any z ∈ C. So the exponential
has range C \ {0}.
Because C 3 z 7→ ez ∈ C is not an injective function, the inverse (the logarithm) will not be uniquely
specified. We can, however, restrict to a subregion.

Lemma A.22. Let S ⊂ C denote the infinite strip

S = R× i(−π, π] =
{
x+ iy | x ∈ R, y ∈ (−π, π]

}
.

Then the map S 3 w 7→ ew ∈ C \ {0} is a bijection.

Proof. For w = x + iy ∈ S, ew = ex+iy = exeiy. If z ∈ C \ {0}, we can write z in polar form

z = |z|eiθ with θ ∈ (−π, π]. We can therefore map w to z by taking x = ln(|z|) (the real natural
logarithm) and y = θ,

eln(|z|)+iθ = eln(|z|)eiθ = |z|eiθ = z.

Therefore the map is surjective. Now suppose w1 = x1 + iy1 and w2 = x2 + iy2 are such that
ew1 = ew2 , then w1 − w2 = 0 + 2πik and so x1 = x2 and y1 − y2 = 2πk for some k ∈ Z. But if
y1, y2 ∈ (−π, π], then this is only possible if k = 0. Thus w1 = w2 and exp is injective.

Given some z ∈ C \ {0}, the previous lemma tells us there is a unique element w ∈ S ⊂ C such that
ew = z. This allows us to unambiguously define the inverse/logarithm.
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Definition A.23. Given z ∈ C \ {0} and w ∈ S such that exp(w) = z. We define the Principal

branch of the logarithm Log(z) = w ∈ S. The Principal branch of the logarithm is the unique
function characterised by

exp(Log(z)) = z and Im(Log(z)) ∈ (−π, π] for all z 6= 0.

We first note that Log(x+ i0) = ln(x) the natural logarithm in R. So Log extends our definition of the
logarithm. Suppose z = reiϕ with ϕ ∈ (−π, π] and r > 0. We claim that Log

(
reiϕ

)
= ln(r) + iϕ ∈ S.

Because the Principal branch of the logarithm is unique, we just need to check that exp
(

Log(reiϕ)
)

=
reiϕ. Indeed,

exp
(

ln(r) + iϕ
)

= eln(r)+iϕ = eln(r)eiϕ = reiϕ.

Rephrasing the above argument, we have shown the following.

Theorem A.24. For any z ∈ C \ {0},

Log(z) = ln
(
|z|
)

+ iArg(z)

with ln the natural logarithm of a positive real number.

Examples A.25.

Log(−3i) = Log
(
3e−i

π
2
)

= ln(3)− iπ
2

Log(4i− 4) = Log
(√

32ei
3π
4
)

= ln(
√

32) + i
3π

4
= ln(25/2) + i

3π

4
=

5

2
ln(2) + i

3π

4

Exercise A.1. Show that for all z1, z2 ∈ C \ {0}, Log(z1z2) = Log(z1) + Log(z2) + 2πik for

some k ∈ Z.

We would like to use the logarithm to define complex powers, zw = exp(w log(z)), z, w ∈ C, but this
will take multiple values in general. Namely, for all k ∈ Z,

z = r exp
(
iθ + 2πik

)
= exp

(
ln(r) + i(θ + 2πk)

)
=⇒ zw = exp

(
w(ln(r) + i(θ + 2πk))

)
= exp

(
w(ln(r) + iθ)

)
exp

(
2πikw

)
.

Example A.26.

ii =
(

exp(i
π

2
+ 2πik)

)i
= exp

(
i(i
π

2
+ 2πik)

)
= exp

(
− π

2
− 2πk

)
=
{
e−

π
2 , e−

5π
2 , e

3π
2 , e−

9π
2 , e

7π
2 , . . .

}
.

It is perhaps surprising that ii takes infinitely many values and that all of the possible values are
real.

Let z = reiθ with θ ∈ (−π, π]. Let us look closer at the expression,

zw = exp
(
w(ln(r) + iθ)

)
exp

(
2πikw

)
= exp

(
w Log(z)

)
exp

(
2πikw

)
.

We see the following behaviour:
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(i) If w ∈ Z, then exp(2πikw) = exp(2πik′) = 1 and so zw is unique,

(ii) If w = m
n ∈ Q, then exp(2πikw) = exp

(
2πikm
n

)
, which will take finitely many values as we

change k ∈ Z. Hence zw has finitely many values,

(iii) If w /∈ Q, then exp(2πikw) has infinitely many values for k ∈ Z.
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