
Chapter 1

Hilbert space and linear operators

The purpose of this first chapter is to introduce (or recall) many standard definitions
related to the study of operators on a Hilbert space. Its content is mainly based on the
first two chapters of the book [Amr].

1.1 Hilbert space

Definition 1.1.1. A (complex) Hilbert space H is a vector space on C with a strictly
positive scalar product (or inner product) which is complete for the associated norm1

and which admits a countable orthonormal basis. The scalar product is denoted by ⟨·, ·⟩
and the corresponding norm by ∥ · ∥.

In particular, note that for any f, g, h ∈ H and α ∈ C the following properties hold:

(i) ⟨f, g⟩ = ⟨g, f⟩,

(ii) ⟨f, g + αh⟩ = ⟨f, g⟩+ α⟨f, h⟩,

(iii) ∥f∥2 = ⟨f, f⟩ ≥ 0, and ∥f∥ = 0 if and only if f = 0.

Note that ⟨g, f⟩ means the complex conjugate of ⟨g, f⟩. Note also that the linearity
in the second argument in (ii) is a matter of convention, many authors define the
linearity in the first argument. In (iii) the norm of f is defined in terms of the scalar
product ⟨f, f⟩. We emphasize that the scalar product can also be defined in terms of
the norm of H, this is the content of the polarisation identity :

4⟨f, g⟩ = ∥f + g∥2 − ∥f − g∥2 − i∥f + ig∥2 + i∥f − ig∥2. (1.1)

From now on, the symbol H will always denote a Hilbert space.

1Recall that H is said to be complete if any Cauchy sequence in H has a limit in H. More precisely,
{fn}n∈N ⊂ H is a Cauchy sequence if for any ε > 0 there exists N ∈ N such that ∥fn − fm∥ < ε
for any n,m ≥ N . Then H is complete if for any such sequence there exists f∞ ∈ H such that
limn→∞ ∥fn − f∞∥ = 0.

5
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Examples 1.1.2. (i) H = Cd with ⟨α, β⟩ =
∑d

j=1 αj βj for any α, β ∈ Cd,

(ii) H = ℓ2(Z) with ⟨a, b⟩ =
∑

j∈Z aj bj for any a, b ∈ ℓ2(Z),

(iii) H = L2(Rd) with ⟨f, g⟩ =
∫
Rd f(x)g(x)dx for any f, g ∈ L2(Rd).

Let us recall some useful inequalities: For any f, g ∈ H one has

|⟨f, g⟩| ≤ ∥f∥∥g∥ Schwarz inequality, (1.2)

∥f + g∥ ≤ ∥f∥+ ∥g∥ triangle inequality, (1.3)

∥f + g∥2 ≤ 2∥f∥2 + 2∥g∥2, (1.4)∣∣∥f∥ − ∥g∥
∣∣ ≤ ∥f − g∥. (1.5)

The proof of these inequalities is standard and is left as a free exercise, see also [Amr,
p. 3-4]. Let us also recall that f, g ∈ H are said to be orthogonal if ⟨f, g⟩ = 0.

Definition 1.1.3. A sequence {fn}n∈N ⊂ H is strongly convergent to f∞ ∈ H if
limn→∞ ∥fn − f∞∥ = 0, or is weakly convergent to f∞ ∈ H if for any g ∈ H one has
limn→∞⟨g, fn − f∞⟩ = 0. One writes s− limn→∞ fn = f∞ if the sequence is strongly
convergent, and w− limn→∞ fn = f∞ if the sequence is weakly convergent.

Clearly, a strongly convergent sequence is also weakly convergent. The converse is
not true.

Exercise 1.1.4. In the Hilbert space L2(R), exhibit a sequence which is weakly conver-
gent but not strongly convergent.

Lemma 1.1.5. Consider a sequence {fn}n∈N ⊂ H. One has

s− lim
n→∞

fn = f∞ ⇐⇒ w− lim
n→∞

fn = f∞ and lim
n→∞

∥fn∥ = ∥f∞∥.

Proof. Assume first that s− limn→∞ fn = f∞. By the Schwarz inequality one infers that
for any g ∈ H:

|⟨g, fn − f∞⟩| ≤ ∥fn − f∞∥∥g∥ → 0 as n→ ∞,

which means that w− limn→∞ fn = f∞. In addition, by (1.5) one also gets∣∣∥fn∥ − ∥f∞∥
∣∣ ≤ ∥fn − f∞∥ → 0 as n→ ∞,

and thus limn→∞ ∥fn∥ = ∥f∞∥.
For the reverse implication, observe first that

∥fn − f∞∥2 = ∥fn∥2 + ∥f∞∥2 − ⟨fn, f∞⟩ − ⟨f∞, fn⟩. (1.6)

If w− limn→∞ fn = f∞ and limn→∞ ∥fn∥ = ∥f∞∥, then the right-hand side of (1.6)
converges to ∥f∞∥2 + ∥f∞∥2 − ∥f∞∥2 − ∥f∞∥2 = 0, so that s− limn→∞ fn = f∞.
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Let us also note that if s− limn→∞ fn = f∞ and s− limn→∞ gn = g∞ then one has

lim
n→∞

⟨fn, gn⟩ = ⟨f∞, g∞⟩

by a simple application of the Schwarz inequality.

Exercise 1.1.6. Let {en}n∈N be an orthonormal basis of an infinite dimensional Hilbert
space. Show that w− limn→∞ en = 0, but that s− limn→∞ en does not exist.

Exercise 1.1.7. Show that the limit of a strong or a weak Cauchy sequence is unique.
Show also that such a sequence is bounded, i.e. if {fn}n∈N denotes this Cauchy sequence,
then supn∈N ∥fn∥ <∞.

For the weak Cauchy sequence, the boundedness can be obtained from the follow-
ing quite general result which will be useful later on. Its proof can be found in [Kat,
Thm. III.1.29]. In the statement, Λ is simply a set.

Theorem 1.1.8 (Uniform boundedness principle). Let {φλ}λ∈Λ be a family of contin-
uous maps2 φλ : H → [0,∞) satisfying

φλ(f + g) ≤ φλ(f) + φλ(g) ∀f, g ∈ H.

If the set {φλ(f)}λ∈Λ ⊂ [0,∞) is bounded for any fixed f ∈ H, then the family {φλ}λ∈Λ
is uniformly bounded, i.e. there exists c > 0 such that supλ φλ(f) ≤ c for any f ∈ H
with ∥f∥ = 1.

In the next definition, we introduce the notion of subspace of a Hilbert space.

Definition 1.1.9. A subspace M of a Hilbert space H is a linear subset of H, or more
precisely ∀f, g ∈ M and α ∈ C one has f + αg ∈ M. The subspace M is closed if any
Cauchy sequence in M converges strongly in M.

Note that if M is closed, then M is a Hilbert space in itself, with the scalar product
and norm inherited from H.

Examples 1.1.10. (i) If f1, . . . , fn ∈ H, then Span(f1, . . . , fn) is the closed vector
space generated by the linear combinations of f1, . . . fn. Span(f1, . . . , fn) is a closed
subspace.

(ii) If M is a subset of H, then

M⊥ := {f ∈ H | ⟨f, g⟩ = 0,∀g ∈ M} (1.7)

is a closed subspace of H.

Exercise 1.1.11. Check that in the above example the set M⊥ is a closed subspace of
H.

2φλ is continuous if φλ(fn) → φλ(f∞) whenever s− limn→∞ fn = f∞.
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Exercise 1.1.12. Check that a subspace M ⊂ H is dense in H if and only if M⊥ = {0}.

If M is a subset of H the closed subspace M⊥ is called the orthocomplement of M
in H. The following result is important in the setting of Hilbert spaces. Its proof is not
complicated but a little bit lengthy, we thus refer to [Amr, Prop. 1.7].

Proposition 1.1.13 (Projection Theorem). Let M be a closed subspace of a Hilbert
space H. Then, for any f ∈ H there exist a unique f1 ∈ M and a unique f2 ∈ M⊥

such that f = f1 + f2.

Let us close this section with the so-called Riesz Lemma. For that purpose, recall
first that the dual H∗ of the Hilbert space H consists in the set of all bounded linear
functionals on H, i.e. H∗ consists in all mappings φ : H → C satisfying for any f, g ∈ H
and α ∈ C

(i) φ(f + αg) = φ(f) + αφ(g), (linearity)

(ii) |φ(f)| ≤ c∥f∥, (boundedness)

where c is a constant independent of f . One then sets

∥φ∥H∗ := sup
0̸=f∈H

|φ(f)|
∥f∥

.

Clearly, if g ∈ H, then g defines an element φg of H∗ by setting φg(f) := ⟨g, f⟩.
Indeed φg is linear and one has

∥φg∥H∗ := sup
0̸=f∈H

1

∥f∥
|⟨g, f⟩| ≤ sup

0̸=f∈H

1

∥f∥
∥g∥∥f∥ = ∥g∥.

In fact, note that ∥φg∥H∗ = ∥g∥ since 1
∥g∥φg(g) =

1
∥g∥∥g∥

2 = ∥g∥.
The following statement shows that any element φ ∈ H∗ can be obtained from an

element g ∈ H. It corresponds thus to a converse of the previous construction.

Lemma 1.1.14 (Riesz Lemma). For any φ ∈ H∗, there exists a unique g ∈ H such
that for any f ∈ H

φ(f) = ⟨g, f⟩.

In addition, g satisfies ∥φ∥H∗ = ∥g∥.

Since the proof is quite standard, we only sketch it and leave the details to the
reader, see also [Amr, Prop. 1.8].

Sketch of the proof. If φ ≡ 0, then one can set g := 0 and observe trivially that φ = φg.
If φ ̸= 0, let us first define M := {f ∈ H | φ(f) = 0} and observe that M is a

closed subspace of H. One also observes that M ̸= H since otherwise φ ≡ 0. Thus, let
h ∈ H such that φ(h) ̸= 0 and decompose h = h1 + h2 with h1 ∈ M and h2 ∈ M⊥ by
Proposition 1.1.13. One infers then that φ(h2) = φ(h) ̸= 0.
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For arbitrary f ∈ H one can consider the element f − φ(f)
φ(h2)

h2 ∈ H and observe that

φ
(
f − φ(f)

φ(h2)
h2
)
= 0. One deduces that f − φ(f)

φ(h2)
h2 belongs to M, and since h2 ∈ M⊥

one infers that

φ(f) =
φ(h2)

∥h2∥2
⟨h2, f⟩.

One can thus set g := φ(h2)
∥h2∥2h2 ∈ H and easily obtain the remaining parts of the state-

ment.

As a consequence of the previous statement, one often identifies H∗ with H itself.

Exercise 1.1.15. Check that this identification is not linear but anti-linear.

1.2 Bounded linear operators

First of all, let us recall that a linear map B between two complex vector spaces M
and N satisfies B(f + αg) = Bf + αBg for all f, g ∈ M and α ∈ C.

Definition 1.2.1. A map B : H → H is a bounded linear operator if B : H → H is a
linear map, and if there exists c > 0 such that ∥Bf∥ ≤ c∥f∥ for all f ∈ H. The set of
all bounded linear operators on H is denoted by B(H).

For any B ∈ B(H), one sets

∥B∥ := inf{c > 0 | ∥Bf∥ ≤ c∥f∥ ∀f ∈ H}

= sup
0 ̸=f∈H

∥Bf∥
∥f∥

. (1.8)

and call it the norm of B. Note that the same notation is used for the norm of an
element of H and for the norm of an element of B(H), but this does not lead to any
confusion. Let us also introduce the range of an operator B ∈ B(H), namely

Ran(B) := BH = {f ∈ H | f = Bg for some g ∈ H}. (1.9)

This notion will be important when the inverse of an operator will be discussed.

Exercise 1.2.2. Let M1,M2 be two dense subspaces of H, and let B ∈ B(H). Show
that

∥B∥ = sup
f∈M1,g∈M2 with ∥f∥=∥g∥=1

|⟨f,Bg⟩|. (1.10)

Exercise 1.2.3. Show that B(H) is a complete normed algebra and that the inequality

∥AB∥ ≤ ∥A∥∥B∥ (1.11)

holds for any A,B ∈ B(H).
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An additional structure can be added to B(H): an involution. More precisely, for
any B ∈ B(H) and any f, g ∈ H one sets

⟨B∗f, g⟩ := ⟨f,Bg⟩. (1.12)

Exercise 1.2.4. For any B ∈ B(H) show that

(i) B∗ is uniquely defined by (1.12) and satisfies B∗ ∈ B(H) with ∥B∗∥ = ∥B∥,

(ii) (B∗)∗ = B,

(iii) ∥B∗B∥ = ∥B∥2,

(iv) If A ∈ B(H), then (AB)∗ = B∗A∗.

The operator B∗ is called the adjoint of B, and the proof the unicity in (i) involves
the Riesz Lemma. A complete normed algebra endowed with an involution for which
the property (iii) holds is called a C∗-algebra. In particular B(H) is a C∗-algebra. Such
algebras have a well-developed and deep theory, see for example [Mur]. However, we
shall not go further in this direction in this course.

We have already considered two distinct topologies onH, namely the strong and the
weak topology. On B(H) there exist several topologies, for the time being we consider
only three of them.

Definition 1.2.5. A sequence {Bn}n∈N ⊂ B(H) is uniformly convergent to B∞ ∈
B(H) if limn→∞ ∥Bn − B∞∥ = 0, is strongly convergent to B∞ ∈ B(H) if for any
f ∈ H one has limn→∞ ∥Bnf − B∞f∥ = 0, or is weakly convergent to B∞ ∈ B(H)
if for any f, g ∈ H one has limn→∞⟨f,Bng − B∞g⟩ = 0. In these cases, one writes
respectively u− limn→∞Bn = B∞, s− limn→∞Bn = B∞ and w − limn→∞Bn = B∞.

Clearly, uniform convergence implies strong convergence, and strong convergence
implies weak convergence. The reverse statements are not true. Note that if {Bn}n∈N ⊂
B(H) is weakly convergent, then the sequence {B∗

n}n∈N of its adjoint operators is also
weakly convergent. However, the same statement does not hold for a strongly convergent
sequence. Finally, we shall not prove but often use that B(H) is also weakly and strongly
closed. In other words, any weakly (or strongly) Cauchy sequence in B(H) converges
in B(H).

Exercise 1.2.6. Let {An}n∈N ⊂ B(H) and {Bn}n∈N ⊂ B(H) be two strongly conver-
gent sequence in B(H), with limits A∞ and B∞ respectively. Show that the sequence
{AnBn}n∈N is strongly convergent to the element A∞B∞.

Let us close this section with some information about the inverse of a bounded
operator.
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Definition 1.2.7. An operator B ∈ B(H) is invertible if the equation Bf = 0 only
admits the solution f = 0. In such a case, there exists a linear map B−1 : Ran(B) → H
which satisfies B−1Bf = f for any f ∈ H, and BB−1g = g for any g ∈ Ran(B). If B is
invertible and Ran(B) = H, then B−1 ∈ B(H) and B is said to be invertible in B(H)
(or boundedly invertible).

Note that the two conditions B invertible and Ran(B) = H imply B−1 ∈ B(H) is
a consequence of the Closed graph Theorem3. In the sequel, we shall use the notation
1 ∈ B(H) for the operator defined on any f ∈ H by 1f = f , and 0 ∈ B(H) for the
operator defined by 0f = 0.

The next statement is very useful in applications, and holds in a much more general
context. Its proof is classical and can be found in every textbook.

Lemma 1.2.8 (Neumann series). If B ∈ B(H) and ∥B∥ < 1, then the operator (1−B)
is invertible in B(H), with

(1−B)−1 =
∞∑
n=0

Bd,

and with
∥∥(1 − B)−1

∥∥ ≤ (1 − ∥B∥)−1. The series converges in the uniform norm of
B(H).

Note that we have used the identity B0 = 1.

1.3 Special classes of bounded linear operators

In this section we provide some information on some subsets of B(H). We start with
some operators which will play an important role in the sequel.

Definition 1.3.1. An operator B ∈ B(H) is called self-adjoint if B∗ = B, or equiva-
lently if for any f, g ∈ H one has

⟨f,Bg⟩ = ⟨Bf, g⟩. (1.13)

For these operators the computation of their norm can be simplified (see also Ex-
ercise 1.2.2) :

Exercise 1.3.2. If B ∈ B(H) is self-adjoint and if M is a dense subspace in H, show
that

∥B∥ = sup
f∈M, ∥f∥=1

|⟨f,Bf⟩|. (1.14)

A special set of self-adjoint operators is provided by the set of orthogonal projec-
tions:

3Closed graph theorem: If (B,H) is a closed operator (see further on for this definition), then
B ∈ B(H), see for example [Kat, Sec. III.5.4]. This can be studied as an Extension.
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Definition 1.3.3. An element P ∈ B(H) is a projection if P = P 2. This projection
is orthogonal if in addition P = P ∗. The set of all orthogonal projections is denoted by
P(H).

It not difficult to check that there is a one-to-one correspondence between the set
of closed subspaces of H and the set of orthogonal projections in B(H). Indeed, any
orthogonal projection P defines a closed subspace M := PH. Conversely by taking
the projection Theorem (Proposition 1.1.13) into account one infers that for any closed
subspace M one can define an orthogonal projection P with PH = M.

We gather in the next exercise some easy relations between orthogonal projections
and the underlying closed subspaces. For that purpose we use the notation PM, PN for
the orthogonal projections on the closed subspaces M and N of H.

Exercise 1.3.4. Show the following relations:

(i) If PMPN = PNPM, then PMPN is an orthogonal projection and the associated
closed subspace is M∩N ,

(ii) If M ⊂ N , then PMPN = PNPM = PM,

(iii) If M⊥N , then PMPN = PNPM = 0, and PM⊕N = PM + PN ,

(iv) If PMPN = 0, then M⊥N .

Note that the operators introduced so far are special instances of normal operators:

Definition 1.3.5. An operator B ∈ B(H) is normal if the equality BB∗ = B∗B holds.

Clearly, bounded self-adjoint operators are normal. Other examples of normal op-
erators are unitary operators, as considered now. In fact, we introduce not only unitary
operators, but also isometries and partial isometries. For that purpose, we recall that
1 denotes the identify operator in B(H).

Definition 1.3.6. An element U ∈ B(H) is a unitary operator if UU∗ = 1 and if
U∗U = 1.

Note that if U is unitary, then U is invertible in B(H) with U−1 = U∗. Indeed,
observe first that Uf = 0 implies f = U∗(Uf) = U∗0 = 0. Secondly, for any g ∈ H, one
has g = U(U∗g), and thus Ran(U) = H. Finally, the equality U−1 = U∗ follows from
the unicity of the inverse.

More generally, an element V ∈ B(H) is called an isometry if the equality

V ∗V = 1 (1.15)

holds. Clearly, a unitary operator is an instance of an isometry. For isometries the
following properties can easily be obtained.

Proposition 1.3.7. a) Let V ∈ B(H) be an isometry. Then
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(i) V preserves the scalar product, namely ⟨V f, V g⟩ = ⟨f, g⟩ for any f, g ∈ H,

(ii) V preserves the norm, namely ∥V f∥ = ∥f∥ for any f ∈ H,

(iii) If H ̸= {0} then ∥V ∥ = 1,

(iv) V V ∗ is the orthogonal projection on Ran(V ),

(v) V is invertible (in the sense of Definition 1.2.7),

(vi) The adjoint V ∗ satisfies V ∗f = V −1f if f ∈ Ran(V ), and V ∗g = 0 if g⊥Ran(V ).

b) An element W ∈ B(H) is an isometry if and only if ∥Wf∥ = ∥f∥ for all f ∈ H.

Exercise 1.3.8. Provide a proof for the previous proposition (as well as the proof of
the next proposition).

More generally one defines a partial isometry as an element W ∈ B(H) such that

W ∗W = P (1.16)

with P an orthogonal projection. Again, unitary operators or isometries are special
examples of partial isometries.

As before the following properties of partial isometries can be easily proved.

Proposition 1.3.9. Let W ∈ B(H) be a partial isometry as defined in (1.16). Then

(i) One has WP = W and ⟨Wf,Wg⟩ = ⟨Pf, Pg⟩ for any f, g ∈ H,

(ii) If P ̸= 0 then ∥W∥ = 1,

(iii) WW ∗ is the orthogonal projection on Ran(W ).

For a partial isometry W one usually calls initial set projection the orthogonal
projection defined byW ∗W and by final set projection the orthogonal projection defined
by WW ∗.

Let us now introduce a last subset of bounded operators, namely the ideal of compact
operators. For that purpose, consider first any family {gj, hj}Nj=1 ⊂ H and for any f ∈ H
one sets

Af :=
N∑
j=1

⟨gj, f⟩hj. (1.17)

Then A ∈ B(H), and Ran(A) ⊂ Span(h1, . . . , hN). Such an operator A is called a finite
rank operator. In fact, any operator B ∈ B(H) with dim

(
Ran(B)

)
<∞ is a finite rank

operator.

Exercise 1.3.10. For the operator A defined in (1.17), give an upper estimate for ∥A∥
and compute A∗.
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Definition 1.3.11. An element B ∈ B(H) is a compact operator if there exists a
family {An}n∈N of finite rank operators such that limn→∞ ∥B −An∥ = 0. The set of all
compact operators is denoted by K (H).

The following proposition contains sone basic properties of K (H). Its proof can be
obtained by playing with families of finite rank operators.

Proposition 1.3.12. The following properties hold:

(i) B ∈ K (H) ⇐⇒ B∗ ∈ K (H),

(ii) K (H) is a ∗-algebra, complete for the norm ∥ · ∥,

(iii) If B ∈ K (H) and A ∈ B(H), then AB and BA belong to K (H).

As a consequence, K (H) is a C∗-algebra and an ideal of B(H). In fact, compact
operators have the nice property of improving some convergences, as shown in the next
statement.

Proposition 1.3.13. Let K ∈ K (H).

(i) If {fn}n∈N ⊂ H is a weakly convergent sequence with limit f∞ ∈ H, then the
sequence {Kfn}n∈N strongly converges to Kf∞,

(ii) If the sequence {Bn}n∈N ⊂ B(H) strongly converges to B∞ ∈ B(H), then the
sequences {BnK}n∈N and {KB∗

n}n∈N converge in norm to B∞K and KB∗
∞, re-

spectively.

Proof. a) Let us first set φn := fn − f∞ and observe that w− limn→∞ φn = 0. By an
application of the uniform boundedness principle, see Theorem 1.1.8, it follows that
{∥φn∥}n∈N is bounded, i.e. there exists M > 0 such that ∥φn∥ ≤ M for any n ∈ N.
Since K is compact, for any ε > 0 there exists a finite rank operator A of the form
given in (1.17) such that ∥K − A∥ ≤ ε

2M
. Then one has

∥Kφn∥ ≤ ∥(K − A)φn∥+ ∥Aφn∥ ≤ ε

2
+

N∑
j=1

|⟨gj, φn⟩|∥hj∥.

Since w− limn→∞ φn = 0 there exists n0 ∈ N such that |⟨gj, φn⟩| ∥hj∥ ≤ ε
2N

for any
j ∈ {1, . . . , N} and all n ≥ n0. As a consequence, one infers that ∥Kφn∥ ≤ ε for all
n ≥ n0, or in other words s− limn→∞Kφn = 0.

b) Let us set Cn := Bn − B∞ such that s− limn→∞Cn = 0. As before, there exists
M > 0 such that ∥Cn∥ ≤ M for any n ∈ N. For any ε > 0 consider a finite rank
operator A of the form (1.17) such that ∥K − A∥ ≤ ε

2M
. Then observe that for any
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f ∈ H

∥CnKf∥ ≤M∥(K − A)f∥+ ∥CnAf∥

≤M∥K − A∥∥f∥+
N∑
j=1

|⟨gj, f⟩|∥Cnhj∥

≤
{
M∥K − A∥ +

N∑
j=1

∥gj∥∥Cnhj∥
}
∥f∥.

Since Cn strongly converges to 0 one can then choose n0 ∈ N such that ∥gj∥∥Cnhj∥ ≤ ε
2N

for any j ∈ {1, . . . N} and all n ≥ n0. One then infers that ∥CnK∥ ≤ ε for any n ≥ n0,
which means that the sequence {CnK}n∈N uniformly converges to 0. The statement
about {KB∗

n}n∈N can be proved analogously by taking the equality ∥KB∗
n −KB∗

∞∥ =
∥BnK

∗ −B∞K
∗∥ into account and by remembering that K∗ is compact as well.

Exercise 1.3.14. Check that an orthogonal projection P is a compact operator if and
only if PH is of finite dimension.

There are various subalgebras of K (H), for example the algebra of Hilbert-Schmidt
operators, the algebra of trace class operators, and more generally the Schatten classes.
Note that these algebras are not closed with respect to the norm ∥·∥ but with respect to
some stronger norms |||·|||. These algebras are ideals in B(H). In the following chapter
these subalgebras will be extensively studied.

1.4 Unbounded, closed, and self-adjoint operators

Even if unbounded operators will not play an important role in the sequel, they might
appear from time to time. For that reason, we gather in this section a couple of im-
portant definitions related to them. Obviously, the following definitions and results are
also valid for bounded linear operators.

Definition 1.4.1. A linear operator onH is a pair
(
A,D(A)

)
, where D(A) is a subspace

of H and A is a linear map from D(A) to H. D(A) is called the domain of A. One says
that the operator

(
A,D(A)

)
is densely defined if D(A) is dense in H.

Note that one often just says the linear operator A, but that its domain D(A) is
implicitly taken into account. For such an operator, its range Ran(A) is defined by

Ran(A) := AD(A) = {f ∈ H | f = Ag for some g ∈ D(A)}.

In addition, one defines the kernel Ker(A) of A by

Ker(A) := {f ∈ D(A) | Af = 0}.

Let us also stress that the sum A + B for two linear operators is a priori only
defined on the subspace D(A)∩D(B), and that the product AB is a priori defined only
on the subspace {f ∈ D(B) | Bf ∈ D(A)}. These two sets can be very small.
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Example 1.4.2. Let H := L2(R) and consider the operator X defined by [Xf ](x) =
xf(x) for any x ∈ R. Clearly, D(X) = {f ∈ H |

∫
R |xf(x)|

2dx <∞} ( H. In addition,
by considering the family of functions {fy}y∈R ⊂ D(X) with fy(x) := 1 in x ∈ [y, y+ 1]
and fy(x) = 0 if x ̸∈ [y, y+1], one easily observes that ∥fy∥ = 1 but supy∈R ∥Xfy∥ = ∞,
which can be compared with (1.8).

Clearly, a linear operator A can be defined on several domains. For example the
operator X of the previous example is well-defined on the Schwartz space S(R), or on
the set Cc(R) of continuous functions on R with compact support, or on the space D(X)
mentioned in the previous example. More generally, one has:

Definition 1.4.3. For any pair of linear operators
(
A,D(A)

)
and

(
B,D(B)

)
satisfying

D(A) ⊂ D(B) and Af = Bf for all f ∈ D(A), one says that
(
B,D(B)

)
is an extension

of
(
A,D(A)

)
to D(B), or that

(
A,D(A)

)
is the restriction of

(
B,D(B)

)
to D(A).

Let us now note that if
(
A,D(A)

)
is densely defined and if there exists c ∈ R such

that ∥Af∥ ≤ c∥f∥ for all f ∈ D(A), then there exists a natural continuous extension
A of A with D(A) = H. This extension satisfies A ∈ B(H) with ∥A∥ ≤ c, and is called
the closure of the operator A.

Exercise 1.4.4. Work on the details of this extension.

Let us now consider a similar construction but in the absence of a constant c ∈ R
such that ∥Af∥ ≤ c∥f∥ for all f ∈ D(A). More precisely, consider an arbitrary densely
defined operator

(
A,D(A)

)
. Then for any f ∈ H there exists a sequence {fn}n∈N ⊂ D(A)

strongly converging to f . Note that the sequence {Afn}n∈N will not be Cauchy in
general. However, let us assume that this sequence is strongly Cauchy, i.e. for any
ε > 0 there exists N ∈ N such that ∥Afn − Afm∥ < ε for any n,m ≥ N . Since H is
complete, this Cauchy sequence has a limit, which we denote by h, and it would then
be natural to set Af = h. In short, one would have Af := s− limn→∞Afn. It is easily
observed that this definition is meaningful if and only if by choosing a different sequence
{f ′

n}n∈N ⊂ D(A) strongly convergent to f and also defining a Cauchy sequence {Af ′
n}n∈N

then s− limn→∞Af ′
n = s− limn→∞Afn. If this condition holds, then Af is well-defined.

Observe in addition that the previous equality can by rewritten as s− limn→∞A(fn −
f ′
n) = 0, which leads naturally to the following definition.

Definition 1.4.5. A linear operator
(
A,D(A)

)
is closable if for any sequence {fn}n∈N

in D(A) satisfying s− limn→∞ fn = 0 and such that {Afn}n∈N is strongly Cauchy, then
s− limn→∞Afn = 0.

As shown before this definition, in such a case one can define an extension A of
A with D(A) given by the sets of f ∈ H such that there exists {fn}n∈N ⊂ D(A) with
s− limn→∞ fn = f and such that {Afn}n∈N is strongly Cauchy. For such an element f
one sets Af = s− limn→∞Afn, and the extension

(
A,D(A)

)
is called the closure of A.

In relation with the previous construction the following definition is now natural:
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Definition 1.4.6. An linear operator
(
A,D(A)

)
is closed if for any sequence {fn}n∈N ⊂

D(A) with s− limn→∞ fn = f ∈ H and such that {Afn}n∈N is strongly Cauchy, then one
has f ∈ D(A) and s− limn→∞Afn = Af .

Let us now come back to the notion of the adjoint of an operator. This concept is
slightly more subtle for unbounded operators than in the bounded case.

Definition 1.4.7. Let
(
A,D(A)

)
be a densely defined linear operator on H. The adjoint

A∗ of A is the operator defined by

D(A∗) :=
{
f ∈ H | ∃f ∗ ∈ H with ⟨f ∗, g⟩ = ⟨f, Ag⟩ for all g ∈ D(A)

}
and A∗f := f ∗ for all f ∈ D(A∗).

Let us note that the density of D(A) is necessary to ensure that A∗ is well-defined.
Indeed, if f ∗

1 , f
∗
2 satisfy for all g ∈ D(A)

⟨f ∗
1 , g⟩ = ⟨f, Ag⟩ = ⟨f ∗

2 , g⟩,

then ⟨f ∗
1 − f ∗

2 , g⟩ = 0 for all g ∈ D(A), and this equality implies f ∗
1 = f ∗

2 only if D(A)
is dense in H. Note also that once

(
A∗,D(A∗)

)
is defined, one has

⟨A∗f, g⟩ = ⟨f, Ag⟩ ∀f ∈ D(A∗) and ∀g ∈ D(A).

Exercise 1.4.8. Show that if
(
A,D(A)

)
is closable, then D(A∗) is dense in H.

Some relations between A and its adjoint A∗ are gathered in the following lemma.

Lemma 1.4.9. Let
(
A,D(A)

)
be a densely defined linear operator on H. Then

(i)
(
A∗,D(A∗)

)
is closed,

(ii) One has Ker(A∗) = Ran(A)⊥,

(iii) If
(
B,D(B)

)
is an extension of

(
A,D(A)

)
, then

(
A∗,D(A∗)

)
is an extension of(

B∗,D(B∗)
)
.

Proof. a) Consider {fn}n∈N ⊂ D(A∗) such that s− limn→∞ fn = f ∈ H and such that
s− limn→∞A∗fn = h ∈ H. Then for each g ∈ D(A) one has

⟨f,Ag⟩ = lim
n→∞

⟨fn, Ag⟩ = lim
n→∞

⟨A∗fn, g⟩ = ⟨h, g⟩.

Hence f ∈ D(A∗) and A∗f = h, which proves that A∗ is closed.
b) Let f ∈ Ker(A∗), i.e. f ∈ D(A∗) and A∗f = 0. Then, for all g ∈ D(A), one has

0 = ⟨A∗f, g⟩ = ⟨f, Ag⟩

meaning that f ∈ Ran(A)⊥. Conversely, if f ∈ Ran(A)⊥, then for all g ∈ D(A) one has

⟨f, Ag⟩ = 0 = ⟨0, g⟩
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meaning that f ∈ D(A∗) and A∗f = 0, by the definition of the adjoint of A.
c) Consider f ∈ D(B∗) and observe that ⟨B∗f, g⟩ = ⟨f,Bg⟩ for any g ∈ D(B).

Since
(
B,D(B)

)
is an extension of

(
A,D(A)

)
, one infers that ⟨B∗f, g⟩ = ⟨f, Ag⟩ for

any g ∈ D(A). Now, this equality means that f ∈ D(A∗) and that A∗f = B∗f , or more
explicitly that A∗ is defined on the domain of B∗ and coincide with this operator on
this domain. This means precisely that

(
A∗,D(A∗)

)
is an extension of

(
B∗,D(B∗)

)
.

Let us finally introduce the analogue of the bounded self-adjoint operators but in
the unbounded setting. These operators play a key role in quantum mechanics and their
study is very well developed.

Definition 1.4.10. A densely defined linear operator
(
A,D(A)

)
is self-adjoint if

D(A∗) = D(A) and A∗f = Af for all f ∈ D(A).

Note that as a consequence of Lemma 1.4.9.(i) a self-adjoint operator is always
closed. Recall also that in the bounded case, a self-adjoint operator was characterized
by the equality

⟨Af, g⟩ = ⟨f,Ag⟩ (1.18)

for any f, g ∈ H. In the unbounded case, such an equality still holds if f, g ∈ D(A).
However, let us emphasize that (1.18) does not completely characterize a self-adjoint
operator. In fact, a densely defined operator

(
A,D(A)

)
satisfying (1.18) is called a sym-

metric operator, and self-adjoint operators are special instances of symmetric operators
(but not all symmetric operators are self-adjoint). For a symmetric operator the adjoint
operator

(
A∗,D(A∗)

)
is an extension of

(
A,D(A)

)
, but the equality of these two oper-

ators holds only if
(
A,D(A)

)
is self-adjoint. Note also that for any symmetric operator

the scalar ⟨f, Af⟩ is real for any f ∈ D(A).

Exercise 1.4.11. Show that a symmetric operator is always closable.

Let us add one more definition related to self-adjoint operators.

Definition 1.4.12. A symmetric operator
(
A,D(A)

)
is essentially self-adjoint if its

closure
(
A,D(A)

)
is self-adjoint. In this case D(A) is called a core for A.

A following fundamental criterion for self-adjointness is important in this context,
and its proof can be found in [Amr, Prop. 3.3].

Proposition 1.4.13. Let
(
A,D(A)

)
be a symmetric operator in a Hilbert space H.

Then

(i)
(
A,D(A)

)
is self-adjoint if and only if Ran(A+ i) = H and Ran(A− i) = H,

(ii)
(
A,D(A)

)
is essentially self-adjoint if and only if Ran(A+ i) and Ran(A− i) are

dense in H.
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For completeness, let us recall the definitions of a spectral family and a spectral
measure, and mention one version of the spectral theorem for self-adjoint operators.
We do not provide more explanations here and refer to [Amr, Chap. 4] for a thorough
introduction to this important result of spectral theory. Later on, it will be useful to
have these definitions and this statement at hand.

Definition 1.4.14. A spectral family, or a resolution of the identity, is a family
{Eλ}λ∈R of orthogonal projections in H satisfying:

(i) The family is non-decreasing, i.e. EλEµ = Emin{λ,µ},

(ii) The family is strongly right continuous, i.e. Eλ = Eλ+0 = s− limε↘0Eλ+ε,

(iii) s− limλ→−∞Eλ = 0 and s− limλ→∞Eλ = 1,

Given such a family, one first defines

E
(
(a, b]

)
:= Eb − Ea, a, b ∈ R, (1.19)

and extends this definition to all sets V ∈ AB, where AB denotes the set of Borel
sets on R. Thus one ends up with the notion of a spectral measure, which consists
in a projection-valued map E : AB → P(H) which satisfies E(∅) = 0, E(R) = 1,
E(V1)E(V2) = E(V1 ∩ V2) for any Borel sets V1, V2.

Theorem 1.4.15 (Spectral Theorem). With any self-adjoint operator
(
A,D(A)

)
on a

Hilbert space H one can associate a unique spectral family {Eλ}, called the spectral
family of A, such that D(A) = Did with

Dφ :=
{
f ∈ H |

∫ ∞

−∞
|φ(λ)|2 ⟨E(dλ)f, f⟩ <∞

}
.

and A =
∫∞
−∞ λE(dλ). Conversely any spectral family or any spectral measure defines

a self-adjoint operator in H by the previous formulas.

1.5 Resolvent and spectrum

We come now to the important notion of the spectrum of an operator. As already
mentioned in the previous section we shall often speak about a linear operator A, its
domain D(A) being implicitly taken into account. Recall also that the notion of a closed
linear operator has been introduced in Definition 1.4.6.

The notion of the inverse of a bounded linear operator has already been intro-
duced in Definition 1.2.7. By analogy we say that any linear operator A is invertible if
Ker(A) = {0}. In this case, the inverse A−1 gives a bijection from Ran(A) onto D(A).
More precisely D(A−1) = Ran(A) and Ran(A−1) = D(A). It can then be checked that
if A is closed and invertible, then A−1 is also closed. Note also if A is closed and if
Ran(A) = H then A−1 ∈ B(H). In fact, the boundedness of A−1 is a consequence of
the closed graph theorem and one says in this case that A is boundedly invertible or
invertible in B(H).
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Definition 1.5.1. For a closed linear operator A its resolvent set ρ(A) is defined by

ρ(A) :=
{
z ∈ C | (A− z) is invertible in B(H)

}
=
{
z ∈ C | Ker(A− z) = {0} and Ran(A− z) = H

}
.

For z ∈ ρ(A) the operator (A−z)−1 ∈ B(H) is called the resolvent of A at the point z.
The spectrum σ(A) of A is defined as the complement of ρ(A) in C, i.e.

σ(A) := C \ ρ(A). (1.20)

The following statement summarized several properties of the resolvent set and of
the resolvent of a closed linear operator.

Proposition 1.5.2. Let A be a closed linear operator on a Hilbert space H. Then

(i) The resolvent set ρ(A) is an open subset of C,

(ii) If z1, z2 ∈ ρ(A) then the first resolvent equation holds, namely

(A− z1)
−1 − (A− z2)

−1 = (z1 − z2)(A− z1)
−1(A− z2)

−1 (1.21)

(iii) If z1, z2 ∈ ρ(A) then the operators (A− z1)
−1 and (A− z2)

−1 commute,

(iv) In each connected component of ρ(A) the map z 7→ (A− z)−1 is holomorphic.

As a consequence of the previous proposition, the spectrum of a closed linear opera-
tor is always closed. In particular, z ∈ σ(A) if A−z is not invertible or if Ran(A−z) ̸= H.
The first situation corresponds to the definition of an eigenvalue:

Definition 1.5.3. For a closed linear operator A, a value z ∈ C is an eigenvalue of
A if there exists f ∈ D(A), f ̸= 0, such that Af = zf . In such a case, the element f
is called an eigenfunction of A associated with the eigenvalue z. The dimension of the
vector space generated by all eigenfunctions associated with an eigenvalue z is called
the geometric multiplicity of z. The set of all eigenvalues of A is denoted by σp(A), and
is often called the point spectrum of A.

Let us still provide two properties of the spectrum of an operator in the special
cases of a bounded operator or of a self-adjoint operator.

Exercise 1.5.4. By using the Neumann series, show that for any B ∈ B(H) its spec-
trum is contained in the ball in the complex plane of center 0 and of radius ∥B∥.

Lemma 1.5.5. Let A be a self-adjoint operator in H.

(i) Any eigenvalue of A is real,

(ii) More generally, the spectrum of A is real, i.e. σ(A) ⊂ R,
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(iii) Eigenvectors associated with different eigenvalues are orthogonal to one another.

Proof. a) Assume that there exists z ∈ C and f ∈ D(A), f ̸= 0 such that Af = zf .
Then one has

z∥f∥2 = ⟨f, zf⟩ = ⟨f, Af⟩ = ⟨Af, f⟩ = ⟨zf, f⟩ = z∥f∥2.

Since ∥f∥ ̸= 0, one deduces that z ∈ R.
b) Let us consider z = λ + iε with λ, ε ∈ R and ε ̸= 0, and show that z ∈ ρ(A).

Indeed, for any f ∈ D(A) one has

∥(A− z)f∥2 = ∥(A− λ)f − iεf∥2

=
⟨
(A− λ)f − iεf, (A− λ)f − iεf

⟩
= ∥(A− λ)f∥2 + ε2∥f∥2.

It follows that ∥(A− z)f∥ ≥ |ε|∥f∥, and thus A− z is invertible.
Now, for any for any g ∈ Ran(A− z) let us observe that

∥g∥ =
∥∥(A− z)(A− z)−1g

∥∥ ≥ |ε|
∥∥(A− z)−1g

∥∥.
Equivalently, it means for all g ∈ Ran(A− z), one has∥∥(A− z)−1g

∥∥ ≤ 1

|ε|
∥g∥. (1.22)

Let us finally observe that Ran(A− z) is dense in H. Indeed, by Lemma 1.4.9 one
has

Ran(A− z)⊥ = Ker
(
(A− z)∗

)
= Ker(A∗ − z) = Ker(A− z) = {0}

since all eigenvalues of A are real. Thus, the operator (A − z)−1 is defined on the
dense domain Ran(A− z) and satisfies the estimate (1.22). As explained just before the
Exercise 1.4.4, it means that (A − z)−1 continuously extends to an element of B(H),
and therefore z ∈ ρ(A).

c) Assume that Af = λf and that Ag = µg with λ, µ ∈ R and λ ̸= µ, and
f, g ∈ D(A), with f ̸= 0 and g ̸= 0. Then

λ⟨f, g⟩ = ⟨Af, g⟩ = ⟨f, Ag⟩ = µ⟨f, g⟩,

which implies that ⟨f, g⟩ = 0, or in other words that f and g are orthogonal.

1.6 Positivity and polar decomposition

The notion of positive operators can be introduced either in a Hilbert space setting or
in a C∗-algebraic setting. The next definition is based on the former framework, and its
analog in the latter framework will be mentioned subsequently.
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Definition 1.6.1. A densely defined linear operator
(
A,D(A)

)
in H is positive if

⟨f,Af⟩ ≥ 0 for any f ∈ D(A). (1.23)

Clearly, such an operator is symmetric, see the paragraph following Definition
1.4.10. If A is bounded one also infers that A is self-adjoint, but this might not be
the case if A is unbounded. It is then a natural question to check whether there exists
some self-adjoint extensions of A which are still positive. We shall not go further in
this direction and stick to the self-adjoint case. More precisely, a self-adjoint operator(
A,D(A)

)
is positive if (1.23) holds.

For positive self-adjoint operators, the following consequences of the spectral theo-
rem are very useful, see Theorem 1.4.15.

Proposition 1.6.2. For any positive and self-adjoint operator
(
A,D(A)

)
in H the

following properties hold:

(i) σ(A) ⊂ [0,∞),

(ii) There exists a unique self-adjoint and positive operator
(
B,D(B)

)
such that A =

B2 on D(A). The operator B is called the positive square root of A and is denoted
by A1/2

Since in a purely C∗-algebraic the scalar product in (1.23) does not exist (note that
this statement is not really correct because of the GNS representation) one usually says
that a bounded operator A is positive if A = A∗ and σ(A) ⊂ [0,∞). However, this
definition coincides with the one mentioned above as long as one considers bounded
operators only.

Remark 1.6.3. If A is an arbitrary element of B(H), observe that A∗A and AA∗

are positive operators. Indeed, self-adjointness follows easily from Exercise 1.2.4 while
positivity is obtained by the equalities

⟨f, A∗Af⟩ = ⟨Af,Af⟩ = ∥Af∥2 ≥ 0

and similarly for AA∗. In fact, the set {A∗A | A ∈ B(H)} is equal to the set of all
positive operators in B(H).

Let us add one statement which contains several properties of bounded positive
operators. It can be stated in a purely C∗-algebraic framework, but we present it for
simplicity for B(H) only. Note that if A ∈ B(H) we often denote its positivity by
writing A ≥ 0. Now, if A1, A2 are bounded and self-adjoint operators, one writes A1 ≥
A2 if A1−A2 ≥ 0. We shall also use the notation B(H)+ for the set of positive elements
of B(H).

Proposition 1.6.4. (i) The sum of two positive elements of B(H) is a positive ele-
ment of B(H),
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(ii) The set B(H)+ is equal to {A∗A | A ∈ B(H)},

(iii) If A,B are self-adjoint elements of B(H) and if C ∈ B(H), then A ≥ B ⇒
C∗AC ≥ C∗BC,

(iv) If A ≥ B ≥ 0, then A1/2 ≥ B1/2,

(v) If A ≥ B ≥ 0, then ∥A∥ ≥ ∥B∥,

(vi) If A,B are positive and invertible elements of B(H), then A ≥ B ⇒ B−1 ≥
A−1 ≥ 0,

(vii) For any A ∈ B(H) there exist A1, A2, A3, A4 ∈ B(H)+ such that

A = A1 − A2 + iA3 − iA4.

Proof. See Lemma 2.2.3, Theorem 2.2.5 and Theorem 2.2.6 of [Mur].

We finally state and prove a very useful result for arbitrary element of B ∈ B(H).
For that purpose we first introduce

|B| := (B∗B)1/2. (1.24)

Theorem 1.6.5 (Polar decomposition). For any B ∈ B(H) there exists a unique
partial isometry W ∈ B(H) such that

W |B| = B and Ker(W ) = Ker(B). (1.25)

In addition, W ∗B = |B|.
Proof. For any f ∈ H one has∥∥|B|f

∥∥2
= ⟨|B|f, |B|f⟩ = ⟨f, |B|2f⟩ = ⟨f,B∗Bf⟩ = ∥Bf∥2,

which means that the map

W0 : |B|H ∋ |B|f 7→ Bf ∈ H
is well-defined, isometric, and also linear. It can then be uniquely extended to a linear
isometric map from the closure |B|H to H. This extension is still denoted by W0. We
can thus define the operator W ∈ B(H) by W = W0 on |B|H and W = 0 on its
orthocomplement. It then follows that W |B| = B, and W is isometric on Ker(W )⊥

since Ker(W ) = |B|H
⊥
. Thus, W is a partial isometry and Ker(W ) = Ker(|B|). Now,

since for any f, g ∈ H one has

⟨W ∗Bf, |B|g⟩ = ⟨Bf,Bg⟩ = ⟨f,B∗Bg⟩ = ⟨|B|f, |B|g⟩,
one deduces that ⟨W ∗Bf, h⟩ = ⟨|B|f, h⟩ for any h ∈ |B|H, and then for any h ∈ H.
ThusW ∗B = |B|, and since Ker(W ∗) = Ran(W )⊥ = Ran(B)⊥, one infers that Ker(B) =
Ker(|B|) = Ker(W ).

For the uniqueness, suppose that there exists another partial isometry W ′ ∈ B(H)
such that W ′|B| = B and Ker(W ′) = Ker(B). Then W ′ is equal to W on |B|H and on

|B|H
⊥
both operators are equal to 0. As a consequence, W ′ =W .
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