
Chapter 4

Heat kernel and ζ-function

In this chapter we present the links between the Dixmier traces and two other func-
tions which are also quite well-known. Some additional definitions or results skipped
in Chapter 3 will be introduced on the way. First of all, the notion of symmetric or
fully symmetric linear functional can not be avoided any further. Recall that for any
A ∈ K (H) the function µ(·, A) has been introduced in (3.14).

Definition 4.0.19. Let Mψ be a Lorentz ideal introduced in (3.16), and let φ be a
linear functional on Mψ.

(i) φ is symmetric if for any A,B ∈ Mψ with A ≥ 0, B ≥ 0 and satisfying µ(·, B) =
µ(·, A) one has φ(B) = φ(A),

(ii) φ is fully symmetric if for any A,B ∈ Mψ with A ≥ 0, B ≥ 0 and satisfying∫ x
0
µ(y,B)dy ≤

∫ x
0
µ(y, A)dy for any x > 0 one has φ(B) ≤ φ(A).

Note that for the notion of a symmetric norm on ℓ∞ had already been introduced in
Definition 2.3.8 and coincide with the previous one in the discrete setting. On the other
hand, the notion of fully symmetric functional was only mentioned in Section 3.4.3
but was not further developed at this place. However, the inequality

∫ x
0
µ(y,B) dy ≤∫ x

0
µ(y, A)dy corresponds to the notation B Î A in the discrete setting of Section 2.3.

Note finally that a fully symmetric linear functional φ is automatically positive since
0 ≤ A implies that 0 =

∫ x
0
µ(y, 0) dy ≤

∫ x
0
µ(y, A) dy for any x > 0, from which one

infers that 0 = φ(0) ≤ φ(A).

4.1 ζ-function residue

For a positive operator A the corresponding ζ-function is defined by the map

s 7→ ζ(s) := Tr(As)

whenever this expression is meaningful. For example if there exists s0 > 1 such that As0

belongs to the trace class ideal J1, then the previous expression is well-defined for any
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s ≥ s0. A rather common assumption on A is to assume that As ∈ J1 for any s > 1
and to study the asymptotic behavior of (s− 1)ζ(s) as s↘ 1. For example if A ∈ J1,
then the limit clearly exists and is equal to 0. The aim of this section is to consider more
general positive operator A and to relate the limits (suitably defined) at s = 1 with
some Dixmier traces. Here suitable means that we shall consider the limits in a broad
sense, namely with the notion of extended limits already used in the previous chapter.
Note that for convenience and in order to stay closer to the notations introduced so far,
we shall replace the parameter s by 1 + 1/x and consider the limit x→ ∞.

First of all, recall that an extended limit γ on L∞(R+) is a positive element of
L∞(R+)

∗ satisfying γ(1) = 1 and such that γ(f) = 0 whenever f ∈ L∞(R+) has
compact support. Then, for any extended limit γ on L∞(R+) one can define the function
ζγ :

(
M1,∞

)
+
→ R+ by

ζγ(A) := γ
(
x 7→ 1

x
Tr

(
A1+1/x

))
. (4.1)

Our first duty is to check that this expression is well-defined. For that purpose, we
shall need a result of which can be useful in other context. Its proof can be found in
[Fac, Lem. 4.1].

Lemma 4.1.1. Let µ1, µ2 : R+ → R be two decreasing and upper-bounded functions
satisfying for any x > 0 ∫ x

0

µ1(y)dy ≤
∫ x

0

µ2(y)dy.

Then, for any convex and increasing function f : R → R and for any x > 0 one has∫ x

0

f
(
µ1(y)

)
dy ≤

∫ x

0

f
(
µ2(y)

)
dy.

Note that if µ1 and µ2 takes values in R+ an important example for the function f
consists in the map R+ ∋ x 7→ xt for any t ≥ 1.

Lemma 4.1.2. For any extended limit γ on L∞(R+) and for any A ∈
(
M1,∞

)
+
one

has ζγ(A) <∞.

Proof. Observe first that if C is trace class and positive, then

Tr(C) =
∑
j

λj(C) =
∑
j

µj(C) =

∫ ∞

0

µ(y, C)dy

where the function µ(·, C) was introduced in (3.14). Thus, for any C ≥ 0 such that
C1+1/x ∈ J1 for some x > 0, one deduces by functional calculus that

Tr(C1+1/x) =

∫ ∞

0

µ(y, C)1+1/xdy. (4.2)
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On the other hand, for any A ∈
(
M1,∞

)
+
one has

sup
z>0

1

ln(z + 1)

∫ z

0

µ(y,A)dy =: ∥A∥1,∞

which implies that for any z > 0∫ z

0

µ(y, A)dy ≤ ∥A∥1,∞ ln(1 + z) =

∫ z

0

∥A∥1,∞
1 + y

dy. (4.3)

Now, by taking these results into account as well as the content of the previous
lemma one infers that

Tr(A1+1/x) =

∫ ∞

0

µ(y,A)1+1/xdy ≤
∫ ∞

0

(∥A∥1,∞
1 + y

)1+1/x

dy

= ∥A∥1+1/x
1,∞

∫ ∞

0

1

(1 + y)1+1/x
dy = x∥A∥1+1/x

1,∞ .

As a consequence of this inequality and since γ is an extended limit one directly gets
that ζγ(A) ≤ ∥A∥1,∞.

The main property of the map ζγ is summarized in the following statement whose
proof can be find either in [LSZ, Thm. 8.6.4] or in [SZ, Thm. 8].

Theorem 4.1.3. For any extended limit γ on L∞(R+) the map ζγ extends by linearity
to a fully symmetric linear functional on M1,∞.

Let us just mention that for the linearity it is sufficient to show that ζγ is a weight
on

(
M1,∞

)
+
, namely that it is positive homogeneous and additive, see Definition 2.6.7.

The map ζγ is sometimes called a ζ-function residue.
As already mentioned at the end of Chapter 3, the set of all normalized (i.e. of

norm 1) fully symmetric linear functionals on M1,∞ is in bijective correspondence with
the set of all Dixmier traces, as defined in Definition 3.4.11. This statement corresponds
to the main result of [KSS]. We are naturally led to the following result.

Corollary 4.1.4. For any extended limit γ on L∞(R+) there exists a dilation invariant
extended limit ω on L∞(R+) such that

ζγ = Trω.

It is then natural to wonder about the relation between γ and ω. In fact, a sim-
ple relation has been exhibited only in a restricted setting, see [SZ, Thm. ] or [LSZ,
Thm. 8.6.8]. For stating the result, let us recall from Section 3.4.1 that starting from a
translated invariant extended limit ω on L∞(R) we have defined a dilatation invariant
extended limit exp∗ ω on L∞(R+). Conversely, starting from a dilation invariant ex-
tended limit ω on L∞(R+) one easily observes that defining ln

∗ ω by [ln∗ ω](f) = ω(f◦ln)
we get a translation invariant extended limit on L∞(R). Note that this extended limit
is often denoted by ω ◦ ln but we shall avoid this ambiguous notation.
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Theorem 4.1.5. Let ω be a dilatation invariant extended limit on L∞(R+) and assume
that the extended limit ln∗ ω is also dilation invariant on R+. Then one has

ζln∗ ω = Trω.

Remark 4.1.6. In Corollary 4.1.4 it is claimed that one can associate to every ζ-
function residue constructed with an extended limit γ on L∞(R+) a Dixmier trace Trω.
However, let us mention that the converse is not true, namely the set of Dixmier traces
on M1,∞ is strictly larger than the set of ζ-function residues. We refer to [LSZ, Sec. 8.7]
for more explanations and for a concrete counterexample.

Let us close this section with a result about the uniqueness of the values taken
by the ζ-function residues. This result will complement the one already mentioned in
Theorem 3.4.18. Its proof can be found in [CS2, Thm. 7]. Recall that the notion of
Dixmier measurable has been introduced in Definition 3.4.16 and means that all values
obtained by Trω(A) are the same, for all dilation invariant extended limits ω.

Theorem 4.1.7. For any A ∈
(
M1,∞

)
+
the following conditions are equivalent:

(i) A is Dixmier measurable,

(ii) The limit limx→∞
1

ln(x+1)

∫ x
0
µ(y,A)dy exits,

(iii) The limit limx→∞
1
x
Tr

(
A1+1/x

)
exits,

(iv) The limit lims↘1(s− 1)Tr
(
As

)
exits,

Furthermore, if any of these conditions is satisfied, all limiting values exist and coincide
with Trω(A) for any dilation invariant extended limit on L∞(R+). These values also
coincide with the limit lims↘1(s− 1)ζγ(s) for any extended limit γ on L∞(R+).

4.2 The heat kernel functional

The ζ-function mentioned in the previous section shares many properties with the heat
kernel functional that we shall briefly introduce here. For a positive operator A the
corresponding heat kernel function is defined by the map

s 7→ Tr
(
exp(−sA−1)

)
whenever such an expression is meaningful. Since the behavior of this function is usually
studied around 0, we shall replace the parameter s by 1/x and consider the map x 7→
1
x
Tr

(
exp(−(xA)−1)

)
.

In order to study this function, we introduce the logarithmic mean M : L∞(R+) →
L∞(R+) defined for f ∈ L∞(R+) and any x > 1 by

[Mf ](x) :=
1

ln(x)

∫ x

1

f(y)
dy

y
. (4.4)
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With this definition at hand, we define for any extended limit ω on L∞(R+) the func-
tional ξω :

(
M1,∞

)
+
→ R+ by

ξω(A) := (ω ◦M)
(
x 7→ 1

x
Tr

(
exp(−(xA)−1)

))
. (4.5)

In the next statement we ensure that the above expression is well defined.

Lemma 4.2.1. Let A ∈
(
M1,∞

)
+
and consider ω an extended limit on L∞(R+)

(i) The image by M of the function x 7→ 1
x
Tr

(
exp(−(xA)−1)

)
belongs to L∞(R+),

(ii) The following equality holds

ξω(A) = ω
(
x 7→ 1

ln(x+ 1)
Tr

(
A exp(−(xA)−1)

))
where ξω(A) is defined by (4.5).

Proof. 1) Let us first consider A ∈
(
M1,∞

)
+
and µ(y) := ∥A∥1,∞ 1

1+y
for any y > 0.

Then, by the inequality (4.3) one has for any z > 0∫ z

0

µ(y, A)dy ≤
∫ z

0

∥A∥1,∞
1 + y

dy =

∫ z

0

µ(y)dy. (4.6)

For any fixed x > 0, since the function f : R+ → R+ defined by fx(z) := z e−(xz)−1

is convex and increasing on R+ we infer from Lemma 4.1.1 and from the functional
calculus of self-adjoint operators that for any x > 0 one has

Tr
(
A exp(−(xA)−1)

)
=

∫ ∞

0

fx
(
µ(y,A)

)
dy

≤
∫ ∞

0

fx
(
µ(y)

)
dy

=

∫ ∞

0

µ(y) e−(xµ(y))−1

dy

=

∫ ∞

0

∥A∥1,∞
1

1 + y
e−(x∥A∥1,∞)−1(1+y) dy

= ∥A∥1,∞
∫ ∞

(x∥A∥1,∞)−1

1

z
e−z dz

<∞.

One thus deduces that A exp(−(xA)−1) ∈ J1 and that

Tr
(
A exp(−(xA)−1)

)
∈ O

(
ln(x+ 1)

)
for x→ ∞. (4.7)
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2) By definition we have

M
(
x 7→ 1

x
Tr

(
exp(−(xA)−1)

))
=

(
x 7→ 1

ln(x)

∫ x

1

Tr
(
e−(yA)−1 )dy

y2

)
.

However, since ∫ x

1

e−(yA)−1 dy

y2
=

∫ 1

1/x

e−uA
−1

du = A e−(xA)−1 −A e−A
−1

,

it follows that

M
(
x 7→ 1

x
Tr

(
exp(−(xA)−1)

))
=

(
x 7→ 1

ln(x)

(
Tr(A e−(xA)−1

)− Tr(A e−A
−1

)
))
. (4.8)

3) By taking the previous expression into account as well as the estimate obtained

in (4.7), one infers that M
(
x 7→ 1

x
Tr

(
exp(−(xA)−1)

))
is bounded for x large. In

addition, since the r.h.s. of (4.8) is continuous and vanishes when x↘ 0, one deduces the
statement (i). Since ω is an extended limit and thus vanishes on C0(R+), the statement
(ii) easily follows from the expression obtained in (4.8).

The next statement is the analogue of Theorem 4.1.3 but for the heat kernel. Its
proof can be found in [LSZ, Thm. 8.2.4].

Theorem 4.2.2. For any dilation invariant extended limit γ on L∞(R+) the map ξγ
extends by linearity to a fully symmetric linear functional on M1,∞.

By the previous result one directly infers that a statement similar to the content
of Corollary 4.1.4 holds for the functional ξγ. However, an even stronger result holds in
this case.

Theorem 4.2.3. (i) If ω is a dilation invariant extended limit on L∞(R+) satisfying
ω ◦M = ω, then ξω = Trω,

(ii) For any normalized fully symmetric linear functional φ on M1,∞ there exists a
dilation invariant extended limit ω on L∞(R+) such that φ = ξω.

These two results can be found in [LSZ, Thm. 8.2.9 & Thm. 8.3.6] to which we refer
for the proofs and for more information.


