
Chapter 5

Traces of pseudo-differential
operators

In this chapter we look at applications of the Dixmier traces in the context of pseudo-
differential operators. Again, our main source of inspirations will be [SU] and [LSZ] but
also the book [RT].

5.1 Pseudo-differential operators on Rd

In this first section we recall a few classical definitions and results related to pseudo-diffe-
rential operators. Our setting is clearly not the most general one and many extensions
are possible. We shall use the usual multi-index notation, namely α = (α1, . . . , αd)
with αj ∈ {0, 1, 2, . . . }. For shortness, we shall write α ∈ Nd

0 with N0 = {0, 1, 2 . . . }
(recall that the convention of Chapter 2 is that N = {1, 2, 3 . . . }). We shall also use
|α| :=

∑d
j=1 αj and α! = α1! . . . αd!. The other standard notations which are going to

be used are ∇ := (∂1, . . . , ∂d) with ∂j := ∂xj , −∆ := −
∑d

j=1 ∂
2
j which is a positive

operator, and ⟨x⟩ :=
(
1 +

∑d
j=1 x

2
j

)1/2
for any x = (x1, . . . , xd) ∈ Rd. In the Hilbert

space L2(Rd), we shall also use the notation X = (X1, . . . , Xd) with Xj the self-adjoint
operator of multiplication by the variable xj, and D = (D1, . . . , Dd) with Dj the self-
adjoint operator corresponding to the operator −i∂j.

Definition 5.1.1. 1) For any m ∈ R, ρ ∈ [0, 1], and δ ∈ [0, 1), a function a ∈ C∞(R3d)
is called an amplitude of order m if it satisfies∣∣[∂γy∂βx∂αξ a](x, y, ξ)∣∣ ≤ Cα,β,γ⟨ξ⟩m−ρ|α|+δ(|β|+|γ|) (5.1)

for any α, β, γ ∈ Nd
0 and all x, y, ξ ∈ Rd. The set of all amplitudes satisfying (5.1) is

denoted by Am
ρ,δ(Rd). Note that the constants Cα,β,γ depend also on the function a but

not on x, y and ξ.
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68 CHAPTER 5. TRACES OF PSEUDO-DIFFERENTIAL OPERATORS

2) For any amplitude a ∈ Am
ρ,δ(Rd) the corresponding amplitude operator of order

m is defined on f ∈ S(Rd) by

[a(X, Y,D)f ](x) =

∫
Rd

∫
Rd

e2πi(x−y)·ξ a(x, y, ξ)f(y)dydξ. (5.2)

The corresponding set of operators is denoted by Op
(
Am
ρ,δ(Rd)

)
.

Remark 5.1.2. It can be shown that the operator defined in (5.2) is continuous from
S(Rd) to S(Rd), when this space is endowed with its usual Fréchet topology. Note also
that the presence of 2π is irrelevant and mainly depends on several conventions about
the Fourier transform. In fact, the above operator should be denoted by a

(
X, Y, 1

2π
D
)

according to the convention taken in [RT]. In these notes, we mainly follow the conven-
tion of [LSZ] but warn the reader(s) that some constants have not been double-checked.
It is possible that sometimes the equality 2π = 1 holds !

The main interest for dealing with amplitudes is that the expression for the adjoint
operator is simple. Indeed, by using the usual scalar product ⟨·, ·⟩ of L2(Rd) one defines
the adjoint of a(X, Y,D) by the relation⟨

a(X, Y,D)∗f, g
⟩
=

⟨
f, a(X,Y,D)g

⟩
, f, g ∈ S(Rd). (5.3)

It then follows that a(X, Y,D)∗ is also an amplitude operator of order m with symbol
a∗ given by

a∗(x, y, ξ) = a(y, x, ξ). (5.4)

The adjoint operator plays an important role for the extension by duality to oper-
ators acting on tempered distributions. Indeed, if S ′(Rd) denotes the set of tempered
distributions on Rd and if Ψ ∈ S ′(Rd), then we can define a(X, Y,D) : S ′(Rd) → S ′(Rd)
by

[a(X,Y,D)Ψ](f) := Ψ
(
a(X, Y,D)∗f

)
∀f ∈ S(Rd).

Let us now explain the link between amplitudes and more usual symbols of the class
Smρ,δ(Rd). For that purpose, we define the Fourier transform for any f ∈ L1(Rd) by

[Ff ](ξ) ≡ f̂(ξ) :=

∫
Rd

e−2πix·ξ f(x)dx. (5.5)

The inverse Fourier transform is then provided by [F−1f ](x) =
∫
Rd e

2πix·ξ f(ξ)dξ

Definition 5.1.3. 1) For any m ∈ R, ρ ∈ [0, 1], and δ ∈ [0, 1), a function a ∈ C∞(R2d)
is called a symbol of order m if it satisfies∣∣[∂βx∂αξ a](x, ξ)∣∣ ≤ Cα,β⟨ξ⟩m−ρ|α|+δ|β| (5.6)

for any α, β ∈ Nd
0 and all x, ξ ∈ Rd. The set of all symbols satisfying (5.6) is denoted

by Smρ,δ(Rd). Note that the constants Cα,β depend also on the function a but not on x
and ξ.
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2) For any symbol a ∈ Smρ,δ(Rd) the corresponding pseudo-differential operator of

order m is defined on f ∈ S(Rd) by

[a(X,D)f ](x) =

∫
Rd

e2πix·ξ a(x, ξ)f̂(ξ)dξ (5.7)

and a(X,D)f ∈ S(Rd). The corresponding set of operators is denoted by Op
(
Smρ,δ(Rd)

)
.

3) We set S−∞(Rd) :=
∩
m∈R ∈ Smρ,δ(Rd) (which is independent of ρ and δ) and call

a smoothing operator a pseudo-differential operator a(X,D) with a ∈ S−∞(Rd).

Before going on, let us look at the Fourier transform of a symbol. More precisely,
observe that

[a(X,D)f ](x) =

∫
Rd

e2πix·ξ a(x, ξ)f̂(ξ)dξ

=

∫
Rd

∫
Rd

e2πi(x−y)·ξ a(x, ξ)f(y)dydξ

=

∫
Rd
k(x, y)f(y)dy

with

k(x, y) =

∫
Rd

e2πi(x−y)·ξ a(x, ξ)dξ. (5.8)

Remark 5.1.4. The integral in (5.8) does not converge absolutely in general. This
integral is usually understood as an oscillatory integral. We shall not develop this any
further in these notes. However, if the function (x, ξ) 7→ a(x, ξ) decreases fast enough
in ξ, then the integral can be understood in the usual sense.

The map (x, y) 7→ k(x, y) is sometimes called the kernel (or Schwartz kernel1) of
the operator a(X,D). One of its important property is given in the following statement,
see [RT, Thm. 2.3.1].

Theorem 5.1.5. For any a ∈ Sm1,0(Rd), the corresponding kernel k(x, y) defined by
(5.8) satisfies ∣∣[∂βx,yK]

(x, y)
∣∣ ≤ CN,β|x− y|−N

for any N > m+n+ |β| and x ̸= y. In other words, for x ̸= y the map (x, y) 7→ k(x, y)
is a smooth function which decays at infinity, together with all its derivatives, faster
that any power of |x− y|−1.

Additional results for pseudo-differential operators are summarized in the following
statements, see [RT, Thm. 2.4.2 and Thm. 2.5.1].

1In the context of operators K defined by [Kf ](x) =
∫
Rd k(x, y)f(y)dy for f ∈ Cc(Rd) with kernel

k ∈ L1
loc(R2d) one can not prevent from recalling the important Schur’s lemma which says that if the

two conditions supx∈Rd

∫
Rd |k(x, y)|dy < ∞ and supy∈Rd

∫
Rd |k(x, y)|dx < ∞ hold, then K defines a

bounded operator on L2(Rd).
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Theorem 5.1.6 (L2-boundedness). Let a ∈ S0
1,0(Rd), then the operator a(X,D) extends

continuously to an element of B
(
L2(Rd)

)
.

Theorem 5.1.7 (Composition formula). Let a ∈ Sma1,0 (Rd) and b ∈ Smb1,0 (Rd), then there

exists c ∈ Sma+mb1,0 (Rd) such that the equality

a(X,D)b(X,D) = c(X,D)

holds, where the product of operators in considered on the l.h.s. Moreover, one has the
asymptotic formula

c ∼
∑
α∈Nd0

(−i)|α|

α!
(∂αξ a)(∂

α
x b) (5.9)

where the meaning of (5.9) is

c−
∑
|α|<N

(−i)|α|

α!
(∂αξ a)(∂

α
x b) ∈ Sma+mb−N(Rd) (5.10)

for any N > 0.

Exercise 5.1.8. Provide a proof of the previous statements, and check what happens
for symbols in Smρ,δ(Rd) with 0 ≤ δ < ρ ≤ 1. In particular for Theorem 5.1.7 show that

if a ∈ Smaρ,δ (Rd) and b ∈ Smbρ,δ (Rd) then c ∈ Sma+mbρ,δ (Rd).

The link between amplitudes and symbols can now be established. Clearly, any
symbol a ∈ Smρ,δ(Rd) defines the amplitude a ∈ Am

ρ,δ(Rd). Conversely one has:

Theorem 5.1.9. For any amplitude c ∈ Am
ρ,δ(Rd) with 0 ≤ δ < ρ ≤ 1, there exits a

symbol a ∈ Smρ,δ(Rd) such that a(X,D) = c(X, Y,D). Moreover, the symbol a admits the
asymptotic expansion given by

(x, ξ) 7→ a(x, ξ)−
∑
|α|<N

(−i)|α|

α!
[∂αξ ∂

α
y c](x, x, ξ) ∈ Sm−(ρ−δ)N(Rd)

for any N > 0.

The proof of the previous statement for (ρ, δ) = (1, 0) can be found in [RT,
Thm. 2.5.8]. Its extension to amplitudes with (ρ, δ) ̸= (1, 0) can be performed as an
exercise.

For any operator a(X,D), we define its L2-adjoint by the formula⟨
a(X,D)∗f, g

⟩
=

⟨
f, a(X,D)g

⟩
, f, g ∈ S(Rd)

which corresponds to the relation (5.3) for amplitudes. Then, by the content of Theorem
5.1.9 together with the formula (5.4) for the amplitude of an adjoint one directly infers:
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Corollary 5.1.10. For any a ∈ Smρ,δ(Rd) with 0 ≤ δ < ρ ≤ 1 there exists a symbol a∗ ∈
Smρ,δ(Rd) such that a(X,D)∗ = a∗(X,D). Moreover a∗ admits the asymptotic expansion

(x, ξ) 7→ a∗(x, ξ)−
∑
|α|<N

(−i)|α|

α!
[∂αξ ∂

α
y ā](x, ξ) ∈ Sm−(ρ−δ)N(Rd)

for any N ≥ 0. Here ā means the complex conjugate function.

The previous result implies that any pseudo-differential operator a(X,D) extends
to a continuous linear map from S ′(Rd) to S ′(Rd). Let us then note that a rather simple
criterion allows us to know if a continuous linear operator from S ′(Rd) to S ′(Rd) is of the
previous form. More precisely, if for any ξ ∈ Rd one sets eξ : Rd → C by eξ(x) := e2πix·ξ

then one has:

Theorem 5.1.11. A continuous linear operator T from S ′(Rd) to S ′(Rd) is a pseudo-
differential (with symbol a) if and only if the symbol a defined by

a(x, ξ) := e−ξ(x)[T eξ](x)

belong to S∞(Rd) :=
∪
m∈R Sm1,0(Rd).

Among the set of pseudo-differential operators let us still introduce those which have
a classical symbol. For that purpose, we say that a function a ∈ C∞(R2d) is homogeneous
of order k for some k ∈ R if for all x ∈ Rd

a(x, λξ) = λka(x, ξ), ∀λ > 1, ∀ξ ∈ Rd with |ξ| ≥ 1. (5.11)

Definition 5.1.12. 1) A symbol a ∈ Sm1,0(Rd) is called classical if there exists an asymp-
totic expansion a ∼

∑∞
k=0 am−k where each function am−k is homogeneous of orderm−k,

and if a−
∑N

k=0 am−k ∈ Sm−N−1
1,0 (Rd) for all N ≥ 0. The set of all classical symbols of

order m is denoted by Smcl (Rd).
2) For a classical symbol a ∈ Smcl (Rd), its principal symbol corresponds to the term

am in the mentioned expansion.

Note that the notion of principal symbol can be defined for more general pseudo-
differential operators. For a symbol in Sm1,0(Rd) its principal symbol corresponds to the

equivalent class of this symbol modulo the subclass Sm−1
1,0 (Rd). More precisely, we set:

Definition 5.1.13. For a, b ∈ Sm1,0(Rd) we write a ∼ b if the difference a− b belongs to

Sm−1
1,0 (Rd). For a ∈ Sm1,0(Rd) we denote by [a] the equivalent class defined by the previous

equivalence relation and call it the principal symbol of a(X,D).

Examples 5.1.14. 1) The simplest and main example of a pseudo-differential operator
is provided by the relation[

(1−∆)m/2f
]
(x) =

∫
Rd

e2πix·ξ⟨2πξ⟩mf̂(ξ)dξ ∀f ∈ S(Rd). (5.12)
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In other terms the symbol corresponding to the operator (1 − ∆)m/2 is the map ξ 7→
⟨2πξ⟩m. In addition, since the equality ⟨x⟩m = |x|m(1 + |x|−2)m/2 holds, by using a
binomial expansion for |x| > 1 one observes that any symbol which agrees with (2π)m|x|m
for |x| ≥ 1, up to a symbol in Sm−1

1,0 (Rd), share the same principal symbol as the one of

(1−∆)m/2.
2) Let ϕ be an element of C∞

b (Rd), which corresponds to the set of smooth func-
tions with all derivatives bounded. Then the multiplication operator ϕ(X) defined by
[ϕ(X)f ](x) = ϕ(x)f(x) is a pseudo-differential operator belonging to S0

1,0(Rd). In ad-

dition, the operator ϕ(X)(1 − ∆)m/2 belongs to Op
(
Sm1,0(Rd)

)
and the corresponding

symbol is the map (x, ξ) 7→ ϕ(x)⟨2πξ⟩m.
3) For any ϕ ∈ C∞

b (Rd), one infers from Theorem 5.1.7 that

[ϕ(X), (1−∆)m/2] ∈ Op
(
Sm−1
1,0 (Rd)

)
.

More generally, if A ∈ Op
(
Sma1,0 (Rd)

)
and B ∈ Op

(
Smb1,0 (Rd)

)
then one has [A,B] ∈

Op
(
Sma+mb−1
1,0 (Rd)

)
. This information means also that AB and BA share the same

principal symbol.

Let us briefly mention the link between pseudo-differential operators and Sobolev
spaces. First of all recall that for any s ≥ 0 the Sobolev space Hs(Rd) is defined by

Hs(Rd) :=
{
f ∈ L2(Rd) | ∥f∥Hs := ∥⟨X⟩sFf∥ <∞

}
. (5.13)

Note that this space coincide with the completion of S(Rd) with the norm ∥ · ∥Hs .
For s > 0, the spaces H−s(Rd) can either be defined by duality, namely H−s(Rd) =
Hs(Rd)∗, or by the completion of S(Rd) with the norm ∥f∥H−s := ∥⟨X⟩−sFf∥. Then,
the main link between these spaces and pseudo-differential operators is summarized in
the following statement. Recall that the definition of closed operators has been provided
in Definition 1.4.6.

Theorem 5.1.15. Let A := a(X, Y,D) be the operator defined on S(Rd) by an ampli-
tude a ∈ Am

1,0(Rd) with m ≥ 0.

(i) A extends continuously to a bounded linear operator from Hs(Rd) to Hs−m(Rd)
for any s ∈ R,

(ii) If m > 0 then the extension of A : Hm(Rd) → H0(Rd) ≡ L2(Rd) defines a closed
operator,

(iii) If m = 0 then the extension of A : L2(Rd) → L2(Rd) defines an element of
B
(
L2(Rd)

)
.

Clearly, the point (iii) in the previous statement is a slight extension of the result
already mentioned in Theorem 5.1.6 for symbols instead of for amplitudes Let us now
close this section with the notion of compactly supported and compactly based pseudo-
differential operators. Such operators have nice extension properties.
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Definition 5.1.16. Let A : S(Rd) → S(Rd) be a pseudo-differential operator.

(i) A is compactly supported if the exists ϕ, ψ ∈ C∞
c (Rd) such that A = ϕ(X)Aψ(X),

(ii) A is compactly based if the exists ϕ ∈ C∞
c (Rd) such that A = ϕ(X)A.

Based on these definitions one easily infers the following lemma. Recall that the set
S−∞(Rd) has been introduced in Definition 5.1.3.

Lemma 5.1.17. Let A,B be pseudo-differential operators. Then

(i) If A,B are compactly supported, so are A∗, AB and BA,

(ii) A is compactly supported if and only if A and A∗ are compactly based,

(iii) If A is compactly based, so is AB,

(iv) If A is compactly based, then there exists a compactly supported pseudo-differential
operator A′ such that A− A′ ∈ S−∞(Rd).

Exercise 5.1.18. Provide a proof of the last statement of the previous lemma.

In relation with this last statement, let us mention a useful result about the dif-
ference A − A′. Unfortunately, we can not prove it here because it would require the
definition of the so-called Shubin pseudo-differential operators. These operators are de-
fined with slightly different classes of symbols. We refer to the book [Shu] for a different
approach to pseudo-differential operators, and especially to Section 27 of this reference
for a proof of the subsequent statement.

Lemma 5.1.19. For any compactly based pseudo-differential operator A of order m
there exists a compactly supported pseudo-differential operator A′ of order m such that
the difference A− A′ is trace class, i.e. A− A′ ∈ J1.

The following statement will play an essential role subsequently. We shall comment
about its generality and its proof after the statement.

Theorem 5.1.20. Let A be a compactly based pseudo-differential operator of order m.
If m < 0 then the extension of A : L2(Rd) → L2(Rd) defines a compact operator. If
m < −d then this extension defines a trace class operator.

The previous statement is quite well-known for compactly supported pseudo-diffe-
rential operators. A more general statement for arbitrary Schatten ideals can be found
in [Ars], or an approach using operators of the form f(X)g(D) can be borrowed from
[Sim, Chap. 4]. The extension to compactly based pseudo-differential operators follows
then directly from Lemma 5.1.19.
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Remark 5.1.21. In relation with the paper [Ars] let us mention that there exists sev-
eral types of quantization of symbols on R2d. The one introduced so far corresponds to
the so-called Kohn-Nirenberg quantization. Each of these quantizations has some prop-
erties of special interest: for example the Weyl quantization of real-valued functions
provides self-adjoint operators, the Berezin quantization of positive functions provides
positive operators, etc. Some of these quantizations can be recast in a single quantization
(τ -quantization) which depends on an additional parameter τ . We refer the interested
reader to Chapter 2 of the reference [Del] which presents the similarities and the differ-
ences between some of these quantizations.

Extension 5.1.22. Study some alternative quantization, as presented for example in
[Del].

5.2 Noncommutative residue

In this section we introduce the concept of noncommutative residue on the set of classical
and compactly based pseudo-differential operators of order −d, where n is the space
dimension. This concept is also called Wodzicki residue after the seminal papers [Wod1,
Wod2]. In these papers the general theory is presented in the framework of global
analysis on manifolds, and the special case presented here corresponds to the Remark
7.13 of [Wod1].

Before introducing the definition of noncommutative residue let us observe that if a
is a classical symbol of orderm with a(X,D) compactly based, then one can impose that
each term the expansion a ∼

∑∞
k=0 am−k has a compact support for the first variable

(the variable x). Note that such symbols will simply be called classical and compactly
based symbols. In addition, if m is an integer, then a−d is well-defined and is equal to
0 if −d > m, while if m is not an integer, then we set a−d := 0.

Definition 5.2.1. Let a ∈ Smcl (Rd) be a classical and compactly based symbols of order
m. The noncommutative residue of a(X,D) is defined by

ResW
(
a(X,D)

)
:=

1

d

∫
Sd−1

∫
Rd
a−d(x, θ)dxdθ. (5.14)

Before stating and proving some of the properties of this noncommutative residue,
let us come back to the Examples 5.1.14. For ϕ in C∞

c (Rd) let us consider the operator
ϕ(X)(1 − ∆)−d/2 which is associated with a classical and compactly based symbol of
order −d. Its principal symbol is given for |ξ| ≥ 1 by the map (x, ξ) 7→ ϕ(x)(2π|ξ|)−d.
Thus, we easily get

ResW
(
ϕ(X)(1−∆)−d/2

)
=

1

d

∫
Sd−1

∫
Rd
ϕ(x)(2π)−ddxdθ

=
Vol(Sd−1)

d(2π)d

∫
Rd
ϕ(x)dx,

where Vol(Sd−1) denotes the volume of the sphere Sd−1.
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Proposition 5.2.2. The noncommutative residue ResW

(i) is a linear functional on the set of all classical and compactly based pseudo-
differential operators with symbol of order −d,

(ii) vanishes on compactly based pseudo-differential operators with symbol of order m
with m < −d (and in particular on trace class operators),

(iii) is a trace in the sense that if A is a classical and compactly based pseudo-differen-
tial operator of order ma and if B is a classical and compactly based pseudo-
differential operator of order mb with ma +mb = −d, then

ResW ([A,B]) = 0.

Proof. For (i), the linearity of ResW is a direct consequence of the linearity of the
action of taking the principal symbol on S−d

cl (Rd). For symbols of order m < −d the
noncommutative residue is trivial by its definition, which implies the statement (ii).
Finally, since AB and BA share the same principal symbol, as mentioned in Examples
5.1.14, it follows that the principal symbol of [A,B] is of order −d− 1. The statement
(iii) follows then from (ii).

It was A. Connes who realized in [Con] that this noncommutative residue can be
linked to the Dixmier trace, with an equality of the form ResW (A) = Trω(A) for some
states ω. Such an equality is often called Connes’ trace theorem. Again this was proved
in the context of global analysis on manifolds. In order to understand such a result in
our context of pseudo-differential operators on Rd and in the framework developed in
Chapter 3, additional information are necessary. In particular, since there exist several
different Dixmier traces on operator which are not Dixmier measurable (see Definition
3.4.16) it is important to understand when an equality with the noncommutative residue
is possible ?

5.3 Modulated operators

In this section we introduce the concept of modulated operators and study their proper-
ties. Most of this material is borrowed from [KLPS] and [LSZ]. In the sequel H denotes
the Hilbert space L2(Rd), and we recall that the Hilbert-Schmidt norm is denoted by
∥ · ∥2. Part of the theory can be built with an abstract bounded and positive operator
V in H, but for simplicity and for our purpose, we shall only consider the operator
V := (1−∆)−d/2.

Definition 5.3.1. An operator T ∈ B(H) is Laplacian-modulated if the operator

T
(
1 + t(1−∆)−d/2

)−1
is a Hilbert-Schmidt operator for any t > 0, and

∥T∥mod := sup
t>0

t1/2
∥∥T(1 + t(1−∆)−d/2

)−1∥∥
2
<∞.
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Note that a Laplacian-modulated operator T is automatically Hilbert-Schmidt since
one has

∥T∥2 =
∥∥T(1 + (1−∆)−d/2

)−1(
1 + (1−∆)−d/2

)∥∥
2

≤
∥∥1 + (1−∆)−d/2

∥∥∥∥T(1 + (1−∆)−d/2
)−1∥∥

2

≤
(
1 +

∥∥(1−∆)−d/2
∥∥)∥T∥mod.

The following statement can also easily be proved by taking into account the com-
pleteness of J2, see also [LSZ, Prop. 11.2.2].

Proposition 5.3.2. The set of all Laplacian-modulated operator is a Banach space
with the norm ∥ · ∥mod. In addition, if B is Laplacian-modulated and A ∈ B(H) one
has ∥AB∥mod ≤ ∥A∥∥B∥mod.

In order to further study this Banach space, let us come back to some algebras of
functions.

Definition 5.3.3. A function f ∈ L1(Rd) is a modulated function, written f ∈
L1
mod(Rd), if

∥f∥L1
mod

:= sup
t>0

(1 + t)d
∫
|x|>t

|f(x)|dx <∞. (5.15)

Clearly, the inequality ∥f∥L1 ≤ ∥f∥L1
mod

holds. Observe also that the natural oper-
ation on such functions is the convolution, as shown in the next statement.

Lemma 5.3.4. If f, g ∈ L1
mod(Rd) then the convolution f ∗ g belongs to L1

mod(Rd).

Proof. For any t > 0 observe that for |y| > |x|/2 one has∫
|x|>t

∫
|y|>|x|/2

|g(y)||f(x− y)|dydx ≤
∫
Rd

∫
|y|>t/2

|g(y)||f(x− y)|dydx

= ∥f∥L1

∫
|y|>t/2

|g(y)|dy.

On the other hand, if |y| ≤ |x|/2 and |x| > t it follows that |x− y| ≥ |x|/2 ≥ t/2, and
then ∫

|x|>t

∫
|y|<|x|/2

|g(y)||f(x− y)|dydx ≤
∫∫

|x−y|>t/2
|g(y)||f(x− y)|dydx

=

∫∫
|x|>t/2

|g(y)||f(x)|dydx

= ∥g∥L1

∫
|x|>t/2

|f(x)|dx.
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By splitting the following integral into two parts and by using the previous estimates
one gets

∥f ∗ g∥L1
mod

= sup
t>0

(1 + t)d
∫
|x|>t

|[f ∗ g](x)|dx

= sup
t>0

(1 + t)d
∫
|x|>t

∫
Rd

|g(y)||f(x− y)|dydx

≤ ∥f∥L1∥g∥L1
mod

+ ∥g∥L1∥f∥L1
mod

≤ 2∥f∥L1
mod

∥g∥L1
mod

(5.16)

which leads directly to the result.

Based on the previous result, one gets:

Lemma 5.3.5. L1
mod(Rd) endowed with the convolution product is a Banach algebra.

Proof. 1) With the definition of ∥f∥L1
mod

provided in (5.15) the space L1
mod(Rd) is clearly

a normed space. We first show that this space is complete. Since the inequality ∥f∥ ≤
∥f∥L1

mod
holds, if {fp} is a Cauchy sequence in the L1

mod-norm it is also a Cauchy

sequence in the L1-norm. Let f ∈ L1(Rd) denote the limit of this Cauchy sequence.
Then, for any fixed ε > 0 let us choose N ∈ N such that

(1 + t)d
∫
|x|>t

|fn(x)− fm(x)|dx ≤ ε

for any n,m ≥ N and every t > 0. Then one infers by the dominated convergence
theorem that for arbitrary t > 0 and n ≥ N one has

(1 + t)d
∫
|x|>t

|fn(x)− f(x)|dx = lim
q→∞

(1 + t)d
∫
|x|>t

|fn(x)− fm(x)|dx ≤ ε.

Since ε is arbitrary, one concludes that L1
mod(Rd) is a complete vector space.

2) It has already been proved in the previous lemma that L1
mod(Rd) is an algebra

with the convolution product. In addition, it has been proved in (5.16) that ∥f∗g∥L1
mod

≤
2∥f∥L1

mod
∥g∥L1

mod
which proves the continuity of the product, and hence makes L1

mod(Rd)
a Banach algebra.

Additional properties of this Banach algebra are presented in [LSZ, Sec. 11.3]. For
example, it is proved that the set of compactly supported L1-functions is not dense in
L1
mod(Rd). A similar space with L2-functions is also introduced and studied, namely

L2
mod(Rd) :=

{
f ∈ L2(Rd) | |f |2 ∈ L1

mod(Rd)
}

endowed with the norm ∥f∥L2
mod

:= ∥|f |2∥1/2
L1
mod

. This space is again a Banach space, but

despite the fact that it is made of L2-functions, this space has not good properties with
respect to the Fourier transform.
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Extension 5.3.6. Study the previous statements.

Our next aim is to connect this Banach algebra L1
mod(Rd) with the concept of

Laplacian-modulated operators. For that purpose, let us recall that there exists a bijec-
tive relation between the set of Hilbert-Schmidt operators in H = L2(Rd) and the set of
L2(Rd×Rd)-functions, see Theorem 2.5.1. We present below a slightly modified version
of this correspondence, which is based on the mentioned theorem and on Plancherel
theorem.

Lemma 5.3.7. For any Hilbert-Schmidt operator T ∈ B(H) there exists a unique
function pT ∈ L2(Rd × Rd) such that the following relation holds:

[Tf ](x) =

∫
Rd

e2πix·ξ pT (x, ξ)f̂(ξ)dξ, ∀f ∈ L2(Rd). (5.17)

Definition 5.3.8. For any Hilbert-Schmidt operator T , the unique function pT ∈
L2(Rd × Rd) satisfying (5.17) is called the symbol of the operator T .

Clearly, the previous definition is slightly ambiguous since it does not require the
regularity conditions of the symbols of a pseudo-differential operators. However, the
context together with the index T should prevent any confusion. On the other hand,
the very good point of this definition is that if T is a pseudo-differential operator and
a Hilbert-Schmidt operator, its symbol as a pseudo-differential operator and its symbol
as a Hilbert-Schmidt operator coincide.

The main result linking all these notions is:

Proposition 5.3.9. A Hilbert-Schmidt operator T ∈ B(H) is Laplacian-modulated if
and only if its symbol pT satisfies∫

Rd
|pT (x, ·)|2dx ∈ L1

mod(Rd).

We provide below a proof of this statement. However, it involves an equivalent
definition for Laplacian-modulated operator which is only provided in Lemma 5.4.9 in
a slightly more general context.

Proof. It follows from Lemma 5.4.9 that T is Laplacian-modulated if and only if∥∥TE(1−∆)−d/2
(
[0, t−1]

)∥∥
2
= O(t−1/2) ∀t > 0, (5.18)

where E(1−∆)−d/2 denotes the spectral measure associated with the operator (1−∆)−d/2.

The key point is that the spectral projection E(1−∆)−d/2
(
[0, t−1]

)
is explicitly known,

namely for suitable f and any x ∈ Rd

[
E(1−∆)−d/2

(
[0, t−1]

)
f
]
(x) =

∫
(1+4π2|ξ|2)−d/2≤t−1

e2πix·ξ[Ff ](ξ)dξ.
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Now, let us define a family of projections Pt by the formula

[Ptf ](x) :=

∫
|ξ|>t

e2πix·ξ[Ff ](ξ)dξ.

By a simple computation we then find that for any t ≥ 1

P(cmint)1/d ≤ E(1−∆)−d/2
(
[0, t−1]

)
≤ P(cmaxt)1/d

with cmin := (4π2 + 1)−d/2 and cmax := (4π2)−d/2. It follows from (5.18) that T is
Laplacian-modulated if and only if ∥TPt∥2 = O(t−d/2). The statement can finally easily
be obtained by observing that

∥TPt∥22 =
∫
|ξ|>t

∫
Rd

|pT (x, ξ)|2dxdξ.

Remark 5.3.10. By endowing the set of symbols of Hilbert-Schmidt Laplacian-modula-
ted operators with the norm

∥pT∥mod :=
(
sup
t>0

(1 + t)d
∫
|ξ|>t

∫
Rd

|pT (x, ξ)|2dxdξ
)1/2

, (5.19)

it follows from the previous proposition and its proof that there is an isometry between
the Banach space of Laplacian-modulated symbols and the Banach space of Laplacian-
modulated operators mentioned in Proposition 5.3.2. Both norms have been denoted by
∥ · ∥mod for that purpose.

We shall soon show that the set of Laplacian-modulated operators is an exten-
sion of the set of compactly based pseudo-differential operators of order −d. For that
purpose, observe first that the definition of compactly supported or compactly based
operators can also be used in the context of bounded operators, namely an opera-
tor A ∈ B

(
L2(Rd)

)
is compactly supported if the exists ϕ, ψ ∈ C∞

c (Rd) such that
A = ϕ(X)Aψ(X), while A is compactly based if the exists ϕ ∈ C∞

c (Rd) such that
A = ϕ(X)A. Then, one easgets that a Laplacian-modulated operator T is compactly
supported if and only if its Schwartz kernel is compactly supported. On the other hand,
this operator is compactly based if and only if its symbol pT is compactly supported
in the first variable. Note that the notion of a compactly supported operator does not
really fit well with the notion of the symbol of a pseudo-differential operator or of
a Laplacian-modulated operator. On the other hand, this notion can be used for the
Schwartz kernel or for the kernel of an amplitude operator.

In the next statement we show that the concept of Laplacian-modulated operator
extends the notion of compactly based pseudo-differential operator of degree −d.

Theorem 5.3.11. Let A = a(X,D) be a compactly based pseudo-differential opera-
tor with symbol in a ∈ S−d

1,0 (Rd), Then A and A∗ extends continuously to Laplacian-
modulated operators.
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We provide below the proof of the statement for the operator A. The proof for A∗

is slightly more complicated and involves Shubin pseudo-differential operators already
mentioned in Section 5.1. We refer to[LSZ, Thm. 11.3.17] for the details.

Proof. By assumption one has |a(x, ξ)| ≤ C⟨ξ⟩−d for all x ∈ Rd and a constant C
independent of x and ξ. In addition, since the operator A is compactly based, its symbol
a is compactly supported in the first variable. Thus, there exists a compact set Ω ⊂ Rd

such that a(x, ξ) = 0 for any x ̸∈ Ω. We then infer that

sup
t>0

(1 + t)d
∫
|ξ|>t

∫
Rd

|a(x, ξ)|2dxdξ = sup
t>0

(1 + t)d
∫
|ξ|>t

∫
Ω

|a(x, ξ)|2dxdξ

≤ C2 |Ω| sup
t>0

(1 + t)d
∫
|ξ|>t

⟨ξ⟩−2ddξ

≤ C ′|Ω| sup
t>0

(1 + t)d
∫ ∞

t

r−2drd−1dr

=
C ′

d
|Ω| sup

t>0
(1 + t)d t−d

<∞,

where |Ω| means the Lebesgue measure of the set Ω, and C ′ is a constant. It follows from
Proposition 5.3.9 that a corresponds to the symbol of a Laplacian-modulated operator.
As a consequence, the operator A extends continuously to a Hilbert-Schmidt operator
which is Laplacian-modulated.

In order to extend the noncommutative residue to all compactly based Laplacian-
modulated operators, the following rather technical lemma is necessary. For that pur-
pose we recall that any Laplacian-modulated operator T is itself a Hilbert-Schmidt
operator.

Lemma 5.3.12. Let T be a compactly based Laplacian-modulated operator, and let pT
denotes its symbol. Then the map

N ∋ n 7→ 1

ln(n+ 1)

∫
|ξ|≤n1/d

∫
Rd
pT (x, ξ)dxdξ ∈ C

is bounded

Proof. Recall first that since the operator T is compactly based, its symbol pT is com-
pactly supported in the first variable. Thus, there exists a compact set Ω ⊂ Rd such
that pT (x, ξ) = 0 for any x ̸∈ Ω. Observe in addition that there exists a constant C
(depending only on the space dimension d) such that for any k ≥ 0∣∣Ω×

{
ξ ∈ Rd | ek ≤ |ξ| ≤ ek+1

}∣∣ = C|Ω| ekd .
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It then follows by an application of Cauchy-Schwartz inequality that∫
ek≤|ξ|≤ek+1

∫
Rd

|pT (x, ξ)|dxdξ

=

∫
ek≤|ξ|≤ek+1

∫
Ω

|pT (x, ξ)|dxdξ

≤ C1/2|Ω|1/2
(
(ek)d

∫
ek≤|ξ|≤ek+1

∫
Ω

|pT (x, ξ)|2dxdξ
)1/2

≤ C1/2|Ω|1/2∥pT∥mod,

where the definition (5.19) has been used in the last step.
Based on this estimate one infers that for t > 1∣∣∣ ∫

|ξ|≤t

∫
Rd
pT (x; ξ)dxdξ

∣∣∣
≤

∣∣∣ ∫
|ξ|≤1

∫
Rd
pT (x; ξ)dxdξ

∣∣∣+ ⌊ln(t)⌋∑
k=0

∫
ek≤|ξ|≤ek+1

∫
Rd

|pT (x, ξ)|dxdξ

≤
(
ln(t) + 1

)
C1/2|Ω|1/2∥pT∥mod +D

with D independent of t. By setting then t = n1/d for n > 1 one gets

1

ln(n+ 1)

∣∣∣ ∫
|ξ|≤n1/d

∫
Rd
pT (x, ξ)dxdξ

∣∣∣
≤ ln(n1/d) + 1

ln(n+ 1)
C1/2|Ω|1/2∥pT∥mod + o(n)

=
1
d
ln(n) + 1

ln(n+ 1)
C1/2|Ω|1/2∥pT∥mod + o(n)

which clearly defines a bounded function of n ∈ N.

Based on this result, it is now natural to set:

Definition 5.3.13. The map Res, from the set of compactly based Laplacian-modulated
operator to the quotient ℓ∞/c0, is defined for any compactly based Laplacian-modulated
operator T by

Res(T ) :=
[( 1

ln(n+ 1)

∫
|ξ|≤n1/d

∫
Rd
pT (x, ξ)dxdξ

)
n∈N

]
(5.20)

where pT denotes the symbol associated with T and [ · ] denotes the equivalence class in
ℓ∞/c0. This map is called the generalized residue.

Let us directly check that this notion extends the noncommutative residue intro-
duced in Section 5.2. First of all we need a preliminary lemma, which uses the fact
proved in Theorem 5.3.11 that any compactly based pseudodifferential operator of or-
der −d extends to a compactly based Laplacian-modulated operator.
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Lemma 5.3.14. The generalized residue of a compactly based pseudo-differential oper-
ator of order −d depends only on its principal symbol.

Proof. Let A1 and A2 be two compactly based pseudo-differential operators of order −d
sharing the same principal symbol. Then the difference A1 − A2 is a compactly based
pseudo-differential operator of order −d − 1, which means that its symbol a satisfies
a|(x, ξ)| ≤ C⟨ξ⟩−d−1 for all x, ξ ∈ Rd and a constant C independent of x and ξ. Since a
has compact support in the first variable, there exists a compact set Ω ⊂ Rd such that
a(x, ξ) = 0 if x ̸∈ Ω. Then one has

∣∣∣ ∫
Rd

∫
Rd
a(x, ξ)dxdξ

∣∣∣ ≤ C|Ω|
∫
Rd
⟨ξ⟩−d−1dξ <∞.

As a consequence of this estimate, it follows from the definition of Res provided in (5.20)
that Res(A1 − A2) = 0, and therefore that Res(A1) = Res(A2).

In the next statement we clearly identify C with the set of constant elements of ℓ∞.

Proposition 5.3.15. For any a ∈ S−d
cl (Rd) with compact support in the first variable of

all elements of its asymptotic expansion, or equivalently for any classical and compactly
based pseudo-differential operator A of order −d (with A = a(X,D)) one has

ResW (A) = Res(A).

Proof. Let us denote by a−d the principal symbol of the operator a. By the previous
lemma Res(A) depends only on the symbol a−d, and is determined by the equivalence
class in ℓ∞/c0 of the sequence

( 1

ln(n+ 1)

∫
|ξ|≤n1/d

∫
Rd
a−d(x, ξ)dxdξ

)
n∈N

.

Since a−d is homogeneous of order −d and is compact in its first variable one has∫
|ξ|≤n1/d

∫
Rd
a−d(x, ξ)dxdξ =

∫
Rd

∫
1<|ξ|≤n1/d

|ξ|−da−d
(
x,

ξ

|ξ|

)
dξdx+ C

=

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx

∫ n1/d

1

r−drd−1dr + C

=

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx ln
(
n1/d

)
+ C

=
ln(n)

d

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx ln(n) + C
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with C a constant independent of n. As a consequence one infers that

Res(A) =
[( 1

ln(n+ 1)

∫
|ξ|≤n1/d

∫
Rd
a−d(x, ξ)dxdξ

)
n∈N

]
=

[( ln(n)

ln(n+ 1)

1

d

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx+
C

ln(n+ 1)

)
n∈N

]
=

[(1
d

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx
)
n∈N

]
= ResW (A)

with the identification mentioned before the statement of the proposition.

In reference [LSZ], it is shown that there exist some symbols for which the general-
ized residue is not a constant sequence. We provide a counterexample in the following
exercise, and refer to Example 10.2.10 and Proposition 11.3.22 of that reference for
more information.

Exercise 5.3.16. Consider the smooth function a⋆ : {ξ ∈ Rd | |ξ| > 4} → R given by

a⋆(ξ) := |ξ|m
(
sin

(
ln(ln(|ξ|))

)
+ cos

(
ln(ln(|ξ|))

))
∀|ξ| > 4.

1) Based on this function, show that there exists a symbol a ∈ Sm1,0(Rd) such that
its principal symbol can not be a homogeneous function. For that purpose one can show
that the map

ξ 7→ a⋆(2|ξ|)− 2ma⋆(|ξ|)

does not belong to Sm−1
1,0 (Rd).

2) In the special case m = −d, let ϕ ∈ C∞
c (Rd) and let a ∈ S−d

1,0 (Rd) satisfying
a(x, ξ) := ϕ(x)a⋆(ξ) for any |ξ| > 4 and any x ∈ Rd. Show that

Res
(
a(X,D)

)
=

[
(bn)n∈N

]
with bn = 1

d
sin

(
ln(ln(n1/d))

)
for n large enough. The sequence (bn) is clearly not a

convergent sequence.

5.4 Connes’ trace theorem

In this section we state a generalized version of Connes’ trace theorem and sketch the
main arguments of its proof. Again, our framework are operators acting Rd while the
original setting was for operators acting on compact manifolds.

Recall that the space L1,∞ has been introduced in (3.3) and corresponds to{
A ∈ K (H) | µn(A) ∈ O

(
n−1

)}
. (5.21)
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Theorem 5.4.1. Let T be a compactly supported Laplacian modulated operator with
symbol pT , and let ω be any dilation invariant extended limit on ℓ∞. Then:

(i) T belongs to L1,∞ and

Trω(T ) = ω
(
Res(T )

)
,

(ii) T is Dixmier measurable if and only if Res(T ) is a constant sequence, and then
Trω(T ) = Res(T ).

Remark 5.4.2. In the corresponding statement [LSZ, Thm. 11.5.1] the dilation in-
variance of the extended limit ω is not required. Indeed, it is shown in [LSZ, Sec. 9.7]
that once applied to operators in L1,∞ the dilation invariance of ω holds automatically.
However, since we have not introduced this material and since our Dixmier traces were
introduced on the more general space M1,∞ we shall not consider this refinement here.

As mentioned before, the sketch of the proof will be given subsequently. Our aim is
to mention some corollaries of the previous statement.

Theorem 5.4.3. Let A be a compactly based pseudo-differential operator of order −d.
Then A extends continuously to an element of L1,∞ and satisfies Trω(A) = ω

(
Res(A)

)
for any dilation invariant extended limit ω on ℓ∞.

Proof. First of all, it follows from Theorem 5.3.11 that the operator A extends con-
tinuously to a Laplacian modulated operator. In addition, there exists a function ϕ ∈
C∞
c (Rd) such that ϕ(X)A = A. The operator A′ := Aϕ(X) is then compactly supported

and the difference A−A′ is a compactly based operator and a pseudodifferential opera-
tor of order −∞. Note that the operator A′ corresponds to the one already mentioned in
the statement (iv) of Lemma 5.1.17 and in Lemma 5.1.19. It then follows from Lemma
5.3.14 that Res(A) = Res(A′), and from Lemma 5.1.19 that A − A′ ∈ J1. Thus, one
infers from Theorem 5.4.1 that A′ ∈ L1,∞, and since J1 ⊂ L1,∞ one also gets that
A ∈ L1,∞. Finally, again from Theorem 5.4.1 one deduces that

Trω(A) = Trω(A
′) = ω

(
Res(A′)

)
= ω

(
Res(A)

)
(5.22)

which corresponds to the statement.

Note that this result makes the Dixmier trace of any compactly based pseudo-
differential operator easily computable. Indeed, for a classical symbol the residue Res(A)
of the corresponding pseudo-differential operator A can be computed by its Wodzicki
residue, see Proposition 5.3.15, and the expression ω

(
Res(A)

)
does not depend on ω.

On the other hand, if the symbol is not classical, then the generalized residue Res(A) of
the corresponding operator can be computed by (5.20) in Definition 5.3.13. Then, if this
sequence is not constant, the r.h.s. of (5.22) does depend on ω, but nevertheless it makes
the Dixmier trace Trω(A) computable. For example, the pseudo-differential operator
a(X,D) exhibited in Exercise 5.3.16 is compactly based and possesses a generalized
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residue Res
(
a(X,D)

)
which is not a constant sequence. It then follows that the r.h.s. of

(5.22) depends on the choice of ω.
By collecting the information obtained so far one directly deduces the following

statement:

Corollary 5.4.4. For any ϕ ∈ C∞
c (Rd) and for any dilation invariant extended limit

ω on ℓ∞ one has

Trω
(
ϕ(X)(1−∆)−d/2

)
=

Vol(Sd−1)

d(2π)d

∫
Rd
ϕ(x)dx.

Let us mention that the above equality still holds if ϕ belongs to L2(Rd) and has
compact support. We refer to [LSZ, Thm. 11.7.5] for the proof of this extension.

We now come to the proof of Theorem 5.4.1. In fact, its content is a simple conse-
quence of the following two major statements.

Theorem 5.4.5. Let T be a compactly supported Laplacian-modulated operator with
symbol pT . Then T ∈ L1,∞ and the map

N ∋ n 7→
n∑
j=1

λj(T )−
∫
Rd

∫
|ξ|<n1/d

pT (x, ξ)dξdx ∈ C (5.23)

is bounded, where λj(T ) denote the eigenvalues of T and these eigenvalues are ordered
such that their modulus decrease.

Note that this result should be read with the content of Theorem 2.6.6 in mind.
Indeed, in that result and for a trace class operator A its trace was expressed as a
integral over its Schwartz symbol. Here, the operator T is not trace class, and pT is not
a Schwartz kernel, but anyway the difference between the partial sum of eigenvalues
and a partial integral over the kernel pT remains bounded, as a function of n.

Theorem 5.4.6 (Lidskii’s type formula for the Dixmier trace). For any A ∈ M1,∞ and
for any dilation invariant extended limit on ℓ∞ the following formula holds:

Trω(A) = ω
(( 1

ln(n+ 1)

n∑
j=0

λj(A)
)
n∈N

)
where again λj(T ) denote the eigenvalues of T and these eigenvalues are ordered such
that their modulus decrease.

Based on the previous two statements one has:

Proof of Theorem 5.4.1. i) By Theorem 5.4.5 and the definition of the residue Res(T )
one has T ∈ L1,∞ and

Res(T ) =
[( 1

ln(n+ 1)

n∑
j=1

λj(T )
)
n∈N

]
.
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Since L1,∞ ⊂ M1,∞ we can then apply Theorem 5.4.6 and infer that

Trω(T ) = ω
(( 1

ln(n+ 1)

n∑
j=1

λj(T )
)
n∈N

)
= ω

(
Res(T )

)
.

ii) It is clear that if Res(T ) is a constant sequence, then ω
(
Res(T )

)
= Res(T ) for

any dilation invariant extended limit ω on ℓ∞. For the reverse implication, we refer to
[LSZ, Thm. 10.1.3.(f)] since the statement is based on the notion of Tauberian operator
(see Definition 9.7.1 of that reference) which has not been introduced in these notes.

In the rest of this section we provide some information about the proofs of Theorems
5.4.5 and 5.4.6. These results are rather deep statements and we shall not be able to
prove them in detail. We start with Theorem 5.4.6 which also provides the necessary
tools for the proof of the initial Lidskii’s theorem. We first prove a necessary estimate.

Lemma 5.4.7. Let ω be a dilation invariant extended limit on ℓ∞, and let A ∈ M1,∞.
Then one has

ω
(( n

ln(n+ 1)
µn(A)

)
n∈N

)
= 0

Proof. Since ω = ω ◦ D2 with D2 the dilation operator introduced in Section 3.1 one
infers that

ω
(( 1

ln(n+ 1)

n∑
j=1

µj(A)
)
n∈N

)
= ω

(( 1

ln(⌊n/2⌋+ 1)

⌊n/2⌋∑
j=1

µj(A) + o(n)
)
n∈N

)

= ω
(( 1

ln(n+ 1)

⌊n/2⌋∑
j=1

µj(A) + o(n)
)
n∈N

)
where we have used that limn→∞

ln(n+1)
ln(⌊n/2⌋+1)

= 1. As a consequence, one has

0 = ω
(( 1

ln(n+ 1)

n∑
j=1

µj(A)
)
n∈N

)
− ω

(( 1

ln(n+ 1)

⌊n/2⌋∑
j=1

µj(A) + o(n)
)
n∈N

)
= ω

(( 1

ln(n+ 1)

n∑
j=⌊n/2⌋+1

µj(A) + o(n)
)
n∈N

)
≥ ω

(( n

2 ln(n+ 1)
µn(A)

)
n∈N

)
from which one deduces the statement.

Proof of Theorem 5.4.6. 1) First of all, let A ∈ M1,∞ be self-adjoint, and recall that
A = A+ − A− with A± ≥ 0. By the linearity of the Dixmier trace one has

Trω(A) = Trω(A+)− Trω(A−) = ω
(( 1

ln(n+ 1)

n∑
j=1

{
λj(A+)− λj(A−)

})
n∈N

)
.
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In the point 2) below we shall prove that∣∣∣ n∑
j=1

{
λj(A)− λj(A+) + λj(A−)

}∣∣∣ ≤ nµn(A). (5.24)

It then follows from Lemma 5.4.7 that ω
((

1
ln(n+1)

nµn(A)
)
n∈N

)
= 0, and therefore

Trω(A) = ω
(( 1

ln(n+ 1)

n∑
j=1

λj(A)
)
n∈N

)
.

If A ∈ M1,∞ is a normal operator, it follows from the previous paragraph that

Trω(A) = Trω
(
ℜ(A)

)
+ iTrω

(
ℑ(A)

)
= ω

(( 1

ln(n+ 1)

n∑
j=1

{
λj
(
ℜ(A)

)
+ iλj

(
ℑ(A)

)})
n∈N

)
.

Again in the point 2) below we shall prove that∣∣∣ n∑
j=1

{
λj(A)− λj

(
ℜ(A)

)
− iλj

(
ℑ(A)

)}∣∣∣ ≤ 5nµn(A), (5.25)

from which one infers with Lemma 5.4.7 that

Trω(A) = ω
(( 1

ln(n+ 1)

n∑
j=1

λj(A)
)
n∈N

)
.

For the general case A ∈ M1,∞ one has to rely on a rather deep decomposition of
A, namely A = N + Q with N,Q ∈ M1,∞, N normal, Q satisfying Trω(Q) = 0, and
λj(A) = λj(N). This decomposition is provided for example in [LSZ, Thm. 5.5.1] in
a more general framework. Note also that this decomposition can be used for proving
the usual Lidskii’s theorem, see (2.33). With this information at hand, the proof of the
statement follows directly.

2) For (5.24) one first observes that for any n ∈ N{
λj(A)

}n
j=1

⊂
{{
λj(A+)

}n
j=1

∪
{
− λj(A−)

}n
j=1

}
.

Indeed, this easily follows from the functional calculus of the self-adjoint operator A.
In addition, one also observes that{{

λj(A+)
}n
j=1

∪
{
− λj(A−)

}n
j=1

}
\
{
λj(A)

}n
j=1

⊂
{
λ ∈ C | |λ| ≤ |λn(A)|

}
and that the cardinality of the set on the l.h.s. contains at most n elements. It then
follows that ∣∣∣ n∑

j=1

{
λj(A)− λj(A+) + λj(A−)

}∣∣∣ ≤ n|λn(A)| = nµn(A). (5.26)
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For (5.25) recall first that since A is a normal compact operator it has the canonical
form A =

∑
j λj(A)|fj⟩⟨fj| for λj(A) ∈ C ordered with a decrease of their modulus. It

then follows that for any n ∈ N{
σ(A) ∩ {λ ∈ C | |λ| > µn(A)}

}
⊂ {λj(A)}nj=1 .

One also observes that

{λj(A)}nj=1 \
{
σ(A) ∩ {λ ∈ C | |λ| > µn(A)}

}
⊂ {λ ∈ C | |λ| ≤ µn(A)}

and that the cardinality of the set on the l.h.s. contains at most n elements. As a
consequence one has ∣∣∣ n∑

j=1

λj(A)−
∑

λ∈σ(A),|λ|>µn(A)

λ
∣∣∣ ≤ nµn(A).

By a similar argument one also gets that∣∣∣ n∑
j=1

λj
(
ℜ(A)

)
−

∑
λ∈σ(ℜ(A)),|λ|>µn(A)

λ
∣∣∣ ≤ nµn(A).

Since ℜ
(
σ(A)

)
= σ

(
ℜ(A)

)
, by the normality of A, this is equivalent to∣∣∣ n∑

j=1

λj
(
ℜ(A)

)
−

∑
λ∈σ(A),|ℜ(λ)|>µn(A)

ℜ(λ)
∣∣∣ ≤ nµn(A). (5.27)

On the other hand one infers that∣∣∣ ∑
λ∈σ(A),|ℜ(λ)|>µn(A)

ℜ(λ)−
∑

λ∈σ(A),|λ|>µn(A)

ℜ(λ)
∣∣∣

≤
∑

λ∈σ(A),|ℜ(λ)|≤µn(A)| and |λ|≥µn(A)

|ℜ(λ)|

≤
∑

λ∈σ(A),|λ|≥µn(A)

µn(A)

= nµn(A).

By this estimate together with (5.27) we finally infer that∣∣∣ n∑
j=1

λj
(
ℜ(A)

)
−

∑
λ∈σ(A),|λ|>µn(A)

ℜ(λ)
∣∣∣ ≤ 2nµn(A).

Similarly, one can also deduce that∣∣∣ n∑
j=1

λj
(
ℑ(A)

)
−

∑
λ∈σ(A),|λ|>µn(A)

ℑ(λ)
∣∣∣ ≤ 2nµn(A).
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By combining the previous two estimates one infers that∣∣∣ n∑
j=1

λj
(
ℜ(A)

)
+ iλj

(
ℑ(A)

)
−

∑
λ∈σ(A),|λ|>µn(A)

λ
∣∣∣ ≤ 4nµn(A), (5.28)

It finally follows from (5.26) and (5.28) that∣∣∣ n∑
j=1

{
λj(A)− λj

(
ℜ(A)

)
− iλj

(
ℑ(A)

)}∣∣∣ ≤ 5nµn(A),

as announced.

Let us now come to the proof of Theorem 5.4.5 which is at the heart of Connes’
trace theorem. A first step in the proof consists in studying more deeply the notion
of V -modulated operator. As already mentioned at the beginning of Section 5.3 this
notion is more general than Laplacian-modulated and has some advantages. For the
record:

Definition 5.4.8. Let V ∈ B(H) be positive. An operator T ∈ B(H) is V -modulated

if the operator T
(
1 + tV

)−1
is a Hilbert-Schmidt operator for any t > 0, and

∥T∥mod := sup
t>0

t1/2
∥∥T(1 + tV

)−1∥∥
2
<∞. (5.29)

Before going on with the main result related to V -modulated operator, let us provide
an equivalent definition. It proof involves the functional calculus of the self-adjoint
operator V .

Lemma 5.4.9. Let V ∈ J2 be positive. An operator T ∈ B(H) is V -modulated if and
only if ∥∥TEV ([0, t−1]

)∥∥
2
= O(t−1/2) ∀t > 0, (5.30)

where EV denotes the spectral measure associated with the operator V .

Proof. For fixed t > 0, observe first that for any x ∈ R+ one has 1 ≤ 2(1 + tx)−1 if and
only if x ≤ 1/t. Since in addition 2(1+tx)−1 > 0 one infers that the following inequality
holds for functions: χ[0,1/t] ≤ 2(1 + t · )−1. By functional calculus for V it follows that

EV
(
[0, t−1]

)
≡ χ[0,1/t](V ) ≤ 2(1 + tV )−1.

Thus, if we assume that T satisfies (5.29) one infers that∥∥TEV ([0, t−1]
)∥∥

2
=

∥∥T(2(1 + tV
)−1)

EV
(
[0, t−1]

)(
2(1 + tV

)−1)−1∥∥
2

≤ 2
∥∥T (1 + tV

)−1∥∥
2

∥∥EV ([0, t−1]
)(
2(1 + tV

)−1)−1∥∥
≤

∥∥T (1 + tV
)−1∥∥

2

≤ ∥T∥mod t−1/2.
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For the converse assertion, let us first assume that ∥V ∥ < 1. Since the inequality
(5.29) is always satisfied for t ∈ (0, 1) we can consider without restriction that t ≥ 1.
Let k ∈ N0 such that t ∈ [2k, 2k+1). Then by assuming (5.30) one has

∥∥T(1 + tV
)−1∥∥ ≤

∥∥TEV ([0, 2−k])∥2 + k−1∑
j=0

∥∥TEV ((2−j−1, 2−j]
)
(1 + tV )−1

∥∥
2

≤ O(t−1/2) +
k−1∑
j=0

(1 + t2−j−1)−1
∥∥TEV ((2−j−1, 2−j]

)∥∥
2

≤ O(t−1/2) + C

k−1∑
j=0

(1 + 2k−j−1)−1 2−j/2

= O(t−1/2) + C
k−1∑
j=0

√
2 2−k/2

2(j−k+1)/2 + 2−(j−k+1)/2

≤ O(t−1/2).

Note that for the summation in the last term one can use an argument involving the
estimate

∫
R

1
cosh(x)

dx < 0.

For arbitrary V > 0 one can consider (1 + tV ) = (1 + {t∥V ∥}V̂ ) with V̂ = V
∥V ∥

which is of norm 1. The adaptation of the proof is then straightforward.

The main result in the present context is provided in [LSZ, Thm. 11.2.3]. We can
not provide a proof of this statement without additional efforts, but let us state it and
see its role in the proof of Theorem 5.4.5. By a strictly positive operator we denote a
positive operator with empty kernel.

Theorem 5.4.10. Let V ∈ L1,∞ be a strictly positive operator, and let T ∈ B(H)
be a V -modulated operator. Let {fn} be an orthonormal basis of H ordered such that
V fn = µn(V )fn for any n ∈ N. Then we have:

(i) T ∈ L1,∞ and the sequence
(
⟨fn, T fn⟩

)
n∈N belongs to ℓ1,∞,

(ii) The map

N ∋
n∑
j=1

λj(T )−
n∑
j=1

⟨fj, T fj⟩ ∈ C (5.31)

is bounded.

Note that equation (5.31) should be read with the results of Chapter 2 on the usual
trace in mind. Indeed, for a trace class operator A, the sum

∑
n⟨fn, Afn⟩ gives the same

value for an arbitrary orthonormal basis ofH, and by Lidskii’s theorem this sum is equal
to

∑
j λj(A). In the present situation, the operator T is not trace class, and therefore

neither
∑

j λj(T ) nor
∑

n⟨fn, T fn⟩ are well-defined. However, equation (5.31) states
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that a suitable difference (depending on a parameter n) of these expressions remains
bounded for all n. One additional difference with the content of Chapter 2 is that the
basis of H is not arbitrary but is adapted to the operator V to which the operator T is
modulated. In a vague sense it means that the chosen basis of H is made of elements
which have a certain regularity with respect to T .

Clearly, the above result can not be applied for any Laplacian-modulated operator
since the operator (1 − ∆)−d/2 is never a compact operator. However, the trick is to
replace the Laplacian operator by the Laplacian on a bounded domain. This change
will be possible thanks to the assumption on the support of the operator T . So, for
any m ∈ Zd let us set em ∈ L2([0, 1]d) by em(x) := e2πim·x and let us denote by
−∆0 the Laplacian in L2([0, 1]d) with domain D(−∆) := Span

(
{em}m∈Zd

)
. Clearly,

−∆0 em = 4π2m2 em. One major interest in this operator is that its resolvent has very
good spectral properties, more precisely one has (1−∆0)

−d/2 ∈ L1,∞ as a consequence
of Weyl law. In addition, this operator is strictly positive, and therefore satisfies the
assumptions of Theorem 5.4.10

Exercise 5.4.11. By using the Weyl asymptotic provided in the theorem on page 30 of
[Cha] show that (1 − ∆0)

−d/2 ∈ L1,∞. Show also that such an inclusion holds for the
Laplacian ∆0 for any bounded rectangular domain in Rd.

In the sequel, we shall consider the functions em as periodic functions on R2. Clearly,
these functions are not in L2(Rd), but nevertheless they are going to play an important
role.

For the next statement, recall that if T is a Hilbert-Schmidt operator and if {fn}
is an orthogonal basis of H, then the summation

∑
n ∥Tfn∥2 is finite, see Proposition

2.5.4. Clearly, the family of functions {em} is not suitable for such an estimate, but
once multiplied by a nice function one gets:

Lemma 5.4.12. Let T ∈ B(H) be a Laplacian-modulated operator, and let ϕ be an
arbitrary element of the Schwartz space S(Rd). Then one has∑

|m|>t

∥T (ϕ em)∥2 = O(t−d), ∀t > 0.

The rather lengthy proof of this lemma is provided in [LSZ, Lem. 11.4.2]. It is only
based on the properties of the Schwartz functions and makes an extensive used of the
algebra L1

mod(Rd).
With the previous result we can show that any compactly supported Laplacian-

modulated operator is also ∆0-modulated operator. For the compactly supported op-
erator, we shall assume from now on that the support is inside [0, 1]d. Obviously, this
is not a loss of generality since other arbitrary cubes could have been chosen, see also
Exercise 5.4.11.

Theorem 5.4.13. Let T ∈ B(H) be a compactly supported Laplacian-modulated opera-
tor with support in [0, 1]d. Then the operator T , considered from L2([0, 1]d) to L2([0, 1]d)
is ∆0-modulated.
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Proof. For any m ∈ Zd let em be the functions introduced above, seen either as element
of L2([0, 1]d) or as continuous and periodic functions on Rd. Let also ϕ ∈ S(Rd) be
positive and such that ϕ(x) = 1 for any x ∈ [0, 1]d. Since T is compactly supported,
one has T em = T (ϕ em).

Now, for any t > 0 and in the Hilbert space L2([0, 1]d) one has∥∥TE(1−∆0)−d/2([0, t
−1])

∥∥2

2
=

∑
1+4π2|m|2≥t2/d

∥T em ∥2

≤
∑

|m|≥t1/d/2π

∥T (ϕ em)∥2

= O(t−1)

where the last estimate is provided by Lemma 5.4.12. The statement follows now directly
from Lemma 5.4.9.

Based on Theorem 5.4.10 let us finally provide a sketch of the proof of Theorem
5.4.5.

Proof of Theorem 5.4.5. 1) We shall assume without loss of generality that the com-
pactly supported operator T has support in [0, 1]d. As already observed, the oper-
ator V := (1 − ∆0)

−d/2 belongs to L1,∞ and is strictly positive. In addition, one
has shown in Theorem 5.4.13 that T is ∆0-modulated, or more precisely that T :
L2([0, 1]d) → L2([0, 1]d) is V -modulated. As a consequence of Theorem 5.4.10 one infers
that T ∈ L1,∞

(
L2([0, 1]d)

)
, and then by the inclusion of L2([0, 1]d) into L2(Rd) that

T ∈ L1,∞
(
L2(Rd)

)
as well. In that respect it is worth noting that the eigenvalues of

T : L2([0, 1]d) → L2([0, 1]d) and of T : L2(Rd) → L2(Rd) coincide since the subspace
L2([0, 1]d) is left invariant by T .

Now, let {fn} be a rearrangement of the eigenfunctions {em} according to an in-
crease of |m|. More precisely for any given n ∈ N we have fn = emn with |mn| ≥ |mn′ |
whenever n > n′. One can also observe that |mn| ∼= n1/d. Then Theorem 5.4.10 implies
that

n∑
j=1

λj(T ) =
n∑
j=1

⟨fj, T fj⟩+O(1) =
∑

|m|≤n1/d

⟨em, T em⟩+O(1). (5.32)

2) For the initial statement, it remains to show that for any t > 0∫
|ξ|<t

∫
Rd

pT (x, ξ)dξdx−
∑
|m|≤t

⟨em, T em⟩ = O(1). (5.33)

For that purpose, let ϕ ∈ S(Rd) be positive and such that ϕ(x) = 1 for any x ∈ [0, 1]d.
We then have T em = T (ϕ em) and [F (ϕ em)](x) = [Fϕ](x −m). It then follows from
the explicit formula (5.17) that

⟨em, T em⟩ =
∫
Rd

∫
Rd

e2πix·(ξ−m) pT (x, ξ)[Fϕ](ξ −m)dξdx.
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By taking into account that pT (x, ξ) = 0 if x ̸∈ [0, 1]d, one gets∣∣∣ ∫
Rn

∫
|ξ|<t

pT (x, ξ)dξdx−
∑
|m|≤t

⟨em, T em⟩
∣∣∣

=
∣∣∣ ∫

Rd

∫
[0,1]d

pT (x, ξ)
( ∑

|m|≤t

e2πix·(ξ−m)[Fϕ](ξ −m)− ξ[0,t](|ξ|)
)
dxdξ

∣∣∣
Now, it has been shown in [LSZ, Lem. 11.4.4] that the term inside the big parenthesis
can be further estimated and one gets∑

|m|≤t

e2πix·(ξ−m)[Fϕ](ξ −m)− ξ[0,t](|ξ|) = O
(
⟨t− |ξ|⟩−d

)
for any t > 0 and ξ ∈ Rd, and uniformly in x ∈ [0, 1]d. It only remains then to estimate
the term ∫

Rd

∫
[0,1]d

|pT (x, ξ)|⟨t− |ξ|⟩−ddxdξ.

It is again shown in the technical statement [LSZ, Lem. 11.4.5] that this term is uni-
formly bounded for t > 0. By setting t = n1/d in (5.33) and by using (5.32) one directly
obtains the statement contained in (5.23).
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