
Chapter 3

The Dixmier trace

The aim of this chapter is to present the construction of Dixmier of a non-normal tracial
weight on B(H). Even if the paper of Dixmier [Dix] is only 2 pages long, we will use more
pages for understanding and explaining the details. One reason for devoting so much
time for this construction is that this trace had an enormous impact on the program
of A. Connes in non-commutative geometry, and also several interesting applications.
Such developments will be presented in the following chapters.

Before starting with the construction, let us just mention another non-trivial (but
non-interesting) non-normal tracial weight on B(H). For any B ∈ B(H)+ we set

τ(B) :=

{
Tr(B) if B ∈ F (H)
∞ if B ̸∈ F (H).

Note that the Dixmier trace will not be of this form. One of its special features is to
vanish on the usual trace class elements of B(H).

3.1 Invariant states

The construction of the Dixmier trace relies on an invariant state on ℓ∞ ≡ ℓ∞(N). We
provide now some information on such a state, following closely the paper [CS1] to
which we refer for part of the proofs.

A state on ℓ∞ consists in a positive linear functional ω : ℓ∞ → C satisfying ω(1) = 1.
Here we use the notation 1 for the element (1, 1, 1, . . . ) ∈ ℓ∞, and recall that the last
condition implies that ∥ω∥ = 1, see [Mur, Corol. 3.3.5]. Clearly, ∥ω∥ denotes the norm
of ω as an element of ℓ∞(N)∗. We also recall that positivity means that ω(a) ≥ 0 for any
a = (an) ∈ ℓ∞ satisfying an ≥ 0 for any n ∈ N. The set of all states on ℓ∞ is denoted
by S(ℓ∞).

By the positivity of ω and its normalization, let us already observe that for any
real-valued a ∈ ℓ∞ one has

inf
n
an ≤ ω(a) ≤ sup

n
an. (3.1)

We refer to [Lor] for a general introduction on states on ℓ∞.
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48 CHAPTER 3. THE DIXMIER TRACE

Let us now introduce three operations on ℓ∞, namely the shift operator S : ℓ∞ →
ℓ∞, the Cesàro operator H : ℓ∞ → ℓ∞, and the dilation operators Dn : ℓ∞ → ℓ∞ for
any n ∈ N defined by

S
(
(a1, a2, a3, . . . )

)
= (a2, a3, a4, . . . ),

H
(
(a1, a2, a3, . . . )

)
=

(
a1,

a1 + a2
2

,
a1 + a2 + a3

3
, . . .

)
,

Dn

(
(a1, a2, a3, . . . )

)
=

(
a1, . . . , a1︸ ︷︷ ︸

n

, a2, . . . , a2︸ ︷︷ ︸
n

, . . .
)
.

The following properties of these operations can easily be checked:

Exercise 3.1.1. The three operators S,H,Dn : ℓ∞ → ℓ∞ leave the positive cone (ℓ∞)+
invariant, leave 1 invariant and have norm 1. In addition, {Dn} is an Abelian semi-
group.

More interesting relations can also be shown:

Extension 3.1.2. The following properties hold:

(i) DnS = SdDn for any n ∈ N,

(ii)
(
HS − SH

)
(a) ∈ c0 for any a ∈ ℓ∞,

(iii)
(
HDn −DnH

)
(a) ∈ c0 for any a ∈ ℓ∞.

The shift operator allows us to introduce an important concept on S(ℓ∞): A state
ω on ℓ∞ is called a Banach limit if it is invariant under translations, namely if ω(Sa) =
ω(a) for any a ∈ ℓ∞. As a consequence of this property a Banach limit always satisfies
ω(a) = 0 if a ∈ c0. The set all Banach limits will be denoted by BL(ℓ∞). Note that for
Banach limits the inequalities (3.1) can be slightly improved, namely

lim inf
n→∞

an ≤ ω(a) ≤ lim sup
n→∞

an. (3.2)

Subsequently we shall prove the existence of invariant states. The main argument
in the proof is the Markov-Kakutani fixed point theorem, that we first recall.

Theorem 3.1.3 (Markov-Kakutani). Let M be a locally convex Hausdorff space and
let Ω be a non-empty compact and convex subset of M. Let F be an Abelian semigroup
of continuous linear operators on M which satisfies F (Ω) ⊂ Ω for any F ∈ F . Then
there exists an element x ∈ Ω such that F (x) = x for all F ∈ F .

We shall now use this theorem for the space
(
ℓ∞(N)

)∗
endowed with the weak∗-

topology. The following statement and proof is borrowed from [CS1, Thm. 4.3].

Theorem 3.1.4. There exists a state ω̃ on ℓ∞ such that for all n ≥ 1 one has

ω̃ ◦ S = ω̃ ◦H = ω̃ ◦Dn = ω̃.
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In the following proof, we shall use the convenient notations

S∗ω := ω ◦ S, H∗ω = ω ◦H, D∗
nω = ω ◦Dn ∀ω ∈ S(ℓ∞).

Proof. Let us set Ω0 := BL(ℓ∞), which is the set of Banach limits, and observe that
it is convex and weak∗-compact, by Banach-Alaoglu theorem. Let us also observe that
D∗
n(Ω0) ⊂ Ω0. Indeed by the content of the Extension 3.1.2 one infers that S∗D∗

n =
D∗
n(S

∗)d, and therefore for any ω ∈ Ω0

S∗(D∗
nω) = D∗

n(S
∗)dω = D∗

nω

which implies that D∗
nω belongs to Ω0, bt its definition. As a consequence, one can

apply Theorem 3.1.3 to the set Ω0 and to the Abelian semi-group {D∗
n}. The resulting

set of fixed points will be denoted by Ω1, namely

Ω1 :=
{
ω ∈ S(ℓ∞) | S∗ω = ω and D∗

nω = ω ∀n ∈ N
}
.

This set is non-empty, and again it is convex and weak∗-compact.
Let us now show that H∗(Ω1) ⊂ Ω1. Recall that for any ω ∈ BL(ℓ∞) and any a ∈ c0

one has ω(a) = 0. One then infers again from Extension 3.1.2 that for ω ∈ Ω1 and any
a ∈ ℓ∞ one has (

D∗
nH

∗ω −H∗D∗
nω

)
(a) = ω

((
HDn −DnH

)
(a)

)
= 0.

As a consequence it follows that D∗
nH

∗ω = H∗D∗
nω = H∗ω. Similarly, one also gets

from Extension 3.1.2 that S∗H∗ω = H∗ω for any ω ∈ Ω1. These two properties imply
that H∗ω belong to Ω1, or equivalently H

∗(Ω1) ⊂ Ω1. By applying once again Theorem
3.1.3 to the set Ω1 and to the semi-group {(H∗)d} we conclude that there exists ω̃ ∈ Ω1

such that H∗ω̃ = ω̃. Such a state ω̃ satisfies all the requirements of the statement.

3.2 Additional sequence spaces

Let us still introduce some additional sequence spaces which complement the ones
already introduced in Examples 2.3.10. These spaces were not mentioned in the paper
[Dix] but one of them will appear naturally in this context. Note that in Chapter 2 we
concentrated on normed ideals. However, the Calkin correspondence in Theorem 2.4.5 is
much stronger since it does not require to speak about norms. Here we take advantage
of this fact.

First of all, for any p ≥ 1 recall that

ℓp,w =
{
a ∈ c0 | a∗n ∈ O

(
n−1/p

)}
.

This clearly defines a Calkin space, see Definition 2.4.4. The corresponding two-sided
ideals of B(H) is denoted by Jp,w. Note that these spaces are also often denoted by
ℓp,∞ and Lp,∞, and one has

Lp,∞ =
{
A ∈ K (H) | µn(A) ∈ O

(
n−1/p

)}
. (3.3)
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For applications, the space L1,∞ is the most important one of the above family.
Note that one can define a quasi-norm1 on this space by the formula

∥A∥1,∞ := sup
n≥1

nµn(A).

For an increasing and concave function ψ : [0,∞) → [0,∞) satisfying limx↘0 ψ(x) =
0 and limx→∞ ψ(x) = ∞ we define the Lorentz sequence space

mψ :=
{
a ∈ c0 | ∥a∥mψ := sup

n≥1

1

ψ(n)

d∑
j=1

a∗j <∞
}
. (3.4)

Examples of such functions ψ are x 7→ xα or x 7→
(
ln(x+1)

)α
for any α ∈ (0, 1]. Again,

mψ is a Calkin space, and the corresponding two-sided ideal is denoted by Jψ. Note
that in the special case ψ(x) = ln(x + 1) the notations m1,∞ and M1,∞ are also often
used in the literature, and one has

M1,∞ =
{
A ∈ K (H) | sup

n≥1

1

ln(n+ 1)

d∑
j=1

µj(A) <∞
}
. (3.5)

Remark 3.2.1. The notations in the literature are not fully fixed and one has to pay
attention to the definition used in each paper or book. The spaces L1,∞ and M1,∞ are
often presented with different notations. We refer also to the Example 1.2.9 in [LSZ].

Exercise 3.2.2. Show that the following inclusions hold: ℓ1 ⊂ ℓ1,∞ ⊂ m1,∞. For that
purpose one can also look at [LSZ, Lem. 1.2.8].

3.3 Dixmier’s construction

Even if the following proof does not correspond exactly to the content of [Dix] it is very
close to it. For the arguments we mainly follow [Les, Sec. 2.3] and [CS1, Sec. 5.1].

Theorem 3.3.1. Let ω be a state on ℓ∞ which vanishes on c0 and which is invariant
under D2. For any A ∈

(
M1,∞

)
+
let us set

Trω(A) := ω
(( 1

ln(n+ 1)

d∑
j=1

µj(A)
)
n∈N

)
. (3.6)

Then Trω extends by linearity to a non-trivial trace on M1,∞, and by setting Trω(A) = ∞
for all A ∈ B(H)+\

(
M1,∞

)
+
one extends Trω to a non-normal tracial weight on B(H).

If A ∈ J1, then Trω(A) = 0.

1A quasi-norm Φ on a complex vector space V is a map V → R+ which satisfies for any V and
λ ∈ C the following properties: i) Φ(λa) = |λ|Φ(a), ii) Φ(a + b) ≤ c

(
Φ(a) + Φ(b)

)
for some c > 0,

iii) Φ(a) = 0 if and only if a = 0.
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Before starting with the proof, let us mention that the existence of a state on ℓ∞
satisfying the condition required by this theorem is already a consequence of Theorem
3.1.4. In fact, the states mentioned in this theorem satisfy an unnecessary condition
related to the Cesàro operator H. The larger subset Ω1 of states mentioned in the proof
of Theorem 3.1.4 is also suitable for our purpose. Let us also mention that alternative
notations are often used for (3.6) as for example

Trω(A) ≡ ω − lim
n→∞

1

ln(n+ 1)

d∑
j=1

µj(A) ≡ lim
ω

1

ln(n+ 1)

d∑
j=1

µj(A). (3.7)

One reason for these notations is that if the sequence
(

1
ln(n+1)

∑d
j=1 µj(A)

)
n∈N has a

limit, then one has Trw(A) = limn→∞
1

ln(n+1)

∑d
j=1 µj(A). This property clearly follows

from the facts that ω(1) = 1 and that ω(a) = 0 for any a ∈ c0.
The proof of the above statement is divided into several lemmas and exercises. For

each of them, the assumptions of Theorem 3.3.1 are implicitly taken into account. First
of all, recall that the notions of positive homogeneous and additive have been introduced
just before Definition 2.6.7.

Lemma 3.3.2. Trω is positive homogeneous and additive on
(
M1,∞

)
+
.

Proof. Homogeneity property directly follows from the property µn(λA) = λµn(A)
for any λ ≥ 0. The proof of the additivity is much more difficult and will use the
assumptions made on the state ω.

i) For shortness let us set

σn(A) :=
d∑
j=1

µj(A) for any A ∈ K (H)+, (3.8)

and observe that for any A,B ∈ K (H) and any n ∈ N the following inequalities hold:

σn(A+B) ≤ σn(A) + σn(B) ≤ σ2n(A+B). (3.9)

Their proof is quite similar to the min-max principle introduced in Theorem 2.2.1.
Indeed, one easily observes that

σn(A) = sup
{
Tr(AP ) | P ∈ P(H) with dim(PH) = n

}
.

The first inequality follows then directly from this observation and from the linearity of
the trace Tr. For the second, fixed any ε > 0 and let PA, PB be such that dim(PAH) =
n = dim(PBH) and Tr(APA) > σn(A)− ε and Tr(BPB) > σn(B)− ε. By setting P for
the orthogonal projection on PAH + PBH (often denoted by P := PA ∨ PB) then we
infer that

Tr
(
(A+B)P

)
= Tr(AP ) + Tr(BP ) ≥ Tr(APA) + Tr(BPB) > σn(A) + σn(B)− 2ε.
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Since dim(PH) ≤ 2n and since ε is arbitrarily small, one gets

σ2n(A+B) ≥ Tr
(
(A+B)P

)
≥ σn(A) + σn(B)

which corresponds to the second inequality of (3.9).
ii) Let us now define a, b, c ∈ ℓ∞ by

an :=
1

ln(n+ 1)
σn(A), bn :=

1

ln(n+ 1)
σn(B), and cn :=

1

ln(n+ 1)
σn(A+B).

Then the inequality (3.9) reads

cn ≤ an + bn ≤ ln(2n+1)
ln(n+1)

c2n. (3.10)

The first inequality together with the positivity of the state ω directly leads to the
inequality Trω(A+B) ≤ Trω(A)+Trω(B) for any A,B ∈

(
M1,∞

)
+
. On the other hand,

since limn→∞
ln(2n+1)
ln(n+1)

= 1 and since ω vanishes on c0 we infer that

ω
(
(c2n)n∈N

)
= ω

(( ln(2n+1)
ln(n+1)

c2n
)
n∈N

)
.

Thus, since we will show below that ω
(
(c2n)n∈N

)
= ω

(
(cn)n∈N

)
, one infers from (3.10)

that ω(a) + ω(b) ≤ ω(c), or in other words that Trω(A) + Trω(B) ≤ Trω(A + B). The
two inequalities obtained above prove the additivity of the map Trω.

iii) It remains to show that

ω
(
(c2n)n∈N

)
= ω

(
(cn)n∈N

)
. (3.11)

For that purpose, let us simply write the l.h.s. by ω
(
(c2n)

)
, and observe that by the

invariance of ω under D2 one has

ω
(
(c2n)

)
= ω

(
D2(c2n)

)
= ω

(
(c2, c2, c4, c4, c6, c6, . . . )

)
.

Then, since ω(a) = 0 for any a ∈ c0, it is sufficient to show that

(c2, c2, c4, c4, c6, c6, . . . )− (c1, c2, c3, c4, c5, c6, . . . ) ∈ c0

in order to obtain (3.11). Thus, we are left in proving that limn→∞
(
c2n − c2n−1

)
= 0.

By the definitions of quantities introduced so far one has

c2n − c2n−1

=
1

ln(2n+ 1)
σ2n(A+B)− 1

ln(2n)
σ2n−1(A+B)

=
( 1

ln(2n+ 1)
− 1

ln(2n)

)
σ2n−1(A+B) +

1

ln(2n+ 1)
µ2n(A+B).

Clearly, the second term on the last line tends to 0 as n→ ∞. For the first term of the
last line, since A,B ∈

(
M1,∞

)
+
, one infers that σ2n−1(A+B) = O

(
ln(2n)

)
. Then, since(

1
ln(2n+1)

− 1
ln(2n)

)
= o

(
1

ln(2n+1)

)
one deduces that the first term goes to 0 as n → ∞ as

well. This completes the proof of the statement.
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Before extending the map Trω, let us observe that this map is non-trivial.

Exercise 3.3.3. Show that there exists an element A ∈
(
M1,∞

)
+

which satisfies

Trω(A) = 1.

By linearity, the map Trω can then be extended to any element of M1,∞. More
precisely, for any self-adjoint B ∈ M1,∞ we set Trω(B) = Trω(B+) − Trω(B−), and
the Dixmier trace for an arbitrary B ∈ M1,∞ is defined by Trω(B) = Trω

(
ℜ(B)

)
+

iTrω
(
ℑ(B)

)
. In addition, by setting Trω(A) = ∞ for all A ∈ B(H)+ \

(
M1,∞

)
+
one

gets that Trω is a weight on B(H). Also, since µj(BB
∗) = µj(B

∗B) for any B ∈ K (H)
and when these expressions are different from 0 one easily infers that Trω is a tracial
weight on B(H)

Exercise 3.3.4. Show that for any A ∈ M1,∞ one has |Trω(A)| ≤ ∥A∥M1,∞, with

∥A∥M1,∞ := sup
n≥1

1

ln(n+ 1)

d∑
j=1

µj(A).

Exercise 3.3.5. Show that for any A ∈ J1 one has Trω(A) = 0.

As a consequence of the statement contained in the previous exercise, the tracial
weight Trω is non-normal, see Definition 2.6.9. Indeed, any approximation of a compact
operator by finite rank operators would lead to a trivial trace Trω. It only remains to
show that the Trω is a trace on M1,∞.

Lemma 3.3.6. For any A ∈ M1,∞ and B ∈ B(H) one has Trω(AB) = Trω(BA).

Proof. Recall that every element of B(H) can be written has a linear combination of
four unitary operators, see for example [Mur, Rem. 2.2.2]. Thus, by linearity it is suffi-
cient to show that Trω(AU) = Trω(UA) for any unitary U ∈ B(H). In addition, since
A itself is a linear combination of positive operators, if is sufficient to show the previous
equality for positive A. Now, such an equality follows directly from the observation that
µj(AU) = µj(UA) = µj(A) for any j ∈ N.

Let us finally observe that the trace Trω is a symmetric functional in the following
sense: If A,B ∈

(
M1,∞

)
+
satisfy µn(A) = µn(B) for any n ∈ N, then Trω(A) = Trω(B).

Remark 3.3.7. The construction above is based on an invariant states ω and on the
use of the function n 7→ ln(n + 1). It it natural to wonder how much freedom one has
for these choices, and how many different Dixmier traces exist ? Deep investigations in
that direction have recently been performed and lot’s of material has been gathered in
[LSZ]. In the next section we present part of this material.

3.4 Generalizations of the Dixmier trace

In this section we recast the construction of the Dixmier trace in a more general frame-
work, as presented in [SU, SUZ1].
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3.4.1 Extended limits

The first step consists in using the more developed theory of extended limits on L∞

instead of states on ℓ∞. More precisely, we shall consider L∞(R) and L∞(R+) as the
set of essentially bounded Lebesgue measurable functions on R and R+ endowed with
the norm ∥f∥∞ = ess supx∈R|f(x)| or ∥f∥∞ = ess supx∈R+

|f(x)| respectively. One aim
for considering more general extended limits is to analysis the dependence on ω of the
r.h.s. of (3.6).

In analogy to the operations acting on ℓ∞ we start by introducing the translation
operators, namely for any y ∈ R we define the operator Ty : L∞(R) → L∞(R) by the
relation

[Tyf ](x) := f(x+ y), f ∈ L∞(R).

We can now set:

Definition 3.4.1. A linear functional ω on L∞(R) is called a translation invariant
extended limit on L∞(R) if the following conditions are satisfied:

(i) ω is positive, i.e. ω(f) ≥ 0 whenever f ∈ L∞ satisfies f ≥ 0,

(ii) ω(1) = 1 where 1 is the constant function equal to 1 in L∞(R),

(iii) ω(χ(−∞,0)) = 0 where χ(−∞,0) corresponds to the characteristic function on R−,

(iv) ω(Tyf) = ω(f) for every y ∈ R and f ∈ L∞(R).

Let us note that a more appropriate name would be an extended limit at +∞ since
the behavior near −∞ does not really matter.

Exercise 3.4.2. Show that if limx→∞ f(x) exists, then one has ω(f) = limx→∞ f(x),
which justifies the name extended limit. For that purpose, one can start by showing that
if f ∈ L∞(R) has support on R−, then ω(f) = 0.

The following functional has been introduced and studied in [SUZ1, Sec. 3]. For any
real-valued f ∈ L∞(R) we set

pT (f) := lim
x→∞

sup
h≥0

1

x

∫ x

0

f(y + h)dy . (3.12)

Note that the index T refers to translation. The main utility of this functional is con-
tained in the following statements, whose proofs are given in [SUZ1, Thms. 13 & 14].

Theorem 3.4.3. For any uniformly continuous and real-valued function f ∈ L∞(R)
the following equality holds:

[−pT (−f), pT (f)] =
{
ω(f) | ω is a translation invariant extended limit on L∞(R)

}
.

Note that the assumption about uniform continuity is necessary. As a consequence,
one infers a continuous analogue of the classical result on extended limits of [Lor].
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Theorem 3.4.4. Let f be a uniformly continuous and real-valued function f ∈ L∞(R)
and let c ∈ R. The equality ω(f) = c holds for every translation invariant extended
limits on L∞(R) if and only if

lim
x→∞

1

x

∫ x

0

f(y + h)dy = c

uniformly in h ≥ 0.

Extension 3.4.5. Study the previous two theorems and their proof.

Let us now switch from extended limits on L∞(R) to extended limits on L∞(R+).
Again, by analogy with the operation acting on ℓ∞ we can introduce the dilation oper-
ator by β > 0 by σ1/β : L∞(R+) → L∞(R+) defined by

[σ1/βf ](x) := f(βx), f ∈ L∞(R+).

In this framework, the notion of dilation invariant extended limit is provided by:

Definition 3.4.6. A linear functional ω on L∞(R+) is called a dilation invariant ex-
tended limit on L∞(R+) if the following conditions are satisfied:

(i) ω is positive,

(ii) ω(1) = 1 where 1 is the constant function equal to 1 in L∞(R+),

(iii) ω(χ(0,1)) = 0 where χ(0,1) corresponds to the characteristic function on (0, 1),

(iv) ω(σ1/βf) = ω(f) for every β > 0 and f ∈ L∞(R+).

Obviously, Definitions 3.4.1 and 3.4.6 have been chosen such that there is a one-
to-one correspondence between them. Indeed if ω is a translation invariant extended
limit on L∞(R), then the linear functional exp∗ ω defined on any f ∈ L∞(R+) by
[exp∗ ω](f) := ω(f ◦exp) is a dilation invariant extended limit on L∞(R+). The converse
statement also holds, by using a logarithmic function.

Exercise 3.4.7. Fix the details of the previous observation.

By analogy to (3.12) it is now natural to introduce the functional on any real-valued
f ∈ L∞(R+) by

pD(f) := lim
x→∞

sup
β≥1

1

ln(x)

∫ x

1

f(βy)
dy

y
. (3.13)

From the previous correspondence and from Theorems 3.4.3 and 3.4.4 one directly
deduces that:

Theorem 3.4.8. For any real f ∈ L∞(R+) such that f ◦ exp is uniformly continuous
on R, the following equality holds:

[−pD(−f), pD(f)] =
{
ω(f) | ω is a dilation invariant extended limit on L∞(R+)

}
.
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Theorem 3.4.9. Let f ∈ L∞(R) be real and such that f ◦exp is a uniformly continuous
function on R, and let c ∈ R. The equality ω(f) = c holds for every dilation invariant
extended limits on L∞(R+) if and only if

lim
x→∞

1

ln(x)

∫ x

1

f(βy)
dy

y
= c

uniformly in β ≥ 1.

3.4.2 Additional spaces on R+

In this subsection we mention the analogue of the sequence spaces introduced in Section
3.2 but in the continuous setting. As a first step and in order to take benefit of R+

instead of N let us provide an extension of the function µ giving the singular values of
any A ∈ K (H). More precisely, for any A ∈ K (H) let us set

µ(·, A) :=
∞∑
j=1

µj(A)χ(j−1,j](·) (3.14)

Clearly, this function is non-increasing and satisfies the equality µ(n,A) = µn(A) for
any n ∈ N. It is natural to call µ(·, A) the singular values function of A.

Remark 3.4.10. A slightly different but more common definition for this function could
be given by

µ(t, A) := inf
{
s ≥ 0 | Tr

(
χ(s,∞)(|A|)

)
≤ t

}
(3.15)

where χ(s,∞)(|A|)
)
denotes the spectral projection associated with |A| on the interval

(s,∞). Clearly, Tr
(
χ(s,∞)(|A|)

)
gives the number of eigenvalues of |A| inside the interval

(s,∞) multiplicity counted. Thus, for a given t > 0 the r.h.s. of (3.14) provides the
minimal value s such that |A| has t eigenvalues in the interval (s,∞). With the notation
of (3.14) this function is equal to

∑∞
j=1 µj(A)χ[j−1,j)(·), and thus µ(n,A) would not be

equal to µn(A) but to µn+1(A). By changing our convention on the index of the singular
values (and starting with µ0(A) instead of µ1(A)), one could have used (3.15). Note
that the interest in (3.15) is that it extends quite straightforwardly to the more general
context of semi-finite von Neumann algebra endowed with a semi-finite normal trace,
see [LSZ] for this general framework.

Let us now denote by Ψinc
con(R+) the set of increasing and concave functions ψ :

R+ → R+ satisfying limx→0 ψ(x) = 0 and limx→∞ ψ(x) = ∞. In the present context
and for any ψ ∈ Ψinc

con(R+) it is natural to define the Lorentz ideal Mψ by

Mψ =
{
A ∈ K (H) | ∥A∥ψ := sup

x>0

1

ψ(x)

∫ x

0

µ(y, A)dy <∞
}
. (3.16)

Also, when ψ(x) = ln(1 + x) the Lorentz ideal will be denoted by M1,∞. This ideal is
sometimes called the Dixmier ideal. The spaces Lp,∞ are then defined for any p ≥ 1 by

Lp,∞ =
{
A ∈ K (H) | sup

x>0
x1/pµ(x,A) <∞

}
. (3.17)



3.4. GENERALIZATIONS OF THE DIXMIER TRACE 57

3.4.3 Dixmier traces

In this subsection we generalize the construction of Dixmier by considering dilation
invariant extended limits on R+. Recall that the notion of weight has been introduced
in Definition 2.6.7 and corresponds to a positive homogeneous and additive functional.

Definition 3.4.11. Let ω be a dilation invariant extended limit on L∞(R+) and let
ψ ∈ Ψinc

con(R+). If the functional Trω : (Mψ)+ → [0,∞) defined on A ∈ (Mψ)+ by

Trω(A) := ω
(
x 7→ 1

ψ(x)

∫ x

0

µ(y,A)dy
)

(3.18)

is a weight on Mψ, then its extension by linearity on Mψ is called a Dixmier trace on
Mψ.

Based on a rather deep analysis, the following result has been proved in [DPSS,
Thm. 3.4] and in [LSZ, Thm.6.3.3]. Note that the result is in fact proved in a slightly
more general context, namely without referring to compact operators and to the spe-
cific functions µ(·, A). In addition, more precise information on the functional Trω are
provided in [DPSS].

Theorem 3.4.12. The Lorentz ideal Mψ admits non-trivial Dixmier traces if and only
if the function ψ ∈ Ψinc

con(R+) satisfies the additional condition

lim inf
x→∞

ψ(2x)

ψ(x)
= 1. (3.19)

Before going on, let us compare this result with the result obtained in the previous
section. Here we consider arbitrary ψ ∈ Ψinc

con(R+) while in Section 3.3 only the special
case ψ(x) = ln(x+ 1) was considered. In addition, the properties

lim
n→∞

ln(2n+ 1)

ln(n+ 1)
= 1

1

ln(2n+ 1)
− 1

ln(2n)
= o

( 1

ln(2n+ 1)

)
have been explicitly used in the previous proof. In the result mentioned above, only
the condition (3.19) is necessary. In addition, since the above result corresponds to a
necessary and sufficient condition it can be considered as a rather deep extension of the
construction of Dixmier.

Our next aim is to characterize the dilation invariant extended limits which generate
a Dixmier trace on Mψ. For that purpose, the following definition is useful.

Definition 3.4.13. For any ψ ∈ Ψinc
con(R+), a dilation invariant extended limit ω on

L∞(R+) is ψ-compatible or compatible with ψ if

ω
(
x 7→ ψ(2x)

ψ(x)

)
= 1.
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With this definition at hand, the following result has been proved in [KSS, Thm. 10]
or in [SU, Thm. 2.15].

Theorem 3.4.14. Let ψ ∈ Ψinc
con(R+) satisfying condition (3.19). Let ω be a dilation

invariant extended limit on L∞(R+) which is compatible with ψ. Then the functional
Trω defined by (3.18) on (Mψ)+ defines a non-normal Dixmier trace.

In fact, a stronger statement has been proved in these references. First of all, if the
functional defined by (3.18) defines a Dixmier trace, then the corresponding state ω
is ψ-compatible. In addition, to any normalized fully symmetric functional φ on Mψ

one can associate a dilation invariant extended limit on L∞(R+) such that Trω = φ.
Since the notion of fully symmetric has not been introduced here (but corresponds to
the property appearing in Theorem 2.3.11.(b) in the restricted setting of Section 2) we
shall not go further in this direction.

It is now time to show that the continuous approach considered in this section
coincides with the discrete approach of Section 3.3.

Exercise 3.4.15. Show that if ψ(x) = ln(x + 1), then Theorem 3.3.1 and the results
presented in this section are equivalent.

Up to now, one question has not been discussed: how many values can one generate
by Trω(A) for different dilation invariant extended limits ω ? In order to answer this
question, let us first introduce the following definition:

Definition 3.4.16. Let ψ ∈ Ψinc
con(R+) satisfying condition (3.19). An operator A ∈ Mψ

is called Dixmier measurable if all values of the Dixmier traces Trω(A) coincide.

Let us also recall that for any A ∈ Mψ one has the unique decomposition A =
A1 − A2 + iA3 − iA4 with each Aj ∈ (Mψ)+. It then follows that

Trω(A) = Trω(A1)− Trω(A2) + iTrω(A3)− iTrω(A4)

= ω
(
x 7→ 1

ψ(x)

∫ x

0

(
µ(y,A1)− µ(y, A2) + iµ(y, A3)− iµ(y, A4)

)
dy

)
= ω

(
x 7→ 1

ψ(x)

∫ x

0

µ̃(y,A)dy
)

with µ̃(y,A) := µ(y,A1)− µ(y, A2) + iµ(y, A3)− iµ(y, A4). Since the function

x 7→ 1

ψ(x)

∫ x

0

µ̃(y,A)dy

is absolutely continuous, we can then use the criterion introduced in Theorem 3.4.9 and
infer (see also [SUZ2, Cor. 3.2]) :

Theorem 3.4.17. Let ψ ∈ Ψinc
con(R+) satisfying condition (3.19). An element A ∈ Mψ

is Dixmier measurable if and only if the limit

lim
x→∞

1

ln(x)

∫ x

1

( 1

ψ(βy)

∫ βy

0

µ̃(z, A)dz
)dy
y

exists uniformly in β ≥ 1. If so, Trω(A) is equal to this limit for all Dixmier traces.
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Let us finally mention that for positive operators, the above condition can be sim-
plified, but the condition on ψ is slightly more restrictive.

Theorem 3.4.18. Let ψ ∈ Ψinc
con(R+) satisfying the condition limx→∞

ψ(2x)
ψ(x)

= 1. An

element A ∈ (Mψ)+ is Dixmier measurable if and only if the limit

lim
x→∞

1

ψ(x)

∫ x

0

µ(y, A)dy

exists. If so, Trω(A) is equal to this limit for all Dixmier traces.

As a final remark, let us recall that this theory can be applied to a large class of von
Neumann algebra instead of B(H). However, one has to be cautious with the hypotheses
in all the statements since counterexamples have been constructed for checking the
optimality of several results. Some of them are recalled in the reference [SU] which has
been the main source of inspiration for this section.
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