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Synopsis:
Graph theory is known to have vast applications in combinatorial prob-
lems. Turning viewpoints into its analytical aspect, we will be often
faced with manipulating linear operators. In this course, mainly work-
ing with finite graphs, the spectral analysis is performed for graphs
having smaller operator norms, through which we will get a good ex-
perience in mathematical classification problems.
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1. Spectral Properties of Hermitian Matrices

Given a square matrix A = (aij), let σ(A) be the set of eigenvalues
of A, which is referred to as the spectrum of A. There are several
characterizations of σ(A): (i) σ(A) = {λ ∈ C; det(λI − A) = 0}, (ii)
σ(A) = {λ ∈ C;λI − A is not invertible} and so on. The spectral
radius of A is then defined to be

r(A) = max{|λ|;λ ∈ σ(A)}.
The operator norm of A is, by definition,

∥A∥ = sup{∥Aξ∥; ξ ∈ Cn, ∥ξ∥ = 1}.

Here ∥ξ∥ =
√

(ξ|ξ) denotes the ordinary inner product norm of ξ. The
norm ∥A∥ is characterized as the largest constant satisfying

∥Aξ∥ ≤ ∥A∥ ∥ξ∥ for any ξ.

In other words,

∥A∥ = sup{∥Aξ∥/∥ξ∥; 0 ̸= ξ ∈ Cn}.

Example 1.1. Let A = (δijdj) be a diagonal matrix. Then

∥A∥ = max{|dj|; j ≥ 1}.

Problem 1. Show that

∥A∥ = sup{∥Aξ∥; ξ ∈ Cn, ∥ξ∥ ≤ 1} = sup{|(ξ|Aη)|; ∥ξ∥ ≤ 1, ∥η∥ ≤ 1}.

Problem 2. Compute the norm for diagonal matrices.

Proposition 1.2. We have the inequality r(A) ≤ ∥A∥, i.e.,
σ(A) ⊂ {λ ∈ C; |λ| ≤ ∥A∥}.

Proof. Let λ ∈ σ(A) with ξ an eigenvector. Then

|λ|∥ξ∥ = ∥Aξ∥ ≤ ∥A∥ ∥ξ∥
implies that |λ| ≤ ∥A∥. □
Remark . Here is a formula which refines the above estimate. (A proof
can be found in any standard text on functional analysis.)

r(A) = lim
n→∞

∥An∥1/n.

If we define the hermitian conjugate A∗ of a square matrix A =
(ajk) by (A∗)jk = akj, it is characterized by the relation

(A∗ξ|η) = (ξ|Aη) for ξ, η ∈ Cn.

Proposition 1.3. For any square matrix A, we have

∥A∗∥ = ∥A∥, ∥A∥2 = ∥A∗A∥.

Problem 3. Check these norm identities.
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A matrix A is hermitian if A∗ = A. A matrix U is unitary if
UU∗ = U∗U = I, where I = (δj,k) denotes the unit matrix. (I stands
for identity.)

A matrix A is said to be normal if AA∗ = A∗A. Normal matrices
constitute a class which includes hermitian and unitary ones.
Proposition 1.4.

(i) For a hermitian matrix A, σ(A) ⊂ R.
(ii) For a unitary matrix U , σ(U) ⊂ {z ∈ C; |z| = 1}.

Problem 4. Determine the spectrum of a matrix A which is hermitian
and unitary at the same time.

Proposition 1.5. Let A be a normal matrix.

(i) If Aξ = λξ with ξ ∈ Cn and λ ∈ C, then A∗ξ = λξ.
(ii) If Aξ = λξ and Aη = µη with λ ̸= µ, then (ξ|η) = 0.

Proof. (i) This follows from

(A∗ξ − λξ|A∗ξ − λξ) = (Aξ − λξ|Aξ − λξ) = 0.

(ii) is a consequence of

λ(ξ|η) = (A∗ξ|η) = (ξ|Aη) = µ(ξ|η).
□

Theorem 1.6. Let {λ1, . . . , λn} be the eigenvalue list (including mul-
tiplicity) of a normal matrix A = (aij). Then we can find a unitary
matrix U satisfying

A = U∗

λ1 0 0

0
. . . 0

0 0 λn

U.

Proof. Let ξ1 be a normalized eigenvector of A of eigenvalue λ1. By
Gram-Schmidt’s orthogonalization, we can find an orthonormal basis
(ξ1, . . . , ξn) so that

(Aξ1, . . . , Aξn) = (ξ1, . . . , ξn)

(
λ1 ∗
0 B

)
with B a square matrix of size n − 1. By repeating the same proce-
dure to B, we arrive at a unitary matrix U such that UAU∗ is upper
triangular. Since an upper triangular matrix is normal if and only if it
is diagonal, we are done. □
Corollary 1.7. For a normal matrix A, we have ∥A∥ = r(A).

Problem 5. Investigate what we can say for the converse implication.

Problem 6. Check that an upper triangular matrix is normal if and
only if it is diagonal.
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Let A be a hermitian matrix and set

λmax = max{λ;λ ∈ σ(A)},
λmin = min{λ;λ ∈ σ(A)}.

Proposition 1.8. We have the following expressions.

λmax = max{(ξ|Aξ); ∥ξ∥ = 1},
λmin = min{(ξ|Aξ); ∥ξ∥ = 1}.

Proof.

λmin(|ξ1|2+· · ·+|ξn|2) ≤ λ1|ξ1|2+· · ·+λn|ξn|2 ≤ λmax(|ξ1|2+· · ·+|ξn|2).
□

Proposition 1.9 (Variational Principle). Let A be a hermitian matrix.
If a unit vector ξ attains the maximal value λmax of the function (ξ|Aξ),
then Aξ = λmaxξ.

Proof. Use the quadratic inequality

(ξ + tη|(λmaxI − A)(ξ + tη)) ≥ 0

for any t ∈ R, together with the assumption (ξ|(λmaxI −A)ξ) = 0. □
Problem 7. Compute λmax and λmin for the real symmetric matrix

A =

(
a b
b c

)
.

For a future reference, we recall permutation matrices here. Given a
permutation σ ∈ Sn of degree n, the associated permutation matrix
Pσ is defined by

(Pσ)ij = δi,σ(j) = δσ−1(i),j.

The permutation matrix is orthogonal and satisfies PσPτ = Pστ for
σ, τ ∈ Sn.

Problem 8. Check the multiplicativity property of permutation matri-
ces.

Problem 9. Compute the spectrum of permutation matrices.

2. Graphs and Adjacency Matrices

The Euler’s solution to the seven bridges problem of Königsberg is
known to be the birth of the notion of graph: A connected unoriented
graph allows an Euler trail if and only if the number of vertices of
odd degree is less than three (the number of odd-degree vertices being
always even for unoriented graphs).

A graph is a quadruplet (Γ, X, s, t), where Γ andX are sets with s, t :
Γ → X maps. We call Γ the set of edges, X the set of vertices, whereas
s and t are referred to as the source and target maps respectively.
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A graph is simply represented by the edge set when there arise no
confusions.

Given vertices x, y ∈ X, set

xΓ = {γ ∈ Γ; t(γ) = x}, Γy = {γ ∈ Γ; s(γ) = y},
xΓy = {γ ∈ Γ; s(γ) = y, t(γ) = x}.

A graph is weakly finite if xΓy is a finite set for any ordered pair
of elements (x, y) in X, locally finite if both of xΓ and Γx are finite
sets for any x ∈ X, and finite if both of Γ and X are finite sets.
Given a weakly finite graph Γ, its adjacency matrix is defined to be
{|xΓy|}x,y∈X .
Two graphs Γ, Γ′ are said to be isomorphic if we can find bijections

ϕ : Γ → Γ′ and ϕ(0) : X → X ′ satisfying

t(ϕ(γ)) = ϕ(0)(t(γ)), s(ϕ(γ)) = ϕ(0)(s(γ))

for any γ ∈ Γ.
A graph Γ is a subgraph of a graph Γ′ if Γ ⊂ Γ′, X ⊂ X ′, s = s′|Γ

and t = t′|Γ. By abuse of terminology, a graph isomorphic to a subgraph
is also referred to as a subgraph.

Example 2.1. Cyclic permutations and circle graphs.

By an involution of a graph Γ, we shall mean a bijection Γ ∋ γ 7→
γ−1 ∈ Γ such that t(γ−1) = s(γ) and (γ−1)−1 = γ. An unoriented
graph is, by definition, a graph Γ which is furnished with an involution
satisfying γ−1 = γ for γ ∈ Γ satisfying s(γ) = t(γ).
Two square matrices are said to be equivalent if we can find a

permutation matrix P such that PAP−1 = B.

Proposition 2.2. There is a one-to-one correspondance between isop-
morphism classes of finite graphs and equivalence classes of N-valued
square matrices.

There is a one-to-one correspodance between isomorphism classes of
finite unoriented graphs and equivalence classes of N-valued symmetric
matrices.

Let G be a (at most) countable group with 1 ̸∈ S a set of generators.
Then the associated Cayley graph Γ(G,S) is defined by X = G and
Γ = {(g, ga); g ∈ G, a ∈ S} with t(g, ga) = g and s(g, ga) = ga.

If the generator set S further satisfies S−1 = S, i.e., a ∈ S if and only
if a−1 ∈ S, then Γ(G,S) is unoriented with respect to the involution
(g, ga)−1 = (ga, g).

For the cyclic group Cn with a a generator, Γ(Cn, {a}) is an oriented
n-gon and Γ(Cn, {a, a−1}) an n-gon.

Problem 10. Depict the oriented graph Γ(Z, {1}) and the unoriented
graph Γ(Z, {±1}).
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Problem 11. Depict the graph Γ(F2, {a±1, b±1}). Here F2 denotes the
free group generated by a two-element set {a, b}
Given a finite graph Γ with A the incidence matrix, we define a linear

operator A : ℓ2(X) → ℓ2(X) by

Aδx =
∑
y∈X

Ay,xδy.

By the norm ∥Γ∥ of Γ, we shall mean the one for the linear operator
A and the spectrum σ(Γ) of Γ is, by definition, the spectrum of A.
Here is a visual interpretation of eigenvector equations such as Aξ =

λξ: Look at a vertex x of the graph. Then

λξ(x) =
∑
y

Ax,yξ(y)

with Ax,y the number of edges from y to x.
Example 2.3.

(i) The spectrum of cyclic permutations (oriented circle graphs).

σ(Γ) = {e2πik/n; 0 ≤ k ≤ n− 1}.
(ii) The spectrum of unoriented circle graphs.

σ(Γ) = {2 cos(2πk/n); 0 ≤ k ≤ n− 1}.
(iii) The spectrum and the norm of oriented lines (Jordan blocks).
(iv) The spectrum of unoriented lines.

σ(Γ) = {2 cos(πk/(n+ 1)); 1 ≤ k ≤ n}.
Problem 12. Check the case (i) and (iii).

Problem 13. Compute the spectrum of the complete graph Kn of n
vertices.

For the spectral analysis of Γ(F2, {a±1, b±1}), we need some machin-
ery of free probability theory.

A path in a graph is a finite sequence γ = {γ1, γ2, . . . , γn} of edges
satisfying

s(γj) = t(γj+1) for 1 ≤ j ≤ n− 1.

The number n is called the length of the path. We set s(γ) = s(γn)
and t(γ) = t(γ1).
A graph is connected if, given two vertices x, y, we can find a path

γ such that x = t(γ) and y = s(γ).

Remark . Notice that a graph consisting of one vertex is connected if
and only if the edge set is non-empty.

Problem 14. Compute the spectrum and the norm for connected un-
oriented graphs of radial shape.

In what follows, we shall exclusively deal with unoriented graphs and
the adjective ‘unoriented’ will be omitted unless otherwise stated.



7

3. Perron-Frobenius Theorems

We shall describe basic results in Perron-Frobenius theory. To make
the access easier, we restrict ourselves to the case of symmetric matri-
ces.

A symmetric matrix A = (aij) is said to be non-negative if aij =
aji ≥ 0 for all i, j. A non-negative symmetric matrix A is said to be
reducible if we can find a permutation matrix P such that

PAP−1 =

(
∗ 0
0 ∗

)
in a non-trivial manner, i.e., there is a finite non-empty proper subset
X of Γ(0) such that (PAP−1)xy = (PAP−1)yx = 0 for x ∈ X and
y ̸∈ X. Otherwise, we call it an irreducible matrix.

Proposition 3.1. The following conditions for a symmetric matrix A
of non-negative entries are equivalent.

(i) The matrix A is irreducible.
(ii) For any 1 ≤ i, j ≤ n, we can find an integer k ≥ 1 such that

(Ak)ij > 0.
(iii) Let Γ be the graph associated to the symmetric matrix whose

(i, j)-th component is set to be either 1 or 0 according to Aij >
0 or aij = 0. Then Γ is connected.

Problem 15. Check the reducibility of the matrix
1 0 0 0 1 0
0 1 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
1 0 1 0 0 1
0 0 0 0 1 0

 .

Problem 16. Interpret the condition (Ak)ij > 0 graphically.

Definition 3.2. For a matrix A of non-negative entries, an eigenvector
of eigenvalue r(A) (the spectral radius of A) with non-negative com-
ponents is called a Perron eigenvector. Note that r(A) = ∥A∥ for a
symmetric A.

Theorem 3.3. Any symmetric matrix A of non-negative entries ad-
mits a Perron eigenvector: we can find a vector η ̸= 0 satisfying ηj ≥ 0
and Aη = ∥A∥η.
Proof. Since A is hermitian, we can find a unit eigenvector ξ of eigen-
value λ such that |λ| = ∥A∥. Let the unit vector η = (ηj) be defined
by ηj = |ξj|. Then

∥A∥ = |λ| = |(ξ|Aξ)| ≤ (η|Aη) ≤ λmax ≤ ∥A∥
implies λmax = ∥A∥ and λmax = (η|Aη). By the variational principle,
η is a Perron eigenvector of A. □
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Theorem 3.4. Let A be an irreducible symmetric matrix of non-negative
entries.

(i) Perron eigenvector is unique up to scalar multiplication and all
of its components are strictly positive.

(ii) Any eigenvector of maximal modulus eigenvalue is proportional
to a Perron eigenvector.

(iii) Any eigenvector of A with non-negative components is a Perron
eigenvector.

Proof. (i) Let η = (η1, . . . , ηn) be a Perron eigenvector and assume
that ηi > 0 for some i. Since A is irreducible, we can find N such that
(AN)ji > 0 for any j and then

∥A∥Nηj = (ANη)j =
∑
k

(AN)jkηk ≥ (AN)jiηi > 0.

(ii) If there exists an eigenvector which is not proportional to a given
Perron eigenvector, we can find a eigenvector ξ admitting a zero com-
ponent. Then, by the proof of the previous theorem, |ξ| is a Perron
eigenvector, which contradicts with the strict positivity of components
of Perron eigenvectors.

(iii) Let ξ be an eigenvector of A with non-negative components. If
its eigenvalue is different from ∥A∥, then it is orthogonal to a Perron
eigenvector. Again, by the strict positivity of Perron eigenvector, this
is impossible. □
Problem 17. Compute the Perron eigenvector of the matrix(

ea eb

eb e−a

)
for a, b ∈ R.

Problem 18. Investigate the validity of uniquness in the case of re-
ducible matrices.

The following simple observation is a key in the classification of con-
nected graphs of smaller norm.

Lemma 3.5. Let A and B be symmetric matrices of non-negative en-
tries such that aij ≤ bij for any i, j. Then ∥A∥ ≤ ∥B∥.

Furthermore, if A is irreducible and A ̸= B, the strict inequality
∥A∥ < ∥B∥ holds.

Proof. Let ξ be a normalized Perron eigenvector of A. Then we have

∥A∥ = ∥A∥(ξ|ξ) = (ξ|Aξ) ≤ (ξ|Bξ) ≤ ∥B∥∥ξ∥2 = ∥B∥.
If we assume ∥A∥ = ∥B∥ in addition, then (ξ|Bξ) = ∥B∥ and the
variational principle implies that ξ is a Perron eigenvector of B as well.

Now, from the irreducibility assumption of B, ξj > 0 for any j, which
together with the relation (B − A)ξ = ∥B∥ξ − ∥A∥ξ = 0 shows that
B − A admits no positive entries, i.e., B − A = 0. □
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Corollary 3.6. Let Γ′ be a finite graph and Γ be a connected proper
subgrapah of Γ′. Then ∥Γ∥ < ∥Γ′∥.

Remark . Perron-Frobenius theorems are originally formulated for non-
symmetric matrices, which correspond to adjacency matrices of ori-
ented graphs. The norm-increasing principle then turns out to be
applicable to oriented graphs as well. As another application, we re-
mark here the asymptotic analysis of stochastic matrices and the google
pagerank in evaluating websites.

4. Graphs of type A and D

The graph Al (l ≥ 2) is a linear graph of l vertices. Number the
vertices from one terminal sequencially and let (c1, c2, . . . , cl) be an
eigenvector of eigenvalue λ. Then the eigenequation is of the form

λc1 = c2,

λcj = cj−1 + cj+1 for 2 ≤ j ≤ l − 1,

λcl = cl−1.

If we introduce monic polynomials {Pn(λ)}n≥0 by

λPn(λ) = Pn−1(λ) + Pn+1(λ), P0(λ) = 1, P1(λ) = λ,

then the eigenequation is reduced to the signle equation cl+1 = c1Pl(λ) =
0, i.e., det(λI − Al) = Pl(λ) = 0.

P2 = λ2 − 1, P3 = λ3 − 2λ, P4 = λ4 − 3λ2 + 1, P5 = λ5 − 4λ3 + 3λ.

Returning to the original eigenequation, the generic part of the recur-
sive relation is solved in terms of the characteristic roots q, q−1 of the
quadratic equation t2 +1 = λt satisfying λ = q+ q−1: ck = αqk + βq−k

(1 ≤ k ≤ l).
If we take the initial condition (q+q−1)c1 = c2 into account, α+β = 0

and we can set

ck =
qk − q−k

q − q−1
≡ [k]q

up to multiplicative constants. Here [k]q is a Laurent polynomial of q
and can be evaluated at q = ±1: [k]±1 = ±k.

Finally, the terminal matching (q + q−1)cl = cl−1 is satisfied if and
only if [l + 1]q = 0. By the exchange symmetry between q and q−1,
we may take q = eπki/(l+1) (1 ≤ k ≤ l) with the associated eigenvalues
given by q + q−1 = 2 cos(kπ/(l + 1)) (1 ≤ k ≤ l), i.e.,

Pl(λ) =
l∏

k=1

(
λ− 2 cos

kπ

l + 1

)
.

The Perron eigenvector is obtained for the choice q = eπi/(l+1) with

∥Al∥ = q + q−1 = 2 cos

(
π

l + 1

)
, ck =

sin(kπ/(l + 1))

sin(π/(l + 1))
.
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clcl−1c2c1 c3

Remark .

(i) The expression [n]q is referred to as q-integer, which is known to
be a source of many interesting identities (so-called q-analogues).
Here q is taken to be a kind of deformation parameter with the
ordinary integal relations recovered by taking the limit q → 1.

(ii) The polynomial Pn(λ) is also referred to as the Chebyshev
polynomial of second kind:

Pn(q + q−1) =
qn+1 − q−n−1

q − q−1
with q = eiθ.

Consider the graph Dl (l ≥ 4), which is a graph with one edge and
one vertex added to the graphAl−1 in a minimal way. Let (a, b, c[n]q, c[n−
1]q, . . . , c[2]q, c[1]q) be an eigenvector of eigenvalue q + q−1 (l = n+ 2).
The choice of components automatically solves the most of eigenequa-
tion with the remaining part given by

(q + q−1)a = (q + q−1)b = c[n]q, (q + q−1)c[n]q = a+ b+ c[n− 1]q,

which is solved by the equation

q2l−2 + 1 = 0

when q + q−1 ̸= 0.
After explicit computations, we find that it is reasonable to split into

two cases:
(i) The case of odd l: As solutions, we may take

q =kπi/(2l−2), k = 1, 3, 5, . . . , 2l − 3.

Since l is supposed to be odd, [2]q = q + q−1 ̸= 0 for any of these and
the eqigenequation is solved by

a = b =
[n]

[2]
c.

If q + q−1 = 0,

[n] =
q−l+1

q − q−1

(
(−1)l−2 − 1

)
̸= 0

is used to get

c = 0, a+ b = 0.

Consequently, we see

σ(Dl) = {0} ∪ {2 cos kπ

2l − 2
; k = 1, 3, . . . , 2l − 3}

with all eigenvalues having multiplicity one.
(ii) The case of even l:
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The solution

q =kπi/(2l−2), k = 1, 3, 5, . . . , 2l − 3.

of q2l−2 + 1 = 0 satisfies q + q−1 = 0 exactly when k = l − 1, whence
each eigenvector is specified by

a = b =
[n]

[2]
c

for k ̸= l − 1.
If q+q−1 = 0, [n] = 0 but [n−1] = (−1)l/2 shows that the eigenspace

is specified by
a+ b+ (−1)l/2c = 0,

i.e., zero is an eigenvalue of multiplicity 2. Thus

σ(Dl) = {2 cos kπ

2l − 2
; k = 1, 3, . . . , 2l − 3},

which contains 0.
In either case, we have

det(λI −Dl) = λ

l−1∏
k=1

(
λ− 2 cos

(
2k − 1

2l − 2
π

))
.

The Perron eigenvector is obtained if we choose q = eπi/2(l−1), which
particularly implies

∥Dl∥ = 2 cos

(
π

2l − 2

)
,

[1] [2] [3] b

b

[l − 2]

with b = [l − 2]/[2].

As a final series of graphs, consider a graph Tl, which is the graph
obtained from Al by adding one loop-edge at a terminal vertex. Let
([1]q, [2]q, . . . , [l]q) be a Perron eigenvector. Then the matching condi-
tion arises at the loop-vertex:

(q + q−1)[l]q = [l]q + [l − 1]q.

In terms of the expression

[n]q = qn−1 + qn−3 + · · ·+ q−n+3 + q−n+1,

we see that the above condition is equivalent to

0 = ql − ql−1 + ql−2 + · · ·+ q−l = q−l 1− (−q)2l+1

1− (−q)
,

which has the solution (up to taking inverse in q)

1

2l + 1
π,

3

2l + 1
π, . . . ,

2l − 3

2l + 1
π,

2l − 1

2l + 1
π,
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i.e.,

det(λI − Tl) =
l∏

k=1

(
λ− 2 cos

(
2k − 1

2l + 1
π

))
.

As a result, we know that q = eπi/(2l+1) for the choice of Perron eigen-
vector and the graph norm is computed by

∥Tl∥ = 2 cos

(
π

2l + 1

)
.

[1] [2] [3] [l]

Problem 19. Investigate the Perron eigenvalue of the following graph
Ln. Show that limn→∞ ∥Ln∥ = 5

2
.

[1] [2] [n] [n] [2] [1]

5. Graphs of Norm 2

We shall describe most of the graphs of norm 2. By adding one edge
and one vertex to the graph of type A or D, there are series of graphs
of norm 2.

Example 5.1. Let Ãl (l ≥ 2) be the loop graph of l + 1 vertices.
It is immediate to see that the Perron eigenvector is (1, 1, . . . , 1) with

an eigenvalue of 2.

1

1

1

1

1

1

Problem 20. Compute the eigenpolynomial det(λI − Ãl); use the rela-

tion Ãl = C + C∗ with C a cyclic permutation.

Example 5.2. Let D̃l (l ≥ 4) be the I-shaped graph of l + 1 vertices.
Then the Perron eigenvector is (1, 1, 1, 1, 2, 2, . . . , 2) with an eigenvalue
of 2.

1

11

1
2 2 2 2
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By adding of one or two loop-edges to the graph of type A or D, we
obtain the following.

Example 5.3. The extended tadpole graph T̃l (l ≥ 2) of l+1 vertices.

1

1

2222

Example 5.4. The double tadpole graph T̂l (l ≥ 1) of l vertices.

1111

Problem 21. Compute the Perron eigenvalue of the graph obtained by

adding one free edge to each vertex of Ãl.

If we allow infinite graphs, there are three more graphs of norm 2,
which are limits of graphs of type A, D and T.

An infinite matrix A = (aij) is defined to be locally finite if

{i; ai,j ̸= 0} and {i; aj,i ̸= 0}
are finite sets for any j. A vector of infinitely many components ξ =
{ξj} is said to be essentially finite if we can find a finite subset F such
that ξj = 0 unless j ∈ F .
An essentially finite vector is multiplied by a locally finite matrix,

which is denoted by Aξ.
A graph is locally finite if and only if the associated matrix is locally

finite. The norm of a locally finite graph is defined exactly as in the
case of finite graphs.

Lemma 5.5. For a locally finite matrix A, its norm is a limit of those
for finite submatrices. More precisely, given a finite subset F of indices,
let AF be the finite matrix with index set restricted to F . Then we have

∥A∥ = lim
F→Γ(0)

∥AF∥.

Corollary 5.6. For locally finite graphs, Γ ⊂ Γ′ implies ∥Γ∥ ≤ ∥Γ′∥.

Theorem 5.7. Any connected locally finite infinite graph Γ contains
the graph A∞ as a subgraph and hence ∥Γ∥ ≥ 2. The equality holds if

and only if Γ is one of A∞ (unilateral line), Ã∞ (bilateral line), D∞
or T∞.

Some discussions are in order for the first asserion. This can be seen
as follows: Start with any point of the graph and try to delete edges so
that it is maximal under the condition of connectedness. If such a cut is
applied, we move to any point joined to the point just investigated and
repeat the procedure. The inductive process like this spreads out to
the whole points because of local finiteness assumption. After the total
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cutting, there remains a connected subgraph which loses connectivity
if once any edge is removed, i.e., it is a tree subgraph T . Now start
again with any point in T and choose an edge connected to that point
so that the connected part T ′ beyond that edge is infinite. Repeat the
argument to the tree T ′ and the endpoint of the edge.
For the proof of ‘only if’ part, we need the result for T-shaped graphs,

which will be checked in the next section.
1 2 3

1

1

2 2 2

1 1 1

Problem 22. Show that a connected locally finite infinite graph con-
tains A∞ as a subgraph. Hint: By local finiteness the graph contains
infinitely many vertices. Let xj be an infinite sequence of vertices.
Choose a path for each pair (xj, xj+1) of vertices. Concatenate them
and remove redundant edges and vertices.

6. Graphs of type E

Let Tk,l,m with 1 ≤ k ≤ l ≤ m be the T-shaped graphs with lines
of length k, l and m respectively (Tk,l,m has k + l + m edges). Since
T1,1,n = Dn+3, we focus on the other case.

q edges r edges

p edges

Problem 23. Check the fact that Tk,l,m ⊂ Tk′,l′,m′ if and only if k ≤ k′,
l ≤ l′ and m ≤ m′.

We first seek for the graph of norm 2 among T1,2,n−1’s. Let (a, b1, b2, cj)
be a Perron vector. As in the case of type A and D, we can set cj = j
(1 ≤ j ≤ n) for the longer line part. The eigenequation then takes the
form

2a = n, 2b1 = b2, 2b2 = b1 + n, 2n = a+ b2 + n− 1,

which has the solution

n = 6, a = 3, b1 = 2, b2 = 4.
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Next we see for the graph of norm 2 among T1,3,n−1. For the Perron
eigenvector (a, b, 2b, 3b, cj = j), we have the equation

2a = n, 6b = 2b+ n, 2n = a+ 3b+ n− 1

with the solution

n = 4, a = 2, b = 1.

Similarly, the Perron eigenvector (a, 2a, b, 2b, cj = j) for T2,2,n−1 ad-
mits an eigenvalue 2 if and only if

n = 3, a = b = 1.

It is conventional to denote these graphs by Ẽ6 = T2,2,2, Ẽ7 = T1,3,3

and Ẽ8 = T1,2,5.

1 2 3 2 1

2

1

1234321

2

12345642

3

Theorem 6.1. The graph Tk,l,m has a norm ≤ 2 if and only if (k, l,m)
is in the following list.

(i)

(k, l,m) = (1, 2, 5), (1, 3, 3), (2, 2, 2).

(ii)

(k, l,m) = (1, 1,m ≥ 1), (1, 2, 2), (1, 2, 3), (1, 2, 4).

Write E6 = T1,2,2, E7 = T1,2,3, E8 = T1,2,4.

Proof. The list in (i) has a norm of 2 as observed already and hence
Tk,l,m with (k, l,m) > (2, 2, 2) or (k, l,m) > (1, 3, 3) or (k, l,m) >
(1, 2, 5) (in the inclusion ordering) has a norm > 2. The remaining is
in the list (ii). The graph El (l = 6, 7, 8) has a norm smaller than 2 as

a subgraph of Ẽl. The graph Dl has a norm of 2 cos(π/(2l − 2)). □

Consider T1,2,n−1 and let (a, b1, b2, cj) be a Perron eigenvector with
cj = (qj − q−j)/(q− q−1) for 1 ≤ j ≤ n and an eigenvalue q+ q−1. This
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choice solves the eigenequation for the longest line. The remaining
equations are

(q + q−1)a′ = qn − q−n,

(q + q−1)b′1 = b′2,

(q + q−1)b′2 = b′1 + qn − q−n,

(q + q−1)(qn − q−n) = a′ + b′2 + qn−1 − q−n+1

with a′ = (q − q−1)a and b′j = (q − q−1)bj. Under the condition that

(q − q−1)(q + q−1)(q2 + 1 + q−2) ̸= 0, these are equivalent to requiring

(q5 − q−5)(qn − q−n) = (q + q−1)(q3 − q−3)(qn−1 − q−n+1)

together with

a′ =
qn − q−n

q + q−1
, b′1 =

qn − q−n

q2 + q−2 + 1
, b′2 = (q + q−1)b1.

We shall write down explicitly for n = 3, 4, 5 (note q − q−1 ̸= 0).
n = 3:

q8 − q4 + 1 =
q12 + 1

q4 + 1
= 0.

n = 4:

q12 − q6 + 1 =
q18 + 1

q6 + 1
= 0.

n = 5:
q16 + q14 − q10 − q8 − q6 + q2 + 1 = 0.

For n = 3 or n = 4, we see that the choice q = eiπ/12 or q = eiπ/18

gives positive components of Perron eigenvector, which particularly
shows ∥E6∥ = 2 cos(π/12) and ∥E7∥ = 2 cos(π/18).

For the case n = 5, we may expect a similar conclusion: the last
equation is a cyclotomic polynomial of q2. Since

ϕ(2a3b5c7d · · · ) = ϕ(2a)ϕ(3b)ϕ(5c)ϕ(7d) · · · = 2a−1·23b−1·45c−1·67d−1 · · · ,
the cyclotomic polynomial of degree 8 is for 24 = 16, 233 = 24 or
2 · 3 · 5 = 30. By an explicit computation based on the exclusion-
inclusion principle,

Φ16(t) =
t16 − 1

t8 − 1
= t8 + 1,

Φ24(t) =
(t24 − 1)(t4 − 1)

(t12 − 1)(t8 − 1)
= t8 − t4 + 1,

Φ30(t) =
(t30 − 1)(t5 − 1)(t3 − 1)(t2 − 1)

(t15 − 1)(t10 − 1)(t6 − 1)(t− 1)
= t8 + t7 − t5 − t4 − t3 + t+ 1.

Comparing this with the equation for q, we conclude that q2 is a 30-th
primitive root of unity. In fact, for the choice q = eiπ/30, all the compo-
nents of the relevant eigenvector is positive. Thus ∥E8∥ = 2 cos(π/30).
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Problem 24.

(i) For integers m, n satisfying 1 ≤ m ≤ n, show the identity

[m][n] = [n+m− 1] + [n+m− 3] + · · ·+ [n−m+ 3] + [n−m+ 1].

(ii) Derive the identity

[5][n]− [2][3][n− 1] = [n+ 4]− [n]− [n− 2]

and relate this with with the eqigenequation for T1,2,n−1.

Problem 25. Investigate the Perron eigenvalue of the graph Tn,n,n and
show that

lim
n→∞

∥Tn,n,n∥ =
3√
2
.

Problem 26. Show that ∥Tk,l,m∥ < 3√
2
.

7. Classification of Connected Graphs of Smaller Norm

Theorem 7.1. Finite connected graphs of norm 2 are exactly one of
the followings.

(i) Ãl (l ≥ 1).

(ii) D̃l (l ≥ 3).

(iii) T̃l (l ≥ 2).

(iv) T̂l (l ≥ 1).

(v) Ẽl (l = 6, 7, 8).

Theorem 7.2. Any connected graph of norm smaller than 2 is con-
tained in a connected graph of norm 2 and isomorphic to one of the
following graphs.

(i) Al (l ≥ 2).
(ii) Dl (l ≥ 3).
(iii) Tl (l ≥ 1).
(iv) El (l = 6, 7, 8).

Let ∥Γ∥ ≤ 2. Since ∥T̂l∥ = 2 for l ≥ 1, if Γ contains two or more

loop edges, it must be T̂l. Since ∥T̃l∥ = 2 for 2 ≥ 1, if Γ contains a

triple vertex and a loop edge together, it should be T̃l.

So assume now that Γ contains no loop edges. Since ∥Ãl∥ = 2, Γ

should not contain a proper closed circuit; Γ is Ãl or a tree. Since
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∥D̃4∥ = 2, Γ does not contain a quadruple vertice properly; Γ = D̃4 or
Γ contains no quadruple vertices.

Since ∥D̃l∥ = 2 for l ≥ 5, Γ = D̃l if Γ contains two or more triple
points and Γ = Tk,l,m if Γ contains one triple vertex. If there is no
triple vertex, Γ = Al has norm less than 2.

From ∥T2,2,2∥ = 2, we see ∥T2,l,m∥ > 2 for (2, l,m) > (2, 2, 2) and are
reduced to the case T1,l,m. Again ∥T1,3,3∥ = 2 shows that ∥T1,l,m∥ > 2
for (1, k,m) > (1, 3, 3).

Since ∥T1,2,5∥ = 2, we see ∥T1,2,m∥ > 2 for m ≥ 6.
Finally ∥T1,1,m∥ = 2 cos(π/2(m+ 2)) < 2 for m ≥ 1.

Problem 27. Investigate the norm of T1,n,n and show that limn→∞ ∥T1,n,n∥ =√
2 +

√
5. Note that

√
2 +

√
5 = ϕ1/2 + ϕ−1/2 with ϕ = (1 +

√
5)/2

(the Golden ratio).

Problem 28. Let Cn be the graph obtained from Ãn by adding one more
edge and vertex. Show that ∥Cn∥ > ∥Cn+1∥ for n ≥ 1 (decreasing!)

and limn→∞ ∥Cn∥ =
√
2 +

√
5.

Problem 29 (Challenging). Try to extend the classification results to
oriented graphs.

8. Fusion Rule Algebras

Definition 8.1. A *-algebra C[S] =
∑

s∈S Cs with a distinguished
countable basis S containing the unit element 1 is called an fusion
rule algebra (or simply fusion algebra) if the following two conditions
are satisfied.

(i) (Positivity) For x, y, z ∈ S, the coefficient Nxyz of 1 in xyz
(i.e., xyz = Nxyz1 + . . . ) is a non-negative integer.

(ii) (Duality) The ∗-operation makes S invariant globally (i.e., x ∈
S implies x∗ ∈ S) and satisfies Nx∗y = δx,y.

Lemma 8.2. Let C[S] be a fusion algebra.

(i) If N is extended to C[S] by N(
∑

s∈S c(s)s) = c(1), then it is a

tracial state in the sense that N(ab) = N(ba), N(a∗) = N(a)
for a, b ∈ CS and N(1) = 1. Moreover, we have

N(c∗c) =
∑
s∈S

|c(s)|2.

(ii) For x, y ∈ S,

xy =
∑
s∈S

Nxys∗s.

(iii) For x, y, z ∈ S, we have

Nxyz = Nyzx, Nxyz = Nz∗y∗x∗ .

In view of the second statement, we occasionally use the notation N z
xy

of structure constants for Nxyz∗ = Nz∗xy.
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Proof. (i) N(ab) = N(ba) as well as the formula for N(c∗c) is a con-

sequence of the duality Nx∗y = δx,y and the relation N(a∗) = N(a)
follows from N(x) = δx,1 for x ∈ S.

(ii) If xy =
∑

s c(s)s with c(s) ∈ C, then the application of the tracial
state N to xyz∗ yields

Nxyz∗ =
∑
s∈S

c(s)Nsz∗ =
∑
s∈S

c(s)δz,s = c(z).

(iii) is immediate from the trace property of N . □
Definition 8.3. Consider a *-algebra C[S] with a distinguished linear
basis S containing the unit element 1 such that (i) the structure con-
stants are non-negative reals, (ii) the set S is globally invariant under
the *-operation and (iii) the coefficient of 1 in the expansion of s∗s
is strictly positive for any s ∈ S. From the previous lemma, fusion
algebras fall into this class.

Definition 8.4. A multiplicative linear functional d on a *-algebra
C[S] in the above definition is called a dimension function if d(s) > 0
and d(s∗) = d(s) for any s ∈ S.

Proposition 8.5 (Sunder). Dimension function exists and is unique
for a finite-dimensional *-algebra C[S].

Proof. Let C =
∑

s∈S s ∈ C[S] and consider the linear operator on C[S]
defined by the right multiplication of C. Then it is irreducible as a
positive matrix (operator) by the property s ∗ s = c1 + . . . with c > 0.
Let ξ =

∑
x∈S ξ(x)x be its Perron-Frobenius eigenvector: ξ(x) > 0 for

x ∈ S and ξC is a positive multiple of ξ.
Since sξ ∈ C[S] is again an eigenvector with non-negative coeffi-

cients, the uniqueness of Perron-Frobenius vector implies that sξ is
proportional to ξ: let d(s) > 0 be defined by sξ = d(s)ξ. Clearly this
defines a multiplicative functional on C[S].

Let d′ be another multiplicative functional satisfying d′(s) > 0 for
s ∈ S. Then

∑
s∈S d

′(S)s is □


