Last week

https://pixabay.com/ja/

- Living organisms (domains, kingdoms, definition?)
- Cellular foundation: Structure and function of the cell (2 types)
- Chemical foundation: Biomolecules and building blocks

TA Info: Jasmin (Yap Jia Xin) jasmineyjx@hotmail.com TEL: 080-8977-75-359 LAB: ITbM 3F

Typical Animal Cell

Figure 1-8

© 2013 John Wiley & Sons, Inc. All rights reserved. Photos: Smooth endoplasmic reticulum © Dennis Kunkel Microscopy, Inc./Phototake; Rough endoplasmic reticulum © Pietro M. Motta & Tomonori Naguro/Photo Researchers, Inc.; Nucleus © Tektoff-RM, CNRI/Photo Researchers; Mitochondrion © CNRI/Photo Researchers; Golgi apparatus © Secchi-Lecaque/Roussel-UCLAF/ CNRI/Photo Researchers; Lysosome © Biophoto Associates/Photo Researchers.

Physical Foundation: Thermodynamics

- Energy must be conserved, but it can take different forms.
- In most biochemical systems (under constant pressure), enthalpy is equivalent to heat (H).
- Entropy, a measure of a system's disorder, tends to increase (S).
- The free energy (G) change for a process is determined by the change in enthalpy (H) and the change in entropy (S).
- A spontaneous process occurs with a decrease in free energy.
- Organisms are nonequilibrium, open systems that constantly exchange matter and energy with their surroundings.
- Enzymes increase the rates of thermodynamically favorable reactions.

Thermodynamics: System + Surroundings = Universe

https://pixabay.com/ja/

the system + surroundings = universe $E_{system} + E_{surroundings} = E_{universe}$

Systems: Isolated, Closed and Open

E: energy M: matter

The three laws of thermodynamics 1. Energy is conserved

- Energy:
- SI unit: *Joule* (the work to move an object a distance of 1 m against a force of 1 newton)
- 1 newton is the force needed to **accelerate** 1 kg of mass at the rate of 1 m/sec² in the direction of the applied force.

The three laws of thermodynamics: 2. Entropy increases

https://wordsandwires.wordpress.com/2012/06/17/the-three-great-laws-of-songwriting-2/ 2019/06/03

The three laws of thermodynamics: 3. At T= 0 $^{\circ}$ K, S = C

Metabolism and Energy

- Living organisms exist in a dynamic steady state and are **never at** equilibrium with their surroundings.
- Energy coupling allows living organisms to transform matter into energy.
- Biological catalysts reduce energy requirement for reactions while offering specificity.
- As the entropy of the universe increases, creating and maintaining order requires **work and energy**.

Spontaneity Depends on Enthalpy (H) & Entropy (S)

Spontaneity Depends on Enthalpy (H) & Entropy (S)

TABLE 1-4 Variation of Reaction Spontaneity (Sign of ΔG) with the Signs of ΔH and ΔS

Δ H	Δs	$\Delta \boldsymbol{G} = \Delta \boldsymbol{H} - \boldsymbol{T} \Delta \boldsymbol{S}$
— Always hap spontaneo	+ pens ously	The reaction is both enthalpically favored (exothermic) and entropically favored. It is spontaneous (exergonic) at all temperatures.
-	Η	The reaction is enthalpically favored but entropically opposed. It is spontaneous only at temperatures <i>below</i> $T = \Delta H / \Delta S$.
+ Temp deper	+ ndent	The reaction is enthalpically opposed (endothermic) but entropically favored. It is spontaneous only at temperatures above $T = \Delta H / \Delta S$.
+ Never happ spontaneo	— pens usly	The reaction is both enthalpically and entropically opposed. It is nonspontaneous (endergonic) at all temperatures.

Measure Spontaneity of a Reaction

Gibbs free energy (G): Energy a system contains:

 $\mathbf{G} = \mathbf{H} - \mathbf{T}\mathbf{S}$

At constant temperature;

G1 = H1 - TS2 (before) G2 = H2 - TS2 (after)

$\Delta G = \Delta H - T \Delta S$

To happen spontaneously $\Delta G < 0$

Sample Calculation 1-1

The enthalpy and entropy of the initial and final states of a reacting system are shown in the table.

	H (J . mol⁻¹)	S (J . K⁻¹ . mol⁻¹)
Initial state (before reaction)	54,000	22
Final state (after reaction)	60,000	43

Q1: Calculate the change in enthalpy and change in entropy for the reaction.

Q2: Calculate the change in free energy for the reaction when the temperature is 4 °C. Is the reaction spontaneous?

Q3: Is the reaction spontaneous at 37 °C?

Equilibrium Constant

https://pixabay.com/ja/

Equilibrium constants and ΔG

a moles of A react with b moles of B to produce c moles of C and d moles of D

$$K_{eq} = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$$

[A]_{eq}: the concentration of A,
[B]_{eq}: the concentration of B,
[C]_{eq}: the concentration of C,
[D]_{eq}: the concentration of D,
When the system has reached equilibrium

Example 1-1

Are ATP and ADP at Equilibrium in Cells?

The equilibrium constant, K_{eq} , for the following reaction is 2×10^5 : ATP \longrightarrow ADP + P_i

> If the measured cellular concentrations are [ATP] = 5 mM [ADP] = 0.5 mM [Pi] = 5 mM, is this reaction at equilibrium in living cells?

Example 1-2

Is the Hexokinase reaction at Equilibrium in Cells?

The equilibrium constant, K_{eq} , for the following reaction is 7.8 × 10²: Glucose +ATP \rightarrow glucose-6-P + ADP

> In living *E. coli* cells, [ATP] = 5 mM [ADP] = 0.5 mM [glucose] = 2 mM [glucose 6-P] =1 mM is this reaction at equilibrium in *E. coli*?

Equilibrium and ΔG°

⊿G°:

- Standard free energy change
- Thermodynamic constant characteristic of each reaction

The relationship between ΔG° and K_{eq} When $K_{eq} \gg 1$ (=ln > 0), ΔG° is large and negative. When $K_{eq} \ll 1$ (=ln < 0), ΔG° is large and positive.

How to Speed Reactions Up

Higher temperatures

- stability of macromolecules is limiting

Higher concentration of reactants

- costly, as more valuable starting material is needed

Changing the reaction by coupling to a fast one

- universally used by living organisms

Lower activation barrier by catalysis – universally used by living organisms

Unfavorable and Favorable Reactions

- Synthesis of complex molecules and many other metabolic reactions requires energy (endergonic).
 - A reaction might be thermodynamically unfavorable ($\Delta G^{\circ} > 0$).
 - Creating order requires work and energy.
 - A metabolic reaction might have too high an energy barrier $(\Delta G^{\dagger} > 0)$.
 - Metabolite is kinetically stable.
- The breakdown of some metabolites releases a significant amount of energy (exergonic).
 - Such metabolites (ATP, NADH, NADPH) can be synthesized using the energy from sunlight and fuels.
 - Their cellular concentration is far higher than their equilibrium concentration.

Energy Coupling

- Chemical coupling of exergonic and endergonic reactions allows otherwise unfavorable reactions.
- The "high-energy" molecule (ATP) reacts directly with the metabolite that needs "activation."

Figure 1-27 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Chemical example

Reaction coordinate

Figure 1-28b Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Catalysis

- A catalyst is a compound that increases the rate of a chemical reaction.
- Catalysts lower the activation free energy ΔG^{\dagger} .
- Catalysts do not alter ΔG° .
- Enzymatic catalysis offers:
 - acceleration under mild conditions
 - high specificity
 - possibility for regulation

Enzymes Lower the Activation Energy to Increase the Reaction Rate

Reaction coordinate (A \rightarrow B)

Figure 1-29 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Series of Related Enzymatically Catalyzed Reactions Forms a Pathway

$$A \xrightarrow{\text{enzyme 1}} B \xrightarrow{\text{enzyme 2}} C \xrightarrow{\text{enzyme 3}} D \xrightarrow{\text{enzyme 4}} E \xrightarrow{\text{enzyme 5}} F$$

Metabolic pathway: produces energy or valuable materials Signal transduction pathway: transmits information

Pathways Are Controlled in Order to Regulate Levels of Metabolites

Example of a negative regulation: Product of enzyme 5 inhibits enzyme 1 to prevent wasteful excess products.

Summary

- Three laws of thermodynamics (1, 2)
- Why is this important?
- Is a living organism at equilibrium with surrounding?
- What is ΔG ?
- What is an equilibrium constant?
- What is ΔG° ?
- What is chemical coupling?
- Enzymes function as catalysts. How?