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Chapter 1

Hilbert space and linear operators

The purpose of this first chapter is to introduce (or recall) many standard definitions
related to the study of operators on a Hilbert space. Its content is mainly based on the
first two chapters of the book [Amr].

1.1 Hilbert space

Definition 1.1.1. A (complex) Hilbert space H is a vector space on C with a strictly
positive scalar product (or inner product) which is complete for the associated norm1

and which admits a countable orthonormal basis. The scalar product is denoted by ⟨·, ·⟩
and the corresponding norm by ∥ · ∥.

In particular, note that for any f, g, h ∈ H and α ∈ C the following properties hold:

(i) ⟨f, g⟩ = ⟨g, f⟩,

(ii) ⟨f, g + αh⟩ = ⟨f, g⟩+ α⟨f, h⟩,

(iii) ∥f∥2 = ⟨f, f⟩ ≥ 0, and ∥f∥ = 0 if and only if f = 0.

Note that ⟨g, f⟩ means the complex conjugate of ⟨g, f⟩. Note also that the linearity
in the second argument in (ii) is a matter of convention, many authors define the
linearity in the first argument. In (iii) the norm of f is defined in terms of the scalar
product ⟨f, f⟩. We emphasize that the scalar product can also be defined in terms of
the norm of H, this is the content of the polarisation identity :

4⟨f, g⟩ = ∥f + g∥2 − ∥f − g∥2 − i∥f + ig∥2 + i∥f − ig∥2. (1.1)

From now on, the symbol H will always denote a Hilbert space.

1Recall that H is said to be complete if any Cauchy sequence in H has a limit in H. More precisely,
{fn}n∈N ⊂ H is a Cauchy sequence if for any ε > 0 there exists N ∈ N such that ∥fn − fm∥ < ε
for any n,m ≥ N . Then H is complete if for any such sequence there exists f∞ ∈ H such that
limn→∞ ∥fn − f∞∥ = 0.
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6 CHAPTER 1. HILBERT SPACE AND LINEAR OPERATORS

Examples 1.1.2. (i) H = Cd with ⟨α, β⟩ =
∑d

j=1 αj βj for any α, β ∈ Cd,

(ii) H = ℓ2(Z) with ⟨a, b⟩ =
∑

j∈Z aj bj for any a, b ∈ ℓ2(Z),

(iii) H = L2(Rd) with ⟨f, g⟩ =
∫
Rd f(x)g(x)dx for any f, g ∈ L2(Rd).

Let us recall some useful inequalities: For any f, g ∈ H one has

|⟨f, g⟩| ≤ ∥f∥∥g∥ Schwarz inequality, (1.2)

∥f + g∥ ≤ ∥f∥+ ∥g∥ triangle inequality, (1.3)

∥f + g∥2 ≤ 2∥f∥2 + 2∥g∥2, (1.4)∣∣∥f∥ − ∥g∥
∣∣ ≤ ∥f − g∥. (1.5)

The proof of these inequalities is standard and is left as a free exercise, see also [Amr,
p. 3-4]. Let us also recall that f, g ∈ H are said to be orthogonal if ⟨f, g⟩ = 0.

Definition 1.1.3. A sequence {fn}n∈N ⊂ H is strongly convergent to f∞ ∈ H if
limn→∞ ∥fn − f∞∥ = 0, or is weakly convergent to f∞ ∈ H if for any g ∈ H one has
limn→∞⟨g, fn − f∞⟩ = 0. One writes s− limn→∞ fn = f∞ if the sequence is strongly
convergent, and w− limn→∞ fn = f∞ if the sequence is weakly convergent.

Clearly, a strongly convergent sequence is also weakly convergent. The converse is
not true.

Exercise 1.1.4. In the Hilbert space L2(R), exhibit a sequence which is weakly conver-
gent but not strongly convergent.

Lemma 1.1.5. Consider a sequence {fn}n∈N ⊂ H. One has

s− lim
n→∞

fn = f∞ ⇐⇒ w− lim
n→∞

fn = f∞ and lim
n→∞

∥fn∥ = ∥f∞∥.

Proof. Assume first that s− limn→∞ fn = f∞. By the Schwarz inequality one infers that
for any g ∈ H:

|⟨g, fn − f∞⟩| ≤ ∥fn − f∞∥∥g∥ → 0 as n→ ∞,

which means that w− limn→∞ fn = f∞. In addition, by (1.5) one also gets∣∣∥fn∥ − ∥f∞∥
∣∣ ≤ ∥fn − f∞∥ → 0 as n→ ∞,

and thus limn→∞ ∥fn∥ = ∥f∞∥.
For the reverse implication, observe first that

∥fn − f∞∥2 = ∥fn∥2 + ∥f∞∥2 − ⟨fn, f∞⟩ − ⟨f∞, fn⟩. (1.6)

If w− limn→∞ fn = f∞ and limn→∞ ∥fn∥ = ∥f∞∥, then the right-hand side of (1.6)
converges to ∥f∞∥2 + ∥f∞∥2 − ∥f∞∥2 − ∥f∞∥2 = 0, so that s− limn→∞ fn = f∞.
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Let us also note that if s− limn→∞ fn = f∞ and s− limn→∞ gn = g∞ then one has

lim
n→∞

⟨fn, gn⟩ = ⟨f∞, g∞⟩

by a simple application of the Schwarz inequality.

Exercise 1.1.6. Let {en}n∈N be an orthonormal basis of an infinite dimensional Hilbert
space. Show that w− limn→∞ en = 0, but that s− limn→∞ en does not exist.

Exercise 1.1.7. Show that the limit of a strong or a weak Cauchy sequence is unique.
Show also that such a sequence is bounded, i.e. if {fn}n∈N denotes this Cauchy sequence,
then supn∈N ∥fn∥ <∞.

For the weak Cauchy sequence, the boundedness can be obtained from the follow-
ing quite general result which will be useful later on. Its proof can be found in [Kat,
Thm. III.1.29]. In the statement, Λ is simply a set.

Theorem 1.1.8 (Uniform boundedness principle). Let {φλ}λ∈Λ be a family of contin-
uous maps2 φλ : H → [0,∞) satisfying

φλ(f + g) ≤ φλ(f) + φλ(g) ∀f, g ∈ H.

If the set {φλ(f)}λ∈Λ ⊂ [0,∞) is bounded for any fixed f ∈ H, then the family {φλ}λ∈Λ
is uniformly bounded, i.e. there exists c > 0 such that supλ φλ(f) ≤ c for any f ∈ H
with ∥f∥ = 1.

In the next definition, we introduce the notion of subspace of a Hilbert space.

Definition 1.1.9. A subspace M of a Hilbert space H is a linear subset of H, or more
precisely ∀f, g ∈ M and α ∈ C one has f + αg ∈ M. The subspace M is closed if any
Cauchy sequence in M converges strongly in M.

Note that if M is closed, then M is a Hilbert space in itself, with the scalar product
and norm inherited from H.

Examples 1.1.10. (i) If f1, . . . , fn ∈ H, then Span(f1, . . . , fn) is the closed vector
space generated by the linear combinations of f1, . . . fn. Span(f1, . . . , fn) is a closed
subspace.

(ii) If M is a subset of H, then

M⊥ := {f ∈ H | ⟨f, g⟩ = 0,∀g ∈ M} (1.7)

is a closed subspace of H.

Exercise 1.1.11. Check that in the above example the set M⊥ is a closed subspace of
H.

2φλ is continuous if φλ(fn) → φλ(f∞) whenever s− limn→∞ fn = f∞.
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Exercise 1.1.12. Check that a subspace M ⊂ H is dense in H if and only if M⊥ = {0}.

If M is a subset of H the closed subspace M⊥ is called the orthocomplement of M
in H. The following result is important in the setting of Hilbert spaces. Its proof is not
complicated but a little bit lengthy, we thus refer to [Amr, Prop. 1.7].

Proposition 1.1.13 (Projection Theorem). Let M be a closed subspace of a Hilbert
space H. Then, for any f ∈ H there exist a unique f1 ∈ M and a unique f2 ∈ M⊥

such that f = f1 + f2.

Let us close this section with the so-called Riesz Lemma. For that purpose, recall
first that the dual H∗ of the Hilbert space H consists in the set of all bounded linear
functionals on H, i.e. H∗ consists in all mappings φ : H → C satisfying for any f, g ∈ H
and α ∈ C

(i) φ(f + αg) = φ(f) + αφ(g), (linearity)

(ii) |φ(f)| ≤ c∥f∥, (boundedness)

where c is a constant independent of f . One then sets

∥φ∥H∗ := sup
0̸=f∈H

|φ(f)|
∥f∥

.

Clearly, if g ∈ H, then g defines an element φg of H∗ by setting φg(f) := ⟨g, f⟩.
Indeed φg is linear and one has

∥φg∥H∗ := sup
0̸=f∈H

1

∥f∥
|⟨g, f⟩| ≤ sup

0̸=f∈H

1

∥f∥
∥g∥∥f∥ = ∥g∥.

In fact, note that ∥φg∥H∗ = ∥g∥ since 1
∥g∥φg(g) =

1
∥g∥∥g∥

2 = ∥g∥.
The following statement shows that any element φ ∈ H∗ can be obtained from an

element g ∈ H. It corresponds thus to a converse of the previous construction.

Lemma 1.1.14 (Riesz Lemma). For any φ ∈ H∗, there exists a unique g ∈ H such
that for any f ∈ H

φ(f) = ⟨g, f⟩.

In addition, g satisfies ∥φ∥H∗ = ∥g∥.

Since the proof is quite standard, we only sketch it and leave the details to the
reader, see also [Amr, Prop. 1.8].

Sketch of the proof. If φ ≡ 0, then one can set g := 0 and observe trivially that φ = φg.
If φ ̸= 0, let us first define M := {f ∈ H | φ(f) = 0} and observe that M is a

closed subspace of H. One also observes that M ̸= H since otherwise φ ≡ 0. Thus, let
h ∈ H such that φ(h) ̸= 0 and decompose h = h1 + h2 with h1 ∈ M and h2 ∈ M⊥ by
Proposition 1.1.13. One infers then that φ(h2) = φ(h) ̸= 0.
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For arbitrary f ∈ H one can consider the element f − φ(f)
φ(h2)

h2 ∈ H and observe that

φ
(
f − φ(f)

φ(h2)
h2
)
= 0. One deduces that f − φ(f)

φ(h2)
h2 belongs to M, and since h2 ∈ M⊥

one infers that

φ(f) =
φ(h2)

∥h2∥2
⟨h2, f⟩.

One can thus set g := φ(h2)
∥h2∥2h2 ∈ H and easily obtain the remaining parts of the state-

ment.

As a consequence of the previous statement, one often identifies H∗ with H itself.

Exercise 1.1.15. Check that this identification is not linear but anti-linear.

1.2 Bounded linear operators

First of all, let us recall that a linear map B between two complex vector spaces M
and N satisfies B(f + αg) = Bf + αBg for all f, g ∈ M and α ∈ C.

Definition 1.2.1. A map B : H → H is a bounded linear operator if B : H → H is a
linear map, and if there exists c > 0 such that ∥Bf∥ ≤ c∥f∥ for all f ∈ H. The set of
all bounded linear operators on H is denoted by B(H).

For any B ∈ B(H), one sets

∥B∥ := inf{c > 0 | ∥Bf∥ ≤ c∥f∥ ∀f ∈ H}

= sup
0 ̸=f∈H

∥Bf∥
∥f∥

. (1.8)

and call it the norm of B. Note that the same notation is used for the norm of an
element of H and for the norm of an element of B(H), but this does not lead to any
confusion. Let us also introduce the range of an operator B ∈ B(H), namely

Ran(B) := BH = {f ∈ H | f = Bg for some g ∈ H}. (1.9)

This notion will be important when the inverse of an operator will be discussed.

Exercise 1.2.2. Let M1,M2 be two dense subspaces of H, and let B ∈ B(H). Show
that

∥B∥ = sup
f∈M1,g∈M2 with ∥f∥=∥g∥=1

|⟨f,Bg⟩|. (1.10)

Exercise 1.2.3. Show that B(H) is a complete normed algebra and that the inequality

∥AB∥ ≤ ∥A∥∥B∥ (1.11)

holds for any A,B ∈ B(H).
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An additional structure can be added to B(H): an involution. More precisely, for
any B ∈ B(H) and any f, g ∈ H one sets

⟨B∗f, g⟩ := ⟨f,Bg⟩. (1.12)

Exercise 1.2.4. For any B ∈ B(H) show that

(i) B∗ is uniquely defined by (1.12) and satisfies B∗ ∈ B(H) with ∥B∗∥ = ∥B∥,

(ii) (B∗)∗ = B,

(iii) ∥B∗B∥ = ∥B∥2,

(iv) If A ∈ B(H), then (AB)∗ = B∗A∗.

The operator B∗ is called the adjoint of B, and the proof the unicity in (i) involves
the Riesz Lemma. A complete normed algebra endowed with an involution for which
the property (iii) holds is called a C∗-algebra. In particular B(H) is a C∗-algebra. Such
algebras have a well-developed and deep theory, see for example [Mur]. However, we
shall not go further in this direction in this course.

We have already considered two distinct topologies onH, namely the strong and the
weak topology. On B(H) there exist several topologies, for the time being we consider
only three of them.

Definition 1.2.5. A sequence {Bn}n∈N ⊂ B(H) is uniformly convergent to B∞ ∈
B(H) if limn→∞ ∥Bn − B∞∥ = 0, is strongly convergent to B∞ ∈ B(H) if for any
f ∈ H one has limn→∞ ∥Bnf − B∞f∥ = 0, or is weakly convergent to B∞ ∈ B(H)
if for any f, g ∈ H one has limn→∞⟨f,Bng − B∞g⟩ = 0. In these cases, one writes
respectively u− limn→∞Bn = B∞, s− limn→∞Bn = B∞ and w − limn→∞Bn = B∞.

Clearly, uniform convergence implies strong convergence, and strong convergence
implies weak convergence. The reverse statements are not true. Note that if {Bn}n∈N ⊂
B(H) is weakly convergent, then the sequence {B∗

n}n∈N of its adjoint operators is also
weakly convergent. However, the same statement does not hold for a strongly convergent
sequence. Finally, we shall not prove but often use that B(H) is also weakly and strongly
closed. In other words, any weakly (or strongly) Cauchy sequence in B(H) converges
in B(H).

Exercise 1.2.6. Let {An}n∈N ⊂ B(H) and {Bn}n∈N ⊂ B(H) be two strongly conver-
gent sequence in B(H), with limits A∞ and B∞ respectively. Show that the sequence
{AnBn}n∈N is strongly convergent to the element A∞B∞.

Let us close this section with some information about the inverse of a bounded
operator.
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Definition 1.2.7. An operator B ∈ B(H) is invertible if the equation Bf = 0 only
admits the solution f = 0. In such a case, there exists a linear map B−1 : Ran(B) → H
which satisfies B−1Bf = f for any f ∈ H, and BB−1g = g for any g ∈ Ran(B). If B is
invertible and Ran(B) = H, then B−1 ∈ B(H) and B is said to be invertible in B(H)
(or boundedly invertible).

Note that the two conditions B invertible and Ran(B) = H imply B−1 ∈ B(H) is
a consequence of the Closed graph Theorem3. In the sequel, we shall use the notation
1 ∈ B(H) for the operator defined on any f ∈ H by 1f = f , and 0 ∈ B(H) for the
operator defined by 0f = 0.

The next statement is very useful in applications, and holds in a much more general
context. Its proof is classical and can be found in every textbook.

Lemma 1.2.8 (Neumann series). If B ∈ B(H) and ∥B∥ < 1, then the operator (1−B)
is invertible in B(H), with

(1−B)−1 =
∞∑
n=0

Bd,

and with
∥∥(1 − B)−1

∥∥ ≤ (1 − ∥B∥)−1. The series converges in the uniform norm of
B(H).

Note that we have used the identity B0 = 1.

1.3 Special classes of bounded linear operators

In this section we provide some information on some subsets of B(H). We start with
some operators which will play an important role in the sequel.

Definition 1.3.1. An operator B ∈ B(H) is called self-adjoint if B∗ = B, or equiva-
lently if for any f, g ∈ H one has

⟨f,Bg⟩ = ⟨Bf, g⟩. (1.13)

For these operators the computation of their norm can be simplified (see also Ex-
ercise 1.2.2) :

Exercise 1.3.2. If B ∈ B(H) is self-adjoint and if M is a dense subspace in H, show
that

∥B∥ = sup
f∈M, ∥f∥=1

|⟨f,Bf⟩|. (1.14)

A special set of self-adjoint operators is provided by the set of orthogonal projec-
tions:

3Closed graph theorem: If (B,H) is a closed operator (see further on for this definition), then
B ∈ B(H), see for example [Kat, Sec. III.5.4]. This can be studied as an Extension.
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Definition 1.3.3. An element P ∈ B(H) is a projection if P = P 2. This projection
is orthogonal if in addition P = P ∗. The set of all orthogonal projections is denoted by
P(H).

It not difficult to check that there is a one-to-one correspondence between the set
of closed subspaces of H and the set of orthogonal projections in B(H). Indeed, any
orthogonal projection P defines a closed subspace M := PH. Conversely by taking
the projection Theorem (Proposition 1.1.13) into account one infers that for any closed
subspace M one can define an orthogonal projection P with PH = M.

We gather in the next exercise some easy relations between orthogonal projections
and the underlying closed subspaces. For that purpose we use the notation PM, PN for
the orthogonal projections on the closed subspaces M and N of H.

Exercise 1.3.4. Show the following relations:

(i) If PMPN = PNPM, then PMPN is an orthogonal projection and the associated
closed subspace is M∩N ,

(ii) If M ⊂ N , then PMPN = PNPM = PM,

(iii) If M⊥N , then PMPN = PNPM = 0, and PM⊕N = PM + PN ,

(iv) If PMPN = 0, then M⊥N .

Note that the operators introduced so far are special instances of normal operators:

Definition 1.3.5. An operator B ∈ B(H) is normal if the equality BB∗ = B∗B holds.

Clearly, bounded self-adjoint operators are normal. Other examples of normal op-
erators are unitary operators, as considered now. In fact, we introduce not only unitary
operators, but also isometries and partial isometries. For that purpose, we recall that
1 denotes the identify operator in B(H).

Definition 1.3.6. An element U ∈ B(H) is a unitary operator if UU∗ = 1 and if
U∗U = 1.

Note that if U is unitary, then U is invertible in B(H) with U−1 = U∗. Indeed,
observe first that Uf = 0 implies f = U∗(Uf) = U∗0 = 0. Secondly, for any g ∈ H, one
has g = U(U∗g), and thus Ran(U) = H. Finally, the equality U−1 = U∗ follows from
the unicity of the inverse.

More generally, an element V ∈ B(H) is called an isometry if the equality

V ∗V = 1 (1.15)

holds. Clearly, a unitary operator is an instance of an isometry. For isometries the
following properties can easily be obtained.

Proposition 1.3.7. a) Let V ∈ B(H) be an isometry. Then
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(i) V preserves the scalar product, namely ⟨V f, V g⟩ = ⟨f, g⟩ for any f, g ∈ H,

(ii) V preserves the norm, namely ∥V f∥ = ∥f∥ for any f ∈ H,

(iii) If H ̸= {0} then ∥V ∥ = 1,

(iv) V V ∗ is the orthogonal projection on Ran(V ),

(v) V is invertible (in the sense of Definition 1.2.7),

(vi) The adjoint V ∗ satisfies V ∗f = V −1f if f ∈ Ran(V ), and V ∗g = 0 if g⊥Ran(V ).

b) An element W ∈ B(H) is an isometry if and only if ∥Wf∥ = ∥f∥ for all f ∈ H.

Exercise 1.3.8. Provide a proof for the previous proposition (as well as the proof of
the next proposition).

More generally one defines a partial isometry as an element W ∈ B(H) such that

W ∗W = P (1.16)

with P an orthogonal projection. Again, unitary operators or isometries are special
examples of partial isometries.

As before the following properties of partial isometries can be easily proved.

Proposition 1.3.9. Let W ∈ B(H) be a partial isometry as defined in (1.16). Then

(i) One has WP = W and ⟨Wf,Wg⟩ = ⟨Pf, Pg⟩ for any f, g ∈ H,

(ii) If P ̸= 0 then ∥W∥ = 1,

(iii) WW ∗ is the orthogonal projection on Ran(W ).

For a partial isometry W one usually calls initial set projection the orthogonal
projection defined byW ∗W and by final set projection the orthogonal projection defined
by WW ∗.

Let us now introduce a last subset of bounded operators, namely the ideal of compact
operators. For that purpose, consider first any family {gj, hj}Nj=1 ⊂ H and for any f ∈ H
one sets

Af :=
N∑
j=1

⟨gj, f⟩hj. (1.17)

Then A ∈ B(H), and Ran(A) ⊂ Span(h1, . . . , hN). Such an operator A is called a finite
rank operator. In fact, any operator B ∈ B(H) with dim

(
Ran(B)

)
<∞ is a finite rank

operator.

Exercise 1.3.10. For the operator A defined in (1.17), give an upper estimate for ∥A∥
and compute A∗.
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Definition 1.3.11. An element B ∈ B(H) is a compact operator if there exists a
family {An}n∈N of finite rank operators such that limn→∞ ∥B −An∥ = 0. The set of all
compact operators is denoted by K (H).

The following proposition contains sone basic properties of K (H). Its proof can be
obtained by playing with families of finite rank operators.

Proposition 1.3.12. The following properties hold:

(i) B ∈ K (H) ⇐⇒ B∗ ∈ K (H),

(ii) K (H) is a ∗-algebra, complete for the norm ∥ · ∥,

(iii) If B ∈ K (H) and A ∈ B(H), then AB and BA belong to K (H).

As a consequence, K (H) is a C∗-algebra and an ideal of B(H). In fact, compact
operators have the nice property of improving some convergences, as shown in the next
statement.

Proposition 1.3.13. Let K ∈ K (H).

(i) If {fn}n∈N ⊂ H is a weakly convergent sequence with limit f∞ ∈ H, then the
sequence {Kfn}n∈N strongly converges to Kf∞,

(ii) If the sequence {Bn}n∈N ⊂ B(H) strongly converges to B∞ ∈ B(H), then the
sequences {BnK}n∈N and {KB∗

n}n∈N converge in norm to B∞K and KB∗
∞, re-

spectively.

Proof. a) Let us first set φn := fn − f∞ and observe that w− limn→∞ φn = 0. By an
application of the uniform boundedness principle, see Theorem 1.1.8, it follows that
{∥φn∥}n∈N is bounded, i.e. there exists M > 0 such that ∥φn∥ ≤ M for any n ∈ N.
Since K is compact, for any ε > 0 there exists a finite rank operator A of the form
given in (1.17) such that ∥K − A∥ ≤ ε

2M
. Then one has

∥Kφn∥ ≤ ∥(K − A)φn∥+ ∥Aφn∥ ≤ ε

2
+

N∑
j=1

|⟨gj, φn⟩|∥hj∥.

Since w− limn→∞ φn = 0 there exists n0 ∈ N such that |⟨gj, φn⟩| ∥hj∥ ≤ ε
2N

for any
j ∈ {1, . . . , N} and all n ≥ n0. As a consequence, one infers that ∥Kφn∥ ≤ ε for all
n ≥ n0, or in other words s− limn→∞Kφn = 0.

b) Let us set Cn := Bn − B∞ such that s− limn→∞Cn = 0. As before, there exists
M > 0 such that ∥Cn∥ ≤ M for any n ∈ N. For any ε > 0 consider a finite rank
operator A of the form (1.17) such that ∥K − A∥ ≤ ε

2M
. Then observe that for any
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f ∈ H

∥CnKf∥ ≤M∥(K − A)f∥+ ∥CnAf∥

≤M∥K − A∥∥f∥+
N∑
j=1

|⟨gj, f⟩|∥Cnhj∥

≤
{
M∥K − A∥ +

N∑
j=1

∥gj∥∥Cnhj∥
}
∥f∥.

Since Cn strongly converges to 0 one can then choose n0 ∈ N such that ∥gj∥∥Cnhj∥ ≤ ε
2N

for any j ∈ {1, . . . N} and all n ≥ n0. One then infers that ∥CnK∥ ≤ ε for any n ≥ n0,
which means that the sequence {CnK}n∈N uniformly converges to 0. The statement
about {KB∗

n}n∈N can be proved analogously by taking the equality ∥KB∗
n −KB∗

∞∥ =
∥BnK

∗ −B∞K
∗∥ into account and by remembering that K∗ is compact as well.

Exercise 1.3.14. Check that an orthogonal projection P is a compact operator if and
only if PH is of finite dimension.

There are various subalgebras of K (H), for example the algebra of Hilbert-Schmidt
operators, the algebra of trace class operators, and more generally the Schatten classes.
Note that these algebras are not closed with respect to the norm ∥·∥ but with respect to
some stronger norms |||·|||. These algebras are ideals in B(H). In the following chapter
these subalgebras will be extensively studied.

1.4 Unbounded, closed, and self-adjoint operators

Even if unbounded operators will not play an important role in the sequel, they might
appear from time to time. For that reason, we gather in this section a couple of im-
portant definitions related to them. Obviously, the following definitions and results are
also valid for bounded linear operators.

Definition 1.4.1. A linear operator onH is a pair
(
A,D(A)

)
, where D(A) is a subspace

of H and A is a linear map from D(A) to H. D(A) is called the domain of A. One says
that the operator

(
A,D(A)

)
is densely defined if D(A) is dense in H.

Note that one often just says the linear operator A, but that its domain D(A) is
implicitly taken into account. For such an operator, its range Ran(A) is defined by

Ran(A) := AD(A) = {f ∈ H | f = Ag for some g ∈ D(A)}.

In addition, one defines the kernel Ker(A) of A by

Ker(A) := {f ∈ D(A) | Af = 0}.

Let us also stress that the sum A + B for two linear operators is a priori only
defined on the subspace D(A)∩D(B), and that the product AB is a priori defined only
on the subspace {f ∈ D(B) | Bf ∈ D(A)}. These two sets can be very small.
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Example 1.4.2. Let H := L2(R) and consider the operator X defined by [Xf ](x) =
xf(x) for any x ∈ R. Clearly, D(X) = {f ∈ H |

∫
R |xf(x)|

2dx <∞} ( H. In addition,
by considering the family of functions {fy}y∈R ⊂ D(X) with fy(x) := 1 in x ∈ [y, y+ 1]
and fy(x) = 0 if x ̸∈ [y, y+1], one easily observes that ∥fy∥ = 1 but supy∈R ∥Xfy∥ = ∞,
which can be compared with (1.8).

Clearly, a linear operator A can be defined on several domains. For example the
operator X of the previous example is well-defined on the Schwartz space S(R), or on
the set Cc(R) of continuous functions on R with compact support, or on the space D(X)
mentioned in the previous example. More generally, one has:

Definition 1.4.3. For any pair of linear operators
(
A,D(A)

)
and

(
B,D(B)

)
satisfying

D(A) ⊂ D(B) and Af = Bf for all f ∈ D(A), one says that
(
B,D(B)

)
is an extension

of
(
A,D(A)

)
to D(B), or that

(
A,D(A)

)
is the restriction of

(
B,D(B)

)
to D(A).

Let us now note that if
(
A,D(A)

)
is densely defined and if there exists c ∈ R such

that ∥Af∥ ≤ c∥f∥ for all f ∈ D(A), then there exists a natural continuous extension
A of A with D(A) = H. This extension satisfies A ∈ B(H) with ∥A∥ ≤ c, and is called
the closure of the operator A.

Exercise 1.4.4. Work on the details of this extension.

Let us now consider a similar construction but in the absence of a constant c ∈ R
such that ∥Af∥ ≤ c∥f∥ for all f ∈ D(A). More precisely, consider an arbitrary densely
defined operator

(
A,D(A)

)
. Then for any f ∈ H there exists a sequence {fn}n∈N ⊂ D(A)

strongly converging to f . Note that the sequence {Afn}n∈N will not be Cauchy in
general. However, let us assume that this sequence is strongly Cauchy, i.e. for any
ε > 0 there exists N ∈ N such that ∥Afn − Afm∥ < ε for any n,m ≥ N . Since H is
complete, this Cauchy sequence has a limit, which we denote by h, and it would then
be natural to set Af = h. In short, one would have Af := s− limn→∞Afn. It is easily
observed that this definition is meaningful if and only if by choosing a different sequence
{f ′

n}n∈N ⊂ D(A) strongly convergent to f and also defining a Cauchy sequence {Af ′
n}n∈N

then s− limn→∞Af ′
n = s− limn→∞Afn. If this condition holds, then Af is well-defined.

Observe in addition that the previous equality can by rewritten as s− limn→∞A(fn −
f ′
n) = 0, which leads naturally to the following definition.

Definition 1.4.5. A linear operator
(
A,D(A)

)
is closable if for any sequence {fn}n∈N

in D(A) satisfying s− limn→∞ fn = 0 and such that {Afn}n∈N is strongly Cauchy, then
s− limn→∞Afn = 0.

As shown before this definition, in such a case one can define an extension A of
A with D(A) given by the sets of f ∈ H such that there exists {fn}n∈N ⊂ D(A) with
s− limn→∞ fn = f and such that {Afn}n∈N is strongly Cauchy. For such an element f
one sets Af = s− limn→∞Afn, and the extension

(
A,D(A)

)
is called the closure of A.

In relation with the previous construction the following definition is now natural:
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Definition 1.4.6. An linear operator
(
A,D(A)

)
is closed if for any sequence {fn}n∈N ⊂

D(A) with s− limn→∞ fn = f ∈ H and such that {Afn}n∈N is strongly Cauchy, then one
has f ∈ D(A) and s− limn→∞Afn = Af .

Let us now come back to the notion of the adjoint of an operator. This concept is
slightly more subtle for unbounded operators than in the bounded case.

Definition 1.4.7. Let
(
A,D(A)

)
be a densely defined linear operator on H. The adjoint

A∗ of A is the operator defined by

D(A∗) :=
{
f ∈ H | ∃f ∗ ∈ H with ⟨f ∗, g⟩ = ⟨f, Ag⟩ for all g ∈ D(A)

}
and A∗f := f ∗ for all f ∈ D(A∗).

Let us note that the density of D(A) is necessary to ensure that A∗ is well-defined.
Indeed, if f ∗

1 , f
∗
2 satisfy for all g ∈ D(A)

⟨f ∗
1 , g⟩ = ⟨f, Ag⟩ = ⟨f ∗

2 , g⟩,

then ⟨f ∗
1 − f ∗

2 , g⟩ = 0 for all g ∈ D(A), and this equality implies f ∗
1 = f ∗

2 only if D(A)
is dense in H. Note also that once

(
A∗,D(A∗)

)
is defined, one has

⟨A∗f, g⟩ = ⟨f, Ag⟩ ∀f ∈ D(A∗) and ∀g ∈ D(A).

Exercise 1.4.8. Show that if
(
A,D(A)

)
is closable, then D(A∗) is dense in H.

Some relations between A and its adjoint A∗ are gathered in the following lemma.

Lemma 1.4.9. Let
(
A,D(A)

)
be a densely defined linear operator on H. Then

(i)
(
A∗,D(A∗)

)
is closed,

(ii) One has Ker(A∗) = Ran(A)⊥,

(iii) If
(
B,D(B)

)
is an extension of

(
A,D(A)

)
, then

(
A∗,D(A∗)

)
is an extension of(

B∗,D(B∗)
)
.

Proof. a) Consider {fn}n∈N ⊂ D(A∗) such that s− limn→∞ fn = f ∈ H and such that
s− limn→∞A∗fn = h ∈ H. Then for each g ∈ D(A) one has

⟨f,Ag⟩ = lim
n→∞

⟨fn, Ag⟩ = lim
n→∞

⟨A∗fn, g⟩ = ⟨h, g⟩.

Hence f ∈ D(A∗) and A∗f = h, which proves that A∗ is closed.
b) Let f ∈ Ker(A∗), i.e. f ∈ D(A∗) and A∗f = 0. Then, for all g ∈ D(A), one has

0 = ⟨A∗f, g⟩ = ⟨f, Ag⟩

meaning that f ∈ Ran(A)⊥. Conversely, if f ∈ Ran(A)⊥, then for all g ∈ D(A) one has

⟨f, Ag⟩ = 0 = ⟨0, g⟩
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meaning that f ∈ D(A∗) and A∗f = 0, by the definition of the adjoint of A.
c) Consider f ∈ D(B∗) and observe that ⟨B∗f, g⟩ = ⟨f,Bg⟩ for any g ∈ D(B).

Since
(
B,D(B)

)
is an extension of

(
A,D(A)

)
, one infers that ⟨B∗f, g⟩ = ⟨f, Ag⟩ for

any g ∈ D(A). Now, this equality means that f ∈ D(A∗) and that A∗f = B∗f , or more
explicitly that A∗ is defined on the domain of B∗ and coincide with this operator on
this domain. This means precisely that

(
A∗,D(A∗)

)
is an extension of

(
B∗,D(B∗)

)
.

Let us finally introduce the analogue of the bounded self-adjoint operators but in
the unbounded setting. These operators play a key role in quantum mechanics and their
study is very well developed.

Definition 1.4.10. A densely defined linear operator
(
A,D(A)

)
is self-adjoint if

D(A∗) = D(A) and A∗f = Af for all f ∈ D(A).

Note that as a consequence of Lemma 1.4.9.(i) a self-adjoint operator is always
closed. Recall also that in the bounded case, a self-adjoint operator was characterized
by the equality

⟨Af, g⟩ = ⟨f,Ag⟩ (1.18)

for any f, g ∈ H. In the unbounded case, such an equality still holds if f, g ∈ D(A).
However, let us emphasize that (1.18) does not completely characterize a self-adjoint
operator. In fact, a densely defined operator

(
A,D(A)

)
satisfying (1.18) is called a sym-

metric operator, and self-adjoint operators are special instances of symmetric operators
(but not all symmetric operators are self-adjoint). For a symmetric operator the adjoint
operator

(
A∗,D(A∗)

)
is an extension of

(
A,D(A)

)
, but the equality of these two oper-

ators holds only if
(
A,D(A)

)
is self-adjoint. Note also that for any symmetric operator

the scalar ⟨f, Af⟩ is real for any f ∈ D(A).

Exercise 1.4.11. Show that a symmetric operator is always closable.

Let us add one more definition related to self-adjoint operators.

Definition 1.4.12. A symmetric operator
(
A,D(A)

)
is essentially self-adjoint if its

closure
(
A,D(A)

)
is self-adjoint. In this case D(A) is called a core for A.

A following fundamental criterion for self-adjointness is important in this context,
and its proof can be found in [Amr, Prop. 3.3].

Proposition 1.4.13. Let
(
A,D(A)

)
be a symmetric operator in a Hilbert space H.

Then

(i)
(
A,D(A)

)
is self-adjoint if and only if Ran(A+ i) = H and Ran(A− i) = H,

(ii)
(
A,D(A)

)
is essentially self-adjoint if and only if Ran(A+ i) and Ran(A− i) are

dense in H.
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For completeness, let us recall the definitions of a spectral family and a spectral
measure, and mention one version of the spectral theorem for self-adjoint operators.
We do not provide more explanations here and refer to [Amr, Chap. 4] for a thorough
introduction to this important result of spectral theory. Later on, it will be useful to
have these definitions and this statement at hand.

Definition 1.4.14. A spectral family, or a resolution of the identity, is a family
{Eλ}λ∈R of orthogonal projections in H satisfying:

(i) The family is non-decreasing, i.e. EλEµ = Emin{λ,µ},

(ii) The family is strongly right continuous, i.e. Eλ = Eλ+0 = s− limε↘0Eλ+ε,

(iii) s− limλ→−∞Eλ = 0 and s− limλ→∞Eλ = 1,

Given such a family, one first defines

E
(
(a, b]

)
:= Eb − Ea, a, b ∈ R, (1.19)

and extends this definition to all sets V ∈ AB, where AB denotes the set of Borel
sets on R. Thus one ends up with the notion of a spectral measure, which consists
in a projection-valued map E : AB → P(H) which satisfies E(∅) = 0, E(R) = 1,
E(V1)E(V2) = E(V1 ∩ V2) for any Borel sets V1, V2.

Theorem 1.4.15 (Spectral Theorem). With any self-adjoint operator
(
A,D(A)

)
on a

Hilbert space H one can associate a unique spectral family {Eλ}, called the spectral
family of A, such that D(A) = Did with

Dφ :=
{
f ∈ H |

∫ ∞

−∞
|φ(λ)|2 ⟨E(dλ)f, f⟩ <∞

}
.

and A =
∫∞
−∞ λE(dλ). Conversely any spectral family or any spectral measure defines

a self-adjoint operator in H by the previous formulas.

1.5 Resolvent and spectrum

We come now to the important notion of the spectrum of an operator. As already
mentioned in the previous section we shall often speak about a linear operator A, its
domain D(A) being implicitly taken into account. Recall also that the notion of a closed
linear operator has been introduced in Definition 1.4.6.

The notion of the inverse of a bounded linear operator has already been intro-
duced in Definition 1.2.7. By analogy we say that any linear operator A is invertible if
Ker(A) = {0}. In this case, the inverse A−1 gives a bijection from Ran(A) onto D(A).
More precisely D(A−1) = Ran(A) and Ran(A−1) = D(A). It can then be checked that
if A is closed and invertible, then A−1 is also closed. Note also if A is closed and if
Ran(A) = H then A−1 ∈ B(H). In fact, the boundedness of A−1 is a consequence of
the closed graph theorem and one says in this case that A is boundedly invertible or
invertible in B(H).
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Definition 1.5.1. For a closed linear operator A its resolvent set ρ(A) is defined by

ρ(A) :=
{
z ∈ C | (A− z) is invertible in B(H)

}
=
{
z ∈ C | Ker(A− z) = {0} and Ran(A− z) = H

}
.

For z ∈ ρ(A) the operator (A−z)−1 ∈ B(H) is called the resolvent of A at the point z.
The spectrum σ(A) of A is defined as the complement of ρ(A) in C, i.e.

σ(A) := C \ ρ(A). (1.20)

The following statement summarized several properties of the resolvent set and of
the resolvent of a closed linear operator.

Proposition 1.5.2. Let A be a closed linear operator on a Hilbert space H. Then

(i) The resolvent set ρ(A) is an open subset of C,

(ii) If z1, z2 ∈ ρ(A) then the first resolvent equation holds, namely

(A− z1)
−1 − (A− z2)

−1 = (z1 − z2)(A− z1)
−1(A− z2)

−1 (1.21)

(iii) If z1, z2 ∈ ρ(A) then the operators (A− z1)
−1 and (A− z2)

−1 commute,

(iv) In each connected component of ρ(A) the map z 7→ (A− z)−1 is holomorphic.

As a consequence of the previous proposition, the spectrum of a closed linear opera-
tor is always closed. In particular, z ∈ σ(A) if A−z is not invertible or if Ran(A−z) ̸= H.
The first situation corresponds to the definition of an eigenvalue:

Definition 1.5.3. For a closed linear operator A, a value z ∈ C is an eigenvalue of
A if there exists f ∈ D(A), f ̸= 0, such that Af = zf . In such a case, the element f
is called an eigenfunction of A associated with the eigenvalue z. The dimension of the
vector space generated by all eigenfunctions associated with an eigenvalue z is called
the geometric multiplicity of z. The set of all eigenvalues of A is denoted by σp(A), and
is often called the point spectrum of A.

Let us still provide two properties of the spectrum of an operator in the special
cases of a bounded operator or of a self-adjoint operator.

Exercise 1.5.4. By using the Neumann series, show that for any B ∈ B(H) its spec-
trum is contained in the ball in the complex plane of center 0 and of radius ∥B∥.

Lemma 1.5.5. Let A be a self-adjoint operator in H.

(i) Any eigenvalue of A is real,

(ii) More generally, the spectrum of A is real, i.e. σ(A) ⊂ R,
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(iii) Eigenvectors associated with different eigenvalues are orthogonal to one another.

Proof. a) Assume that there exists z ∈ C and f ∈ D(A), f ̸= 0 such that Af = zf .
Then one has

z∥f∥2 = ⟨f, zf⟩ = ⟨f, Af⟩ = ⟨Af, f⟩ = ⟨zf, f⟩ = z∥f∥2.

Since ∥f∥ ̸= 0, one deduces that z ∈ R.
b) Let us consider z = λ + iε with λ, ε ∈ R and ε ̸= 0, and show that z ∈ ρ(A).

Indeed, for any f ∈ D(A) one has

∥(A− z)f∥2 = ∥(A− λ)f − iεf∥2

=
⟨
(A− λ)f − iεf, (A− λ)f − iεf

⟩
= ∥(A− λ)f∥2 + ε2∥f∥2.

It follows that ∥(A− z)f∥ ≥ |ε|∥f∥, and thus A− z is invertible.
Now, for any for any g ∈ Ran(A− z) let us observe that

∥g∥ =
∥∥(A− z)(A− z)−1g

∥∥ ≥ |ε|
∥∥(A− z)−1g

∥∥.
Equivalently, it means for all g ∈ Ran(A− z), one has∥∥(A− z)−1g

∥∥ ≤ 1

|ε|
∥g∥. (1.22)

Let us finally observe that Ran(A− z) is dense in H. Indeed, by Lemma 1.4.9 one
has

Ran(A− z)⊥ = Ker
(
(A− z)∗

)
= Ker(A∗ − z) = Ker(A− z) = {0}

since all eigenvalues of A are real. Thus, the operator (A − z)−1 is defined on the
dense domain Ran(A− z) and satisfies the estimate (1.22). As explained just before the
Exercise 1.4.4, it means that (A − z)−1 continuously extends to an element of B(H),
and therefore z ∈ ρ(A).

c) Assume that Af = λf and that Ag = µg with λ, µ ∈ R and λ ̸= µ, and
f, g ∈ D(A), with f ̸= 0 and g ̸= 0. Then

λ⟨f, g⟩ = ⟨Af, g⟩ = ⟨f, Ag⟩ = µ⟨f, g⟩,

which implies that ⟨f, g⟩ = 0, or in other words that f and g are orthogonal.

1.6 Positivity and polar decomposition

The notion of positive operators can be introduced either in a Hilbert space setting or
in a C∗-algebraic setting. The next definition is based on the former framework, and its
analog in the latter framework will be mentioned subsequently.
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Definition 1.6.1. A densely defined linear operator
(
A,D(A)

)
in H is positive if

⟨f,Af⟩ ≥ 0 for any f ∈ D(A). (1.23)

Clearly, such an operator is symmetric, see the paragraph following Definition
1.4.10. If A is bounded one also infers that A is self-adjoint, but this might not be
the case if A is unbounded. It is then a natural question to check whether there exists
some self-adjoint extensions of A which are still positive. We shall not go further in
this direction and stick to the self-adjoint case. More precisely, a self-adjoint operator(
A,D(A)

)
is positive if (1.23) holds.

For positive self-adjoint operators, the following consequences of the spectral theo-
rem are very useful, see Theorem 1.4.15.

Proposition 1.6.2. For any positive and self-adjoint operator
(
A,D(A)

)
in H the

following properties hold:

(i) σ(A) ⊂ [0,∞),

(ii) There exists a unique self-adjoint and positive operator
(
B,D(B)

)
such that A =

B2 on D(A). The operator B is called the positive square root of A and is denoted
by A1/2

Since in a purely C∗-algebraic the scalar product in (1.23) does not exist (note that
this statement is not really correct because of the GNS representation) one usually says
that a bounded operator A is positive if A = A∗ and σ(A) ⊂ [0,∞). However, this
definition coincides with the one mentioned above as long as one considers bounded
operators only.

Remark 1.6.3. If A is an arbitrary element of B(H), observe that A∗A and AA∗

are positive operators. Indeed, self-adjointness follows easily from Exercise 1.2.4 while
positivity is obtained by the equalities

⟨f, A∗Af⟩ = ⟨Af,Af⟩ = ∥Af∥2 ≥ 0

and similarly for AA∗. In fact, the set {A∗A | A ∈ B(H)} is equal to the set of all
positive operators in B(H).

Let us add one statement which contains several properties of bounded positive
operators. It can be stated in a purely C∗-algebraic framework, but we present it for
simplicity for B(H) only. Note that if A ∈ B(H) we often denote its positivity by
writing A ≥ 0. Now, if A1, A2 are bounded and self-adjoint operators, one writes A1 ≥
A2 if A1−A2 ≥ 0. We shall also use the notation B(H)+ for the set of positive elements
of B(H).

Proposition 1.6.4. (i) The sum of two positive elements of B(H) is a positive ele-
ment of B(H),
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(ii) The set B(H)+ is equal to {A∗A | A ∈ B(H)},

(iii) If A,B are self-adjoint elements of B(H) and if C ∈ B(H), then A ≥ B ⇒
C∗AC ≥ C∗BC,

(iv) If A ≥ B ≥ 0, then A1/2 ≥ B1/2,

(v) If A ≥ B ≥ 0, then ∥A∥ ≥ ∥B∥,

(vi) If A,B are positive and invertible elements of B(H), then A ≥ B ⇒ B−1 ≥
A−1 ≥ 0,

(vii) For any A ∈ B(H) there exist A1, A2, A3, A4 ∈ B(H)+ such that

A = A1 − A2 + iA3 − iA4.

Proof. See Lemma 2.2.3, Theorem 2.2.5 and Theorem 2.2.6 of [Mur].

We finally state and prove a very useful result for arbitrary element of B ∈ B(H).
For that purpose we first introduce

|B| := (B∗B)1/2. (1.24)

Theorem 1.6.5 (Polar decomposition). For any B ∈ B(H) there exists a unique
partial isometry W ∈ B(H) such that

W |B| = B and Ker(W ) = Ker(B). (1.25)

In addition, W ∗B = |B|.
Proof. For any f ∈ H one has∥∥|B|f

∥∥2
= ⟨|B|f, |B|f⟩ = ⟨f, |B|2f⟩ = ⟨f,B∗Bf⟩ = ∥Bf∥2,

which means that the map

W0 : |B|H ∋ |B|f 7→ Bf ∈ H
is well-defined, isometric, and also linear. It can then be uniquely extended to a linear
isometric map from the closure |B|H to H. This extension is still denoted by W0. We
can thus define the operator W ∈ B(H) by W = W0 on |B|H and W = 0 on its
orthocomplement. It then follows that W |B| = B, and W is isometric on Ker(W )⊥

since Ker(W ) = |B|H
⊥
. Thus, W is a partial isometry and Ker(W ) = Ker(|B|). Now,

since for any f, g ∈ H one has

⟨W ∗Bf, |B|g⟩ = ⟨Bf,Bg⟩ = ⟨f,B∗Bg⟩ = ⟨|B|f, |B|g⟩,
one deduces that ⟨W ∗Bf, h⟩ = ⟨|B|f, h⟩ for any h ∈ |B|H, and then for any h ∈ H.
ThusW ∗B = |B|, and since Ker(W ∗) = Ran(W )⊥ = Ran(B)⊥, one infers that Ker(B) =
Ker(|B|) = Ker(W ).

For the uniqueness, suppose that there exists another partial isometry W ′ ∈ B(H)
such that W ′|B| = B and Ker(W ′) = Ker(B). Then W ′ is equal to W on |B|H and on

|B|H
⊥
both operators are equal to 0. As a consequence, W ′ =W .
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Chapter 2

Normed ideals of K (H)

In this chapter we review the classical theory related to compact operators: their singular
values and their eigenvalues, some operator ideals, etc. We shall mainly follow [Sim]
but an alternative reference is [GK]. Note that some results might be improved in the
subsequent chapters. Before starting with any new material, let us emphasize one tiny
but important point.

Remark 2.0.6. Up to now, choosing N = {0, 1, 2, . . . } or N = {1, 2, 3, . . . } was not
relevant and we did not impose any choice. However, in some of the subsequent formulas
starting with n = 0 or with n = 1 makes a difference. So from now on we shall take the
convention that N := {1, 2, 3, . . . } and stress that some formulas look different with the
other convention. Thus, without further notice all sequences {fn} or (an) will start with
n = 1. Relatedly, we shall use the convenient notation N either for a finite number or
for ∞.

2.1 Compact operators and the canonical expansion

In order to study the ideal of compact operators K (H), a standard result on analytic
operator-valued functions has to be recalled. Its proof is provided for example in [RS1,
Thm VI.14]. For its statement, we recall that a subset S of an open set Ω is discrete if
it has no limit points in Ω.

Theorem 2.1.1 (Analytic Fredholm theorem). Let Ω be an open connected subset of C.
Let Ψ : Ω → K (H) be an analytic operator-valued function. Then one of the following
alternative holds:

(i)
(
1−Ψ(z)

)−1
exists for no z ∈ Ω,

(ii)
(
1 − Ψ(z)

)−1
exists for all z ∈ Ω \ S where S is a discrete subset of Ω. In this

case,
(
1−Ψ(z)

)−1
is meromorphic in Ω, analytic in Ω\S, the residue at the poles

are finite rank operators, and if z ∈ S then the equation Ψ(z)f = f has a nonzero
solution in H.

25
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This theorem has several important consequences. We state a few of them.

Corollary 2.1.2 (Fredholm alternative). If A belongs to K (H), either (1−A)−1 exists
or Af = f has a solution in H.

Proof. Set Ψ(z) = zA and apply the previous theorem at z = 1.

Theorem 2.1.3 (Riesz-Schauder theorem). If A belongs to K (H), then its spectrum
σ(A) is a discrete set having no limit points except perhaps 0. In addition, any non-zero
λ ∈ σ(A) is an eigenvalue of finite geometric multiplicity.

Proof. Let us set Ψ(z) = zA, which makes Ψ an analytic K (H)-valued function on
C. Thus from Theorem 2.1.1 one infers that the set {z ∈ C | Ψ(z)f = f for some f ∈
H, f ̸= 0} is a discrete set. Now, if λ ̸= 0 and if 1

λ
is not in this discrete set then

(λ− A)−1 =
1

λ

(
1− 1

λ
A
)−1

exists, which means that λ ̸∈ σ(A). From this, one deduces that the spectrum of A
consists in the discrete set mentioned above, and possibly in the value 0. Finally, the
fact that the non-zero eigenvalues have finite geometric multiplicity follows directly
from the compactness of A.

The following statement is a direct consequence of Riesz-Schauder theorem together
with some information deduced from the spectral theorem for self-adjoint operators, see
Theorem 1.4.15.

Theorem 2.1.4 (Hilbert-Schmidt theorem). If A is self-adjoint and belongs to K (H)
then there exists a complete orthonormal basis {fn}n∈N of H such that Afn = λnfn and
limn→∞ λn = 0.

If A is not self-adjoint, a “canonical” description of A can still be provided. For its
statement, we shall use the convenient notation |f⟩⟨g| for the rank-one operator defined
by

|f⟩⟨g|h := ⟨g, h⟩f, for any f, g, h ∈ H. (2.1)

Theorem 2.1.5. If A belongs to K (H) then A has a norm convergent expansion

A =
N∑
n=1

µn(A)|gn⟩⟨fn| (2.2)

with N either a finite number or equal to ∞, with each µn(A) > 0 and satisfying
µn(A) ≥ µn+1(A), and with each family {fn} and {gn} orthonormal but not necessarily
complete. Moreover, each µn(A) is uniquely determined while the fn and gn are usually
not uniquely defined.
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Proof. From the polar decomposition provided in Theorem 1.6.5 one infers that there
exists a partial isometry W such that |A| = W ∗A. Thus, |A| is a compact and self-
adjoint operator to which Theorem 2.1.4 applies. With the notations introduced above,
this reads

|A| =
N∑
n=1

µn(A)|fn⟩⟨fn|

where the µn(A) are the eigenvalues of |A| and fn the corresponding eigenfunctions.
Clearly, the family {fn} is orthonormal. Since W is an isometry on Ran(|A|) and by
setting gn := Wfn one also infers that {gn} is orthonormal. Since the relationW |A| = A
holds, one directly deduces the equality (2.2). The uniqueness follows if one observes
that if (2.2) holds, then {µn(A)2} are the eigenvalues of A∗A, {fn} the eigenvectors of
A∗A and {gn} the eigenvectors of AA∗. The lack of uniqueness of fn and gn comes from
the possible degeneracy of the eigenvalues of A∗A and AA∗.

In the previous result, the real values µn(A) are called the singular values of A and
the equality (2.2) is called the canonical expansion of A. Let us also emphasize that

µn(A
∗) = µn(A), (2.3)

as it can be directly deduced from (2.2) or from the fact that the spectrum of A∗A and
AA∗ coincide (multiplicity counted) with the possible exception of the eigenvalue 0.

Let us still add one more useful result which can be easily deduced from the con-
struction provided in [Kat, Sec. III.6.4].

Lemma 2.1.6. If A belongs to K (H) and λ ∈ σ(A) is not equal to 0, then there
exists a finite rank projection Pλ such that APλ = PλA, σ

(
A � PλH

)
= {λ} and

σ
(
A � (1− Pλ)H

)
= σ(A) \ {λ}.

Note that a possible expression for Pλ is provided by the formula

Pλ := − 1

2πi

∫
|z−λ|=ε

(A− z)−1dz

for ε > 0 small enough. The dimension of Ran(Pλ) is called the algebraic multiplicity of
λ. We still recall that the geometric and the algebraic multiplicity of an eigenvalue can
be different, but the geometric multiplicity can never exceed the algebraic multiplicity.

2.2 Eigenvalues and singular values

In this section we begin the study of the singular values of any compact operator A,
and then state some relations between singular values and eigenvalues. The proofs for
most of these relations are not provided but references are given.

We start with some results on singular values. Since these values can be computed
by an application of the min-max principle, we first introduce this principle for positive
compact operator. Note that a similar statement holds for the negative eigenvalues of
any self-adjoint compact operator.
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Theorem 2.2.1 (Min-max principle). Let B be a positive compact operator in H,
and let {λn} be the set of its eigenvalues (counting multiplicity) and ordered such that
λn ≥ λn+1. Then

λn = min
{
sup{⟨f,Bf⟩ | f ∈ M⊥

n , ∥f∥ = 1} | Mn ⊂ H, dim(Mn) = n− 1
}
. (2.4)

Proof. For any n ∈ N let us set Fn := Span(f1, . . . , fn) with fj a normalized eigenvector
corresponding to the eigenvalue λj of B. Let us also consider any subspace Mn ⊂ H
with dim(Mn) = n−1. Clearly, Fn∩M⊥

n ̸= {0}, and thus one can choose f ∈ Fn∩M⊥
n

with ∥f∥ = 1. More precisely, f =
∑d

j=1 cjfj with
∑d

j=1 |cj|2 = 1. It then follows that

⟨f,Bf⟩ =
d∑
j=1

⟨cjfj, λjcjfj⟩ =
d∑
j=1

λj|cj|2 ≥ λn

d∑
j=1

|cj|2 = λn

since the eigenvalues of B are ordered. Hence we have obtained that

sup
{
⟨f,Bf⟩ | f ∈ M⊥

n , ∥f∥ = 1
}
≥ λn.

For the converse inequality, one can choose Mn := Span(f1, . . . , fn−1) and then

sup
{
⟨f,Bf⟩ | f ∈ M⊥

n , ∥f∥ = 1
}
= λn,

which implies the statement.

By setting B := A∗A in the previous statement and by recalling that µn(A)
2 corre-

sponds to the n-eigenvalue of A∗A one directly obtains a characterization of the singular
values of any compact operator A, namely:

Proposition 2.2.2. Let A belong to K (H) and let {µn(A)} denote its singular values
ordered such that µn(A) ≥ µn+1(A). Then

µn(A) = min
{
sup{∥Af∥ | f ∈ M⊥

n , ∥f∥ = 1} | Mn ⊂ H, dim(Mn) = n− 1
}
. (2.5)

As a consequence one directly infers the following estimates:

Corollary 2.2.3. For any A ∈ K (H) and B ∈ B(H) one has

µn(AB) ≤ µn(A)∥B∥ and µn(BA) ≤ µn(A)∥B∥. (2.6)

Proof. Observe that the first inequality can be deduced from the second one and from
(2.3). Indeed one has

µn(AB) = µn(B
∗A∗) ≤ µn(A

∗)∥B∗∥ = µn(A)∥B∥.

For the second equality, one uses (2.5) together with the inequality ∥BAf∥ ≤ ∥B∥∥Af∥
for any f ∈ H.
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In the next statement, we mention some generalizations of the previous result.
Proofs can be found in [Fan, Thm. 2].

Proposition 2.2.4. Let A,B belong to K (H). Then the following inequalities hold for
any m,n ∈ N:

µm+n−1(AB) ≤ µm(A)µn(B), (2.7)

µn+m−1(A+B) ≤ µm(A) + µn(B). (2.8)

Note that (2.6) corresponds to the special case m = 1 since µ1(B) = ∥B∥. One
additional relation between the singular values of A,B and AB is given by:

Lemma 2.2.5. For any A,B in K (H) and for any n ∈ N one has

d∏
j=1

µj(AB) ≤
d∏
j=1

µj(A)µj(B). (2.9)

Proof. See [Hor], Theorem 3 and its proof.

Let us still mention some relations linking singular values and eigenvalues. Note that
the eigenvalues of a compact operator are not enumerated arbitrarily but according to
the following definition.

Definition 2.2.6. If A belongs to K (H) its eigenvalues λ1(A), λ2(A), . . . are ordered
such that |λj(A)| ≥ |λj+1(A)| for any j ∈ N, and each eigenvalue is counted up to its
algebraic multiplicity.

The following result comes from the paper [Wey].

Lemma 2.2.7. For any A in K (H) and for any n ∈ N one has

d∏
j=1

|λj(A)| ≤
d∏
j=1

µj(A).

As a consequence of the previous two results one has:

Proposition 2.2.8. For any A,B in K (H) and for any monotone increasing function
ϕ : [0,∞) → R+ such that t 7→ ϕ(et) is convex one has

(i) ∑
j

ϕ
(
|λj(A)|

)
≤

∑
j

ϕ
(
µj(A)

)
, (2.10)

and in particular for any p ≥ 1∑
j

|λj(A)|p ≤
∑
j

µj(A)
p, (2.11)
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(ii) ∑
j

ϕ
(
µj(AB)

)
≤

∑
j

ϕ
(
µj(A)µj(B)

)
. (2.12)

Proof. These inequalities directly follow from Lemmas 2.2.5 and 2.2.7 together with
Corollary 2.3.4 introduced in the next section.

Note that the results mentioned above are usually proved for finite matrices, and
then a limiting procedure is applied in order to extend the result to certain compact
operators. As mentioned in the proof of Proposition 2.2.8 some additional technicalities
are now required. Some of them are introduced in the next section.

2.3 Technical interlude

Let us start by introducing some ideas and results about rearrangement or (sub)majori-
zation. This concept plays an important role when dealing with the spectrum of matrices
or compact operators, and has been extensively studied in the book [MOB]. In the next
definition we use the notation c0 for the set of complex sequences a = (aj)

∞
j=1 satisfying

limj→∞ aj = 0.

Definition 2.3.1. For any a = (aj) in Cd or in c0 we denote by a∗ the element of Rd

or c0 obtained by a non-increasing rearrangement of {|aj|}j.

In other words, if means that a∗j ≥ a∗j+1 and that the sets {a∗j} and {|aj|} are
identical, counting multiplicity. For simplicity, we shall say that an element a ∈ Rd or
a ∈ c0 is positive and ordered if aj ≥ 0 and aj ≥ aj+1 for any j. Clearly, a∗ is always
positive and ordered.

Now, based on the rearrangement inequality1, as presented for example in [HLP,
Thm 368] one infers that for two sequences a and b as in the previous definition one has∑

j

|ajbj| ≤
∑
j

a∗jb
∗
j (2.13)

as long as the r.h.s. is meaningful (if a and b belong to Cd it is obviously the case). The
following result, stated first in [Ma1, Lem. 1] and proved in [Ma2, Thm. 1.2], will be
important later on. The version presented here is taken from [Sim, Thm. 1.9] where a
proof is provided.

1For any a ∈ Rd let us set a⋆ for the non-increasing rearrangement of {aj} (without the absolute
value). If a, b ∈ Rd the rearrangement inequality reads

d∑
j=1

a⋆j b
⋆
n+1−j ≤

d∑
j=1

aj bj ≤
d∑

j=1

a⋆j b
⋆
j .
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Theorem 2.3.2. Let a, b ∈ Cd and assume that

k∑
j=1

b∗j ≤
k∑
j=1

a∗j for any k ∈ {1, . . . , n}. (2.14)

Then there exist m points a(1), . . . , a(m) in Cd with (a(ℓ))∗ = a∗ for ℓ ∈ {1, . . . ,m} and
there exist {λℓ} ⊂ [0, 1] satisfying

∑m
ℓ=1 λℓ = 1 such that

b =
m∑
ℓ=1

λℓa
(ℓ). (2.15)

In addition if Φ is a positive valued function on [0,∞)d and if the function ϕ : Cd → R+,
defined by ϕ(c) := Φ(c∗1, . . . , c

∗
n), is convex on Cd, then

ϕ(b) ≤ ϕ(a). (2.16)

Note that condition (2.14) is often denoted by b Î a in the literature. In addition,
what (2.15) really says is that b belongs to the convex hull of a family of vectors of
the form (εkajk)

d
k=1 with |εk| = 1 and jk is an arbitrary permutation of the numbers

1, 2, . . . , n. The elements a(ℓ) are the points which define the convex hull. This, together
with the fact that ϕ(a(ℓ)) = ϕ(a) and the convexity of the function ϕ, directly implies
the inequality (2.16).

Exercise 2.3.3. Provide a proof of Theorem 2.3.2.

Before mentioning two results linked to the previous statement, let us show how one
can construct examples of functions Φ. Consider any function f : [0,∞) → R+ which
is convex and increasing and let us set Φ(x) :=

∑d
j=1 f(xj) for any x ∈ [0,∞)d. Then

one observes that for any θ ∈ [0, 1] and b, c ∈ Cd one has

ϕ
(
θb+ (1− θ)c

)
= Φ

(
(θb+ (1− θ)c)∗

)
=

d∑
j=1

f
(∣∣θbj + (1− θ)cj

∣∣)
≤

d∑
j=1

(
θf(|bj|) + (1− θ)f(|cj|)

)
= θϕ(b) + (1− θ)ϕ(c)

which means that ϕ is convex on Cd. As a consequence the function Φ satisfies the
requirement of Theorem 2.3.2.

The next statement is an application of Theorem 2.3.2 for transforming estimates
on products to estimates on sums.
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Corollary 2.3.4. Let a, b ∈ Rd be positive and ordered, and suppose that

k∏
j=1

bj ≤
k∏
j=1

aj for any k ∈ {1, . . . , n}.

Then, for any continuous, monotone increasing function g : [0,∞) → R+ with t 7→ g(et)
convex, we have that

k∑
j=1

g(bj) ≤
k∑
j=1

g(aj) for any k ∈ {1, . . . , n}. (2.17)

In particular, (2.14) can be obtained by taking g(x) = x.

Proof. Assume without loss of generality that aj and bj are all non-zero. By setting
then ãj := γaj and b̃j := γbj for γ large enough, we get that all ãj, b̃j are bigger
than 1. By considering then ln(ãj) and ln(b̃j), one observes that the condition (2.14)
is satisfied for these numbers. By setting then f(t) := g

(
γ−1 et

)
, the function f is

convex and increasing, and by the observation made above, the function Φ defined by
Φ(x) :=

∑
f(xj) for any x ∈ [0,∞)d satisfies the assumption of Theorem 2.3.2. The

inequality (2.17) follows then directly from (2.16).

Exercise 2.3.5. Check the details of the previous proof.

The second domain linked with Theorem 2.3.2 is related to the notion of doubly
substochastic matrices.

Definition 2.3.6. A matrix α = (ajk) ∈ MN(C) is called doubly substochastic (in

short dss) if
∑N

j=1 |αjk| ≤ 1 for all k ∈ {1, . . . , N} and
∑N

k=1 |αjk| ≤ 1 for all j ∈
{1, . . . , N}.

Note that such matrices can be constructed from elements of any Hilbert space
H. Indeed, if for any ℓ ∈ {1, 2, 3, 4} the family {f ℓj }Nj=1 ⊂ H is orthonormal, then
the matrix α defined by αjk := |⟨f 1

j , f
2
k ⟩|2 is a dss matrix, and the matrix β defined

by βjk := ⟨f 1
j , f

2
k ⟩⟨f 3

k , f
4
j ⟩ is a dss matrix. The fact that these matrices are doubly

substochastic can be obtained by applying Bessel and Schwartz inequalities.
The next statement is borrowed from [Sim, Prop. 1.12] to which we refer for its

proof.

Proposition 2.3.7. Let α ∈Mn(C) be a dss matrix and let c ∈ Cd. If one sets a := c∗

and b := αc, then a, b ∈ Cd satisfy condition (2.14) of Theorem 2.3.2.

We now introduce the notion of symmetric normed spaces. Note that a simple
introduction to the subject can be found in [Sch, Sec. V.3]. For that purpose, let us
denote by ℓ∞ the set of all bounded sequences (aj)

∞
j=1 endowed with the sup norm (also

denoted ℓ∞-norm), and let us denote by cc the set of complex sequences a = (aj)
∞
j=1
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with compact support. Clearly, cc is dense in c0 for the ℓ∞-norm. Recall that a norm
on cc is a map Φ : cc → R+ which satisfies for any a, b ∈ cc and λ ∈ C the following
properties: i) Φ(λa) = |λ|Φ(a), ii) Φ(a + b) ≤ Φ(a) + Φ(b), iii) Φ(a) = 0 if and only if
a = 0.

Definition 2.3.8. A norm Φ on cc is symmetric if Φ(a) = Φ(a∗) for any a ∈ cc.

Let us observe that a norm on cc is symmetric if and only if it is invariant under
permutations and under the map aj 7→ eiθj aj for any θj ∈ R.

Definition 2.3.9. Let Φ be a norm on cc. The maximal space JΦ consists in the set of
sequence a = (aj)

∞
j=1 such that the limit limn→∞ Φ

(
(a1, a2, . . . , an, 0, 0 . . . )

)
exists (we

denote it then by Φ(a)). The minimal space J
(0)
Φ consists in the closure of cc with the

norm Φ. If JΦ = J
(0)
Φ , that is if cc is dense in JΦ the norm Φ is called regular (or

mononormalizing in some references).

Examples 2.3.10. 1) For p ≥ 1, if Φ(a) ≡ ∥a∥p :=
(∑

j |aj|p
)1/p

then JΦ corresponds
to the usual ℓp space. We also set ∥a∥∞ := supj |aj|. Note that if p <∞ the norm ∥ · ∥p
is regular.

2) For p > 1 let us set

∥a∥p,w := sup
n

(
n−1+ 1

p

d∑
j=1

a∗j

)
, (2.18)

which is a symmetric norm, called Calderón norm. The maximal space associated with
this norm is denoted by ℓp,w and called weak ℓp-space. The minimal space corresponds to

the elements a ∈ ℓp,w satisfying the additional condition limj→∞ j
1
pa∗j = 0, which means

that the Calderón norms are not regular. Note also that the following inequalities hold

∥a∥′p,w ≤ ∥a∥p,w ≤ p

p− 1
∥a∥′p,w

with ∥a∥′p,w := supj(j
1
pa∗j). Clearly, this expression is simpler than (2.18) but ∥ · ∥′p,w

does not define a norm. However, the set of a ∈ ℓ∞ satisfying ∥a∥′p,w < ∞ corresponds
to ℓp,w, and this expression can also be used for p = 1.

In the following statement, several properties of maximal and minimal spaces are
summarized. Note that Theorem 2.3.2 and Proposition 2.3.7 play an important role in
the proof, and that condition (2.14) is explicitly mentioned in the point (b). For the
proof of these statements, we refer to [Sim, Thm. 1.16].

Theorem 2.3.11. Let Φ be a symmetric norm on cc, then

(a) If a ∈ JΦ and limj→∞ aj = 0, then Φ(a) = Φ(a∗),

(b) If a, b ∈ JΦ with limj→∞ aj = 0 and limj→∞ bj = 0, and if
∑d

j=1 b
∗
j ≤

∑d
j=1 a

∗
j for

any n ∈ N, then Φ(b) ≤ Φ(a),
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(c) If Φ
(
(1, 0, 0, . . . )

)
= c, then c∥a∥∞ ≤ Φ(a) ≤ c∥a∥1 for any a ∈ JΦ,

(d) Both JΦ and J
(0)
Φ are Banach spaces,

(e) If α is a substochastic matrix and a ∈ JΦ, resp. a ∈ J
(0)
Φ , then αa is in JΦ, resp.

in J
(0)
Φ , and Φ(αa) ≤ Φ(a),

(f) If Φ is inequivalent to ∥ · ∥∞, then JΦ consists only of sequences which vanish at
infinity,

(g) If JΦ = JΨ, then Φ and Ψ are equivalent norms.

For each symmetric norm Φ on cc one can define a conjugate norm Φ′ on cc by the
following construction: For any b ∈ cc one sets

Φ′(b) := sup
{∣∣∑

j

ajbj
∣∣ | a ∈ cc,Φ(a) ≤ 1

}
. (2.19)

As a consequence of (2.13) one easily infers that for b, c ∈ cc with c = c∗

sup
{∣∣∑

j

ajbj
∣∣ | a∗ = c

}
=

∑
j

b∗jcj

and then that Φ′ is a symmetric norm on cc. Some additional standard duality results
are gathered in the following statement.

Theorem 2.3.12. Let Φ be a symmetric norm on cc. Then

(a)
∑

j |ajbj| ≤ Φ(a)Φ′(b),

(b)
(
J
(0)
Φ

)∗
= JΦ′ in the sense that any continuous linear functional on J

(0)
Φ has the

form a 7→
∑

j ajbj for some b ∈ JΦ′,

(c) J
(0)
Φ , resp. JΦ, is reflexive if and only if both Φ and Φ′ are regular.

The proof of the above statement is provided in [Sim, Thm. 1.17] and is based on
standard duality arguments.

Exercise 2.3.13. Provide the proofs of Theorems 2.3.11 and 2.3.12.

We close this section with a few results related to singular values of pairs of compact
operators. Proofs can be found in [Sim, Sec. 1.8 & 1.9].

Proposition 2.3.14. a) For any pair of compact operators A and B one has

µn(A)− µn(B) =
∑
m

αnmµm(A−B) (2.20)
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for a dss matrix α.
b) For any pair of finite dimensional self-adjoint matrices A,B, let λ⋆n(A) denote

the eigenvalues of A listed in decreasing order. Then

λ⋆n(A)− λ⋆n(B) =
∑
m

βnmλ
⋆
m(A−B) (2.21)

for a dss matrix β.

For any A ∈ K (H) we set ∥A∥p :=
(∑

n µn(A)
p
)1/p

whenever the summation is
meaningful.

Proposition 2.3.15 (Clarkson-McCarthy inequalities). a) For 2 ≤ p <∞ one has

∥A+B∥pp + ∥A−B∥pp ≤ 2p−1
(
∥A∥pp + ∥B∥pp

)
. (2.22)

b) For 1 < p ≤ 2 and for p′ = p/(p− 1) one has

∥A+B∥p′p + ∥A−B∥p′p ≤ 2
(
∥A∥pp + ∥B∥pp

)p′/p
. (2.23)

Note that for A,B positive an additional relation holds:

Proposition 2.3.16. For p ≥ 1 and for A,B positive compact operators, one has

21−p∥A+B∥pp ≤ ∥A∥pp + ∥B∥pp ≤ ∥A+B∥pp. (2.24)

Exercise 2.3.17. Consider the matrices ( 0 1
1 0 ) and ( 0 i

−i 0 ) and compute ∥A∥1, ∥B∥1 and
∥A+ iB∥1. What do you observe and can you compare this result with the commutative
case ?

2.4 Normed ideals of B(H)

In this section we begin the study of two-sided ideals in B(H). By definition, as linear
subspace J of B(H) is a two-sided ideal of B(H) if AB and BA belong to J whenever
A ∈ J and B ∈ B(H). Some of these spaces will be linked to sequences introduced in
the previous sections. We begin with two standard results about operator ideals. The
first one state that the biggest ideal of B(H) is K (H).

Proposition 2.4.1. Let J be a two-sided ideal of B(H) containing an element A
which is not compact. Then J = B(H).

Proof. By the polar decomposition of Theorem 1.6.5, there exists a partial isometry
W such that |A| = W ∗A. If follows that J contains the positive self-adjoint oper-
ator |A| which is not compact. By the spectral theorem, for any a > 0 let us set
Pa := χ[a,∞)(|A|) ≡ E

(
[a,∞)

)
where E denotes the spectral measure associated with

the operator |A|. If each Pa is a finite dimensional projection, then |A| = u−lima→0 |A|Pa
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would be compact (as a norm limit of finite dimensional operator) which is a contra-
diction with the fact that |A| is not compact. Thus there exists at least one Pa which is
not finite dimensional. In addition, since |A|−1Pa is bounded (by functional calculus),
then Pa = |A| (|A|−1Pa) is an element of J (as a product of an element in J and a
bounded operator). Thus there exists an infinite dimensional projection Pa which be-
longs to J . Then, by a general argument there exists an isometry V from H to PaH,
and then V ∗PaV = 1 ∈ J , since Pa ∈ J . The fact that 1 ∈ J automatically implies
that J = B(H).

As a consequence of the previous statement, any two-sided ideal in B(H) consists in
compact operators. On the other hand, one easily shows that if this ideal J contains
at least one rank one projection and is norm closed, then it is automatically equal
to K (H). However, without this assumption of closeness, more possibilities exist. Let
us first add a short but rather astonishing lemma of comparison between elements of
K (H).

Lemma 2.4.2. Let J be a two-sided proper ideal in B(H), and let A,B ∈ K (H)
with µn(B) ≤ µn(A) for any n ∈ N. If A ∈ J , then B ∈ J .

Proof. Let A =
∑

n µn(A)|gn⟩⟨fn| and B =
∑

n µn(B)|kn⟩⟨hn| be the canonical expan-
sion of A and B, as introduced in (2.2). Since these respective families of vectors are
orthonormal there exist a partial isometry D with D∗fn = hn and a contraction C with
Cgh = µn(B)µn(A)

−1kn. Since B = CAD it follows that B belongs to A, as stated.

Corollary 2.4.3. Every two-sided ideal J of B(H) is invariant under taking the
adjoint, i.e. if A ∈ J then A∗ ∈ J .

Proof. Since µn(A
∗) = µn(A) for any n ∈ N, the statement follows from the previous

lemma.

Another consequence of the previous lemma is that two-sided ideals of B(H) are
completely described by a set of sequences. Let us be more precise about such a state-
ment, by following the adaptation of the main result of [Cal, Sec. 1] provided in [Sim,
Chap. 2].

Definition 2.4.4. A vector subspace J of c0 is called a Calkin space if it possesses the
Calkin property, namely whenever a ∈ J and b ∈ c0 with b∗j ≤ a∗j for any j ∈ N, then
b ∈ J .

Theorem 2.4.5 (Calkin correspondence). There exists a bijective relation between the
set of Calkin spaces and the set of two-sided ideals of B(H).

Exercise 2.4.6. Provide a proof of this theorem, and provide a construction for this
correspondence as explicitly as possible.
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The previous result together with Theorem 2.3.11 establish a relation between sym-
metric norms discussed in Section 2.3 and two-sided ideals. Indeed, if Φ is a symmetric
norm on cc which is not equivalent to ℓ∞ then the maximal space JΦ and the minimal
space J

(0)
Φ are Calkin spaces. The corresponding two-sided ideals of B(H) will be de-

noted respectively by JΦ and J (0)
Φ . More precisely JΦ, resp. J (0)

Φ , are defined by the

set of compact operators whose singular values belong to JΦ, resp. J
(0)
Φ . Then, for any

A ∈ JΦ we set

Φ(A) := Φ
(
(µ1(A), µ2(A), . . . )

)
. (2.25)

Let us mention a different way of computing this number, see [Sim, Prop. 2.6] for
its proof. For that purpose we let L represent the set of all orthonormal sets {fn} ⊂ H.

Proposition 2.4.7. If A ∈ JΦ, then

Φ(A) = sup
{fn},{gn}∈L

Φ
(
(⟨gn, Afn⟩)

)
.

The links between Φ and JΦ are summarized in the following statement.

Theorem 2.4.8. Let Φ be a symmetric norm on cc, and let JΦ be the corresponding
two-sided ideal of B(H).

(a) Φ defines a norm on JΦ by the relation (2.25) and satisfies for all B ∈ JΦ and
A,C ∈ B(H):

Φ(ABC) ≤ ∥A∥∥C∥Φ(B) (2.26)

Φ(B) ≥ ∥B∥Φ
(
(1, 0, . . . )

)
. (2.27)

(b) JΦ and J (0)
Φ are Banach spaces with the norm Φ, and J (0)

Φ is the closure in

JΦ of the finite rank operators. For any A ∈ J (0)
Φ the canonical decomposition

provided in (2.2) converges in the Φ-norm.

(c) Any norm on a two-sided ideal J obeying (2.26) agrees, on the finite rank op-
erators, with a norm Φ̃ defined by a symmetric norm on cc. In addition one has
J ⊂ JΦ̃, and if J is a Banach space with its norm then J (0)

Φ̃
⊂ J .

(d) (non-commutative Fatou Lemma) If Am ∈ JΦ with w−limm→∞Am = A ∈ K (H)
and if supmΦ(Am) < ∞, then A ∈ JΦ and Φ(A) ≤ supmΦ(Am). If Φ is not
equivalent to ℓ∞, then A need not be assumed to be compact a priori.

As a consequence of the point (a) we shall call JΦ a normed ideal of B(H).

Exercise 2.4.9. Provide a proof of the above statement. Note that the material in-
troduced in Section 2.3 and in particular Theorem 2.3.11 are extensively used for this
proof.
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Let us still mention and prove some general results which apply to arbitrary norms
Φ. More detailed investigations on certain normed ideal will be realized in the next sec-
tion. For the time being, let us just mention the spaces Jp and Jp,w which correspond
to the normed ideals constructed from the symmetric norms ∥ · ∥p and ∥ · ∥p,w exhibited
in Examples 2.3.10.

Theorem 2.4.10 (Abstract Hölder inequality). Let Φ1, Φ2 and Φ3 be three symmetric
norms on cc and let JΦ1, JΦ2 and JΦ3 denote the corresponding maximal spaces. If for
any a ∈ JΦ2 and b ∈ JΦ3 one has ab ∈ JΦ1 (pointwise product) and

Φ1(ab) ≤ Φ2(a)Φ3(b),

then if A ∈ JΦ2 and B ∈ JΦ3 it follows that AB ∈ JΦ1 and

Φ1(AB) ≤ Φ2(A)Φ3(B).

If either A ∈ J (0)
Φ2

or B ∈ J (0)
Φ3

, then AB ∈ J (0)
Φ1

.

Proof. By the inequality (2.9) together with Corollary 2.3.4 one infers that

d∑
j=1

µj(AB) ≤
d∑
j=1

µj(A)µj(B).

Then, by Theorem 2.3.11.(b) one deduces that

Φ1(AB) = Φ1

((
µn(AB)

))
≤ Φ1

((
µn(A)µn(B)

))
≤ Φ2

((
µn(A)

))
Φ3

((
µn(B)

))
= Φ2(A)Φ3(B).

The second part of the statement is straightforward.

Corollary 2.4.11. Let p, q, r ≥ 1 satisfy p−1 = q−1 + r−1. If A ∈ Jq and B ∈ Jr,
then AB ∈ Jp with

∥AB∥p ≤ ∥A∥q ∥B∥r.
For p > 1, if A ∈ Jq,w and B ∈ Jr,w, then AB ∈ Jp,w with

∥AB∥p,w ≤ p

p− 1
∥A∥q,w ∥B∥r,w.

Proof. The first part of the statement is a direct application of the previous theorem
together with Hölder inequality while the second one follows from the inequality

(p− 1)

p
∥ab∥p,w ≤ ∥a∥′q,w ∥b∥′r,w ≤ ∥a∥q,w ∥b∥r,w

with the notations introduced in Examples 2.3.10.

Extension 2.4.12. Study the complex interpolation in this general framework as in-
troduced in Theorem 2.9 and 2.10 of [Sim]. Provide some applications of these abstract
results.
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2.5 The Schatten ideals Jp

In this section we focus on the normed ideals Jp which are closely related to the
commutative ℓp-spaces. As mentioned earlier, the norm on Jp is constructed from the
usual ℓp-norm. This material is very classical and can be found in any textbook on
operator theory. Note that J2 is usually called the set of Hilbert-Schmidt operators
while J1 corresponds to the set of trace class operators. More generally, the space Jp

is called the p-Schatten ideal.
The first result about Hilbert-Schmidt operators is useful in applications. We refer

for example to [Sim, Thm. 2.11] or [Amr, Prop. 2.15] for its proof.

Theorem 2.5.1. Let (Ω, µ) be a measure space such that H := L2(Ω, µ) is separable.
An operator A belongs to J2 if and only if there exists a measurable function k ∈
L2(Ω× Ω, µ⊗ µ) such that

[Af ](x) =

∫
Ω

k(x, y)f(y)µ(dy). (2.28)

In addition the following relation holds

∥A∥HS := ∥A∥2 = ∥k∥L2(Ω×Ω). (2.29)

Note that we have used the convenient notation ∥ · ∥HS for the norm ∥ · ∥2 which is
often used for Hilbert-Schmidt operators. Now, such a simple characterization of trace
class operators does not exist, and this is quite unfortunate since trace class operators
often play an important role. Nevertheless, some partial results exist, as presented in
the next statement for positive operators.

Theorem 2.5.2. Let µ be a Baire measure2 on a locally compact Hausdorff space Ω. Let
H := L2(Ω, µ) and let k be a continuous function on Ω×Ω. Assume that the following
two conditions hold:

(i) For any f ∈ Cc(Ω) one has∫∫
Ω×Ω

f̄(x)f(y)k(x, y)µ(dx)µ(dy) ≥ 0,

(ii)
∫
Ω
k(x, x)µ(dx) <∞.

Then there exists a positive operator A defined by (2.28) which belongs to J1 and the
following relation holds:

∥A∥1 =
∫
Ω

k(x, x)µ(dx). (2.30)

2Recall that the Baire sets form a σ-algebra of a topological space that avoids some of the patho-
logical properties of Borel sets. However, in Euclidean spaces the concept of a Baire set coincides with
that of a Borel set.
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For the proof, we refer to page 65 of [RS3, Sec. XI.4], or to [GK, Sec. III.10] for a
more comprehensive approach to the subject.

Extension 2.5.3. Study the more recent results obtained by C. Brislawn in [Bri] and
mentioned in the Addendum D of [Sim, page 128].

Let us add two results which are often used as a definition of trace class and Hilbert-
Schmidt operators. Since we have introduced J1 and J2 through a different approach,
one has to show that the two definitions coincide. We refer for example to [Mur, Sec. 2.4]
for this alternative approach. Note that in the approach used for example in [Mur]
various properties of the norms ∥ · ∥1 and ∥ · ∥2 have to be shown independently, while
in our approach all these results follow from the general theory of symmetric norms on
cc.

Proposition 2.5.4. 1) Let A ∈ B(H) be positive and let {fn} be an orthonormal basis
of H. Then

∑
n⟨fn, Afn⟩ is independent of the choice of basis, and it is finite if and

only if A ∈ J1, with
∑

n⟨fn, Afn⟩ = ∥A∥1.
2) Let B ∈ B(H) and let {fn}, {gn} be orthonormal bases of H. Then

∑
n ∥Bfn∥2

and
∑

n,m |⟨gm, Bfn⟩|2 are independent of the choice of bases and equal. They are finite

if and only if B ∈ J2, and in this case are equal to ∥B∥22.

Proof. Let us first observe that 1) follows from 2). Indeed, by setting B := A1/2, one
infers from 2) that for any orthonormal basis {fn}∑

n

⟨fn, Afn⟩ =
∑
n

∥Bfn∥2 = ∥B∥22 =
∑
j

µj(B)2 =
∑
j

µj(A) = ∥A∥1

where we have used that µj(B)2 = µj(A) which is a direct consequence of the spectral
theorem for self-adjoint operators.

For the proof of 2), observe first by Parseval’s identity one has∑
n

∥Bfn∥2 =
∑
n,m

|⟨gm, Bfn⟩|2 =
∑
n,m

|⟨B∗gm, fn⟩|2 =
∑
m

∥B∗gm∥2.

By symmetry, one directly gets the required equality and the independence with respect
to the choice of a basis. Now, if B ∈ J2, i.e. if

∑
n µn(B)2 = ∥B∥22 < ∞, one easily

gets from the canonical decomposition of B provided in (2.2) that
∑

n ∥Bgn∥2 is finite
and equal to

∑
n µn(B)2. Conversely, if

∑
n,m |⟨gm, Bfn⟩|2 <∞ one has∑

n

|⟨gn, Bfn⟩|2 ≤
∑
n,m

|⟨gm, Bfn⟩|2 <∞

and B ∈ J2 by Proposition 2.4.7.

In the next statement we emphasize once more the relation between Hilbert-Schmidt
operators and trace class operators. Its proof follows easily from what has been intro-
duced so far, see also [Mur, Thm. 2.4.13].
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Proposition 2.5.5. Let A be an element of B(H). The following conditions are equiv-
alent:

(i) A is a trace class operator,

(ii) |A| is a trace class operator,

(iii) |A|1/2 is a Hilbert-Schmidt operator,

(iv) There exists Hilbert-Schmidt operators B1, B2 such that A = B1B2.

We close this section with several results on convergence in Jp. The first one
is clearly an analog of the dominated convergence theorem. Note that we shall use
the convenient notation A(∗) for A and for its adjoint A∗. For example, the condition
|A(∗)| ≤ B means |A| ≤ B and |A∗| ≤ B.

Theorem 2.5.6. Let Am, A,B ∈ B(H) with B self-adjoint. Assume that |A(∗)
m | ≤ B,

|A(∗)| ≤ B and that w − limm→∞Am = A. Then, if B ∈ Jp for some p < ∞, then
∥Am − A∥p → 0 as m→ ∞.

A proof of this statement is provided in [Sim, Thm. 2.16]. The following result is
also proved at the end of chapter 2 of [Sim].

Theorem 2.5.7. Let p belongs to [1,∞), and let {An} ⊂ Jp and A ∈ Jp. If w −
limn→∞An = A and limn→∞ ∥An∥p = ∥A∥p, then limn→∞ ∥An − A∥p = 0.

Let us mention that more generally, results like the previous one are a consequence
of the uniform convexity of some Banach spaces. We shall not go further in this direction
here.

Extension 2.5.8. Study the notion of uniform convexity for Banach spaces and deduce
from this notion the content of the previous theorem.

2.6 Usual trace

We can finally define the notion of trace, which extends the usual one on matrices. Based
on Proposition 2.5.4.(1) one infers that the domain for the “trace” which is closed under
A 7→ |A| can only be J1. More precisely one has:

Theorem 2.6.1. Let A ∈ J1 with its canonical decomposition A =
∑

n µn(A)|gn⟩⟨fn|.
Then for any orthonormal basis {hm} of H one has

∑
m |⟨hm, Ahm⟩| <∞ and∑

m

⟨hm, Ahm⟩ =
∑
n

µn(A)⟨fn, gn⟩ =: Tr(A) (2.31)

is independent of this basis. Moreover

|Tr(A)| ≤ ∥A∥1, (2.32)

the map A 7→ Tr(A) is a bounded linear functional on J1, and for any A ∈ J1 and
B ∈ B(H) one has Tr(AB) = Tr(BA).
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Proof. Let us set αnm := ⟨fn, hm⟩⟨hm, gn⟩ which is a dss matrix. Then
∑

m |αnm| ≤ 1
for each n, and one has∑

m

|⟨hm, Ahm⟩| =
∑
m,n

|αnm|µn(A) ≤ ∥A∥1

which directly proves (2.32). In addition, the absolute convergence of the last double
sum justifies an interchange in∑

m

⟨hm, Ahm⟩ =
∑
m,n

αnmµn(A) =
∑
n

(
µn(A)

∑
m

αnm

)
=

∑
n

µn(A)⟨fn, gn⟩.

The linearity of the map A 7→ Tr(A) follows again from the absolute convergence of the
sums. Finally, if B ∈ B(H) one has

Tr(AB) =
∑
m

⟨hm, ABhm⟩ =
∑
n

µn(A)⟨B∗fn, gn⟩ =
∑
m

⟨hm, BAhm⟩ = Tr(BA).

Corollary 2.6.2. If A ∈ J1 and B ∈ B(H), then one has

|Tr(AB)| ≤ ∥B∥Tr(|A|).

Proof. By the previous theorem one has

|Tr(AB)| ≤ ∥AB∥1 ≤ ∥B∥∥A∥1 = ∥B∥Tr(|A|).

From the duality theory for symmetric norm introduced just before Theorem 2.3.12
and from the results contained in this statement one easily gets:

Theorem 2.6.3. Let Φ and Φ′ be conjugate symmetric norms on cc. If A ∈ JΦ and
B ∈ JΦ′, then AB ∈ J1. Moreover, for each fixed B ∈ JΦ′ the map A 7→ Tr(AB)
is a bounded linear functional in JΦ with norm Φ′(B). If Φ′ is not equivalent to the

ℓ∞-norm, then every functional on J (0)
Φ is of this form, that is

(
J (0)

Φ

)∗
= JΦ′. In

particular, JΦ is a reflexive space if and only if both Φ and Φ′ are regular. If Φ is the
ℓ1-norm, then J ∗

Φ = B(H).

Since the trace on elements of J1 has now been defined in (2.31), a natural question
is about the equality

Tr(A) =
∑
n

λn(A) (2.33)

where {λn(A)} corresponds to the set of eigenvalues of A, multiplicity counted. This
equality is indeed correct, but as emphasized in any textbook on the subject its proof
is surprisingly difficult. It has only been proved in 1959 by Lidskii. Note that the main
difficulty comes from nilpotent or quasinilpotent operators (an operator A satisfying
respectively Ad = 0 for some n ∈ N or σ(A) = {0}). We do not provide the proof of
the equality (2.33) but suggest to study it as an extension:
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Extension 2.6.4. Study the proof the Lidskii’s theorem, namely the equality (2.33),
either from the information provided in [Sim, Chap. 3] or from any other reference.

One direct consequence of the equality (2.33) is contained in the following statement.

Corollary 2.6.5. If A,B ∈ B(H) have the property that both AB and BA belong to
J1 (as for example if A ∈ JΦ and B ∈ JΦ′ for any conjugate symmetric norms on
cc), then

Tr(AB) = Tr(BA). (2.34)

Proof. As well known, and shown for example in [Sak, Prop. 1.1.8], the operators AB
and BA share the same spectrum, including the algebraic multiplicity, with the only
possible exception of 0. Thus, the equality (2.34) follows directly from this fact and
from (2.33).

Let us add one more result related to integral operators which are trace class. Note
that the following statement does not contradict Theorem 2.5.2 since it is assumed from
the beginning that the operator is trace class.

Theorem 2.6.6. Let H := L2([a, b]) and let A ∈ J1 be of the form [Af ](x) =∫ b
a
k(x, y)f(y) dy for some continuous function k : [a, b] × [a, b] → C and all f ∈ H.

Then

Tr(A) =

∫ b

a

k(x, x)dx.

The proof of this statement is provided in [Sim, Thm. 3.9] and is based on the
construction of an explicit basis for H := L2([a, b]). Many applications of the theory
developed so far could be presented. Quite a lot of them are presented in the subsequent
chapters of [Sim].

Up to this point, the uniqueness of the above trace has not been discussed. In fact,
this uniqueness holds under an additional condition which we are going to introduce.
The following material is borrowed from [Les], and we start by recalling an extension of
the notion of trace. Recall that if V is a real vector space, then a map Φ : V → [0,∞]
is positive homogeneous if Φ(λv) = λΦ(v) for any λ ≥ 0 and v ∈ V , and is additive if
Φ(v + w) = Φ(v) + Φ(w) for any v, w ∈ V .

Definition 2.6.7. A weight on B(H) is a map τ : B(H)+ → [0,∞] which is positive
homogeneous and additive. Such a weight is tracial if τ(BB∗) = τ(B∗B) for any B ∈
B(H).

Note that in some references a tracial weight is simply called a trace. However, let
us emphasize that a weight is only defined on the positive cone of B(H), and it can
take the value ∞. Now, the trace Tr defined in (2.31) for any A ∈ B(H)+ is clearly
a tracial weight on B(H), see also Proposition 3.4.3 and Corollary 3.4.4 in [Ped] for
the proof of this statement. In addition, if we define the subset of B(H)+ on which Tr
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is finite, one gets (J1)+, and then its linear span leads to J1, as introduced in the
previous section.

Let us now show that up to a normalization constant this trace is the unique one
on the set F (H) of finite rank operators in H. In the present context, a trace τ on a
complex algebra A is a linear functional A → C satisfying τ(AB) = τ(BA) for any
A,B ∈ A .

Lemma 2.6.8. Any trace on F (H) is proportional to Tr.

Proof. Let P,Q ∈ F (H) be rank one orthogonal projections, or in other words P =
|f⟩⟨f | and Q = |g⟩⟨g| for some f, g ∈ H with ∥f∥ = ∥g∥ = 1. We now set T := |g⟩⟨f |
which is still a finite rank operator and satisfies TT ∗ = |g⟩⟨g| = Q and T ∗T = |f⟩⟨f | =
P . Thus, if τ is a trace on F (H) one has

τ(P ) = τ(T ∗T ) = τ(TT ∗) = τ(Q),

which means that τ takes the same value λτ ∈ C on all rank one orthogonal projections.
Thus for any rank one orthogonal projection P one has

τ(P ) = λτ = λτTr(P ).

Since any T ∈ F (H) is a linear combination of rank one orthogonal projections, the
result follows by linearity of τ and Tr.

The properties of Tr mentioned so far are not sufficient for showing that any tracial
weight on B(H) is proportional to Tr. The necessary additional property is normality,
as introduced below. Note that we shall also impose that τ(B) ≥ 0 if B ≥ 0, which is
a natural requirement.

Definition 2.6.9. A tracial weight τ on B(H) is normal if for any increasing sequence
{Bn} ⊂ B(H)+ such that s− limn→∞Bn = B ∈ B(H)+ one has τ(B) = supn τ(Bn).

One can now prove the following statement:

Theorem 2.6.10. (i) The usual trace Tr on B(H) is normal,

(ii) If τ is any normal tracial weight on B(H) then there exists a constant λτ ∈ [0,∞)
such that τ(B) = λτTr(B) for any B ∈ B(H)+.

Note that an additional pathological case also exists: The tracial weight τ∞ is defined
by τ∞(B) = ∞ for any B ∈ B(H)+ \ {0} and τ∞(0) = 0. In such a case one has
λτ∞ = ∞. We shall not consider this case subsequently.

Proof. i) Let {fm} be an orthonormal basis of H and let s− limn→∞Bn = B in B(H)+
be an increasing sequence. Then one has ⟨fmBnfm⟩ ↗ ⟨fm, Bfm⟩ for any m, and there-
fore supn⟨fmBnfm⟩ = ⟨fm, Bfm⟩. It follows then from the monotone convergence theo-
rem for the discrete measure on N that

Tr(B) =
∑
m

⟨fm, Bfm⟩ =
∑
m

sup
n
⟨fm, Bnfm⟩ = sup

n

∑
m

⟨fm, Bnfm⟩ = sup
n

Tr(Bn).
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ii) As in the proof of Lemma 2.6.8 one observes that τ � F (H) = λτTr � F (H) for
some λτ ∈ [0,∞). Let us now choose any increasing sequence {Pn}n∈N of orthogonal
projections with the dimension of Ran(Pn) equal to n. Then, given any B ∈ B(H)+
one can consider the increasing sequence {B1/2PnB

1/2}n∈N ⊂ F (H) which converges
strongly to B. Since τ is assumed to be normal we get

τ(B) = sup
n
τ
(
B1/2PnB

1/2
)
= sup

n
λτTr

(
B1/2PnB

1/2
)
= λτTr(B).

The conclusion of the previous construction is that on B(H) and up to a multiplica-
tive constant, the only tracial normal weight is Tr. If we drop the condition of normality,
this is not the case, as shown in the next chapter. Note finally that the previous proof
is based on the fact that the strong closure of K (H) is B(H) itself. In other contexts,
such an approximation argument might not be available.
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Chapter 3

The Dixmier trace

The aim of this chapter is to present the construction of Dixmier of a non-normal tracial
weight on B(H). Even if the paper of Dixmier [Dix] is only 2 pages long, we will use more
pages for understanding and explaining the details. One reason for devoting so much
time for this construction is that this trace had an enormous impact on the program
of A. Connes in non-commutative geometry, and also several interesting applications.
Such developments will be presented in the following chapters.

Before starting with the construction, let us just mention another non-trivial (but
non-interesting) non-normal tracial weight on B(H). For any B ∈ B(H)+ we set

τ(B) :=

{
Tr(B) if B ∈ F (H)
∞ if B ̸∈ F (H).

Note that the Dixmier trace will not be of this form. One of its special features is to
vanish on the usual trace class elements of B(H).

3.1 Invariant states

The construction of the Dixmier trace relies on an invariant state on ℓ∞ ≡ ℓ∞(N). We
provide now some information on such a state, following closely the paper [CS1] to
which we refer for part of the proofs.

A state on ℓ∞ consists in a positive linear functional ω : ℓ∞ → C satisfying ω(1) = 1.
Here we use the notation 1 for the element (1, 1, 1, . . . ) ∈ ℓ∞, and recall that the last
condition implies that ∥ω∥ = 1, see [Mur, Corol. 3.3.5]. Clearly, ∥ω∥ denotes the norm
of ω as an element of ℓ∞(N)∗. We also recall that positivity means that ω(a) ≥ 0 for any
a = (an) ∈ ℓ∞ satisfying an ≥ 0 for any n ∈ N. The set of all states on ℓ∞ is denoted
by S(ℓ∞).

By the positivity of ω and its normalization, let us already observe that for any
real-valued a ∈ ℓ∞ one has

inf
n
an ≤ ω(a) ≤ sup

n
an. (3.1)

We refer to [Lor] for a general introduction on states on ℓ∞.

47



48 CHAPTER 3. THE DIXMIER TRACE

Let us now introduce three operations on ℓ∞, namely the shift operator S : ℓ∞ →
ℓ∞, the Cesàro operator H : ℓ∞ → ℓ∞, and the dilation operators Dn : ℓ∞ → ℓ∞ for
any n ∈ N defined by

S
(
(a1, a2, a3, . . . )

)
= (a2, a3, a4, . . . ),

H
(
(a1, a2, a3, . . . )

)
=

(
a1,

a1 + a2
2

,
a1 + a2 + a3

3
, . . .

)
,

Dn

(
(a1, a2, a3, . . . )

)
=

(
a1, . . . , a1︸ ︷︷ ︸

n

, a2, . . . , a2︸ ︷︷ ︸
n

, . . .
)
.

The following properties of these operations can easily be checked:

Exercise 3.1.1. The three operators S,H,Dn : ℓ∞ → ℓ∞ leave the positive cone (ℓ∞)+
invariant, leave 1 invariant and have norm 1. In addition, {Dn} is an Abelian semi-
group.

More interesting relations can also be shown:

Extension 3.1.2. The following properties hold:

(i) DnS = SdDn for any n ∈ N,

(ii)
(
HS − SH

)
(a) ∈ c0 for any a ∈ ℓ∞,

(iii)
(
HDn −DnH

)
(a) ∈ c0 for any a ∈ ℓ∞.

The shift operator allows us to introduce an important concept on S(ℓ∞): A state
ω on ℓ∞ is called a Banach limit if it is invariant under translations, namely if ω(Sa) =
ω(a) for any a ∈ ℓ∞. As a consequence of this property a Banach limit always satisfies
ω(a) = 0 if a ∈ c0. The set all Banach limits will be denoted by BL(ℓ∞). Note that for
Banach limits the inequalities (3.1) can be slightly improved, namely

lim inf
n→∞

an ≤ ω(a) ≤ lim sup
n→∞

an. (3.2)

Subsequently we shall prove the existence of invariant states. The main argument
in the proof is the Markov-Kakutani fixed point theorem, that we first recall.

Theorem 3.1.3 (Markov-Kakutani). Let M be a locally convex Hausdorff space and
let Ω be a non-empty compact and convex subset of M. Let F be an Abelian semigroup
of continuous linear operators on M which satisfies F (Ω) ⊂ Ω for any F ∈ F . Then
there exists an element x ∈ Ω such that F (x) = x for all F ∈ F .

We shall now use this theorem for the space
(
ℓ∞(N)

)∗
endowed with the weak∗-

topology. The following statement and proof is borrowed from [CS1, Thm. 4.3].

Theorem 3.1.4. There exists a state ω̃ on ℓ∞ such that for all n ≥ 1 one has

ω̃ ◦ S = ω̃ ◦H = ω̃ ◦Dn = ω̃.
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In the following proof, we shall use the convenient notations

S∗ω := ω ◦ S, H∗ω = ω ◦H, D∗
nω = ω ◦Dn ∀ω ∈ S(ℓ∞).

Proof. Let us set Ω0 := BL(ℓ∞), which is the set of Banach limits, and observe that
it is convex and weak∗-compact, by Banach-Alaoglu theorem. Let us also observe that
D∗
n(Ω0) ⊂ Ω0. Indeed by the content of the Extension 3.1.2 one infers that S∗D∗

n =
D∗
n(S

∗)d, and therefore for any ω ∈ Ω0

S∗(D∗
nω) = D∗

n(S
∗)dω = D∗

nω

which implies that D∗
nω belongs to Ω0, bt its definition. As a consequence, one can

apply Theorem 3.1.3 to the set Ω0 and to the Abelian semi-group {D∗
n}. The resulting

set of fixed points will be denoted by Ω1, namely

Ω1 :=
{
ω ∈ S(ℓ∞) | S∗ω = ω and D∗

nω = ω ∀n ∈ N
}
.

This set is non-empty, and again it is convex and weak∗-compact.
Let us now show that H∗(Ω1) ⊂ Ω1. Recall that for any ω ∈ BL(ℓ∞) and any a ∈ c0

one has ω(a) = 0. One then infers again from Extension 3.1.2 that for ω ∈ Ω1 and any
a ∈ ℓ∞ one has (

D∗
nH

∗ω −H∗D∗
nω

)
(a) = ω

((
HDn −DnH

)
(a)

)
= 0.

As a consequence it follows that D∗
nH

∗ω = H∗D∗
nω = H∗ω. Similarly, one also gets

from Extension 3.1.2 that S∗H∗ω = H∗ω for any ω ∈ Ω1. These two properties imply
that H∗ω belong to Ω1, or equivalently H

∗(Ω1) ⊂ Ω1. By applying once again Theorem
3.1.3 to the set Ω1 and to the semi-group {(H∗)d} we conclude that there exists ω̃ ∈ Ω1

such that H∗ω̃ = ω̃. Such a state ω̃ satisfies all the requirements of the statement.

3.2 Additional sequence spaces

Let us still introduce some additional sequence spaces which complement the ones
already introduced in Examples 2.3.10. These spaces were not mentioned in the paper
[Dix] but one of them will appear naturally in this context. Note that in Chapter 2 we
concentrated on normed ideals. However, the Calkin correspondence in Theorem 2.4.5 is
much stronger since it does not require to speak about norms. Here we take advantage
of this fact.

First of all, for any p ≥ 1 recall that

ℓp,w =
{
a ∈ c0 | a∗n ∈ O

(
n−1/p

)}
.

This clearly defines a Calkin space, see Definition 2.4.4. The corresponding two-sided
ideals of B(H) is denoted by Jp,w. Note that these spaces are also often denoted by
ℓp,∞ and Lp,∞, and one has

Lp,∞ =
{
A ∈ K (H) | µn(A) ∈ O

(
n−1/p

)}
. (3.3)
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For applications, the space L1,∞ is the most important one of the above family.
Note that one can define a quasi-norm1 on this space by the formula

∥A∥1,∞ := sup
n≥1

nµn(A).

For an increasing and concave function ψ : [0,∞) → [0,∞) satisfying limx↘0 ψ(x) =
0 and limx→∞ ψ(x) = ∞ we define the Lorentz sequence space

mψ :=
{
a ∈ c0 | ∥a∥mψ := sup

n≥1

1

ψ(n)

d∑
j=1

a∗j <∞
}
. (3.4)

Examples of such functions ψ are x 7→ xα or x 7→
(
ln(x+1)

)α
for any α ∈ (0, 1]. Again,

mψ is a Calkin space, and the corresponding two-sided ideal is denoted by Jψ. Note
that in the special case ψ(x) = ln(x + 1) the notations m1,∞ and M1,∞ are also often
used in the literature, and one has

M1,∞ =
{
A ∈ K (H) | sup

n≥1

1

ln(n+ 1)

d∑
j=1

µj(A) <∞
}
. (3.5)

Remark 3.2.1. The notations in the literature are not fully fixed and one has to pay
attention to the definition used in each paper or book. The spaces L1,∞ and M1,∞ are
often presented with different notations. We refer also to the Example 1.2.9 in [LSZ].

Exercise 3.2.2. Show that the following inclusions hold: ℓ1 ⊂ ℓ1,∞ ⊂ m1,∞. For that
purpose one can also look at [LSZ, Lem. 1.2.8].

3.3 Dixmier’s construction

Even if the following proof does not correspond exactly to the content of [Dix] it is very
close to it. For the arguments we mainly follow [Les, Sec. 2.3] and [CS1, Sec. 5.1].

Theorem 3.3.1. Let ω be a state on ℓ∞ which vanishes on c0 and which is invariant
under D2. For any A ∈

(
M1,∞

)
+
let us set

Trω(A) := ω
(( 1

ln(n+ 1)

d∑
j=1

µj(A)
)
n∈N

)
. (3.6)

Then Trω extends by linearity to a non-trivial trace on M1,∞, and by setting Trω(A) = ∞
for all A ∈ B(H)+\

(
M1,∞

)
+
one extends Trω to a non-normal tracial weight on B(H).

If A ∈ J1, then Trω(A) = 0.

1A quasi-norm Φ on a complex vector space V is a map V → R+ which satisfies for any V and
λ ∈ C the following properties: i) Φ(λa) = |λ|Φ(a), ii) Φ(a + b) ≤ c

(
Φ(a) + Φ(b)

)
for some c > 0,

iii) Φ(a) = 0 if and only if a = 0.
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Before starting with the proof, let us mention that the existence of a state on ℓ∞
satisfying the condition required by this theorem is already a consequence of Theorem
3.1.4. In fact, the states mentioned in this theorem satisfy an unnecessary condition
related to the Cesàro operator H. The larger subset Ω1 of states mentioned in the proof
of Theorem 3.1.4 is also suitable for our purpose. Let us also mention that alternative
notations are often used for (3.6) as for example

Trω(A) ≡ ω − lim
n→∞

1

ln(n+ 1)

d∑
j=1

µj(A) ≡ lim
ω

1

ln(n+ 1)

d∑
j=1

µj(A). (3.7)

One reason for these notations is that if the sequence
(

1
ln(n+1)

∑d
j=1 µj(A)

)
n∈N has a

limit, then one has Trw(A) = limn→∞
1

ln(n+1)

∑d
j=1 µj(A). This property clearly follows

from the facts that ω(1) = 1 and that ω(a) = 0 for any a ∈ c0.
The proof of the above statement is divided into several lemmas and exercises. For

each of them, the assumptions of Theorem 3.3.1 are implicitly taken into account. First
of all, recall that the notions of positive homogeneous and additive have been introduced
just before Definition 2.6.7.

Lemma 3.3.2. Trω is positive homogeneous and additive on
(
M1,∞

)
+
.

Proof. Homogeneity property directly follows from the property µn(λA) = λµn(A)
for any λ ≥ 0. The proof of the additivity is much more difficult and will use the
assumptions made on the state ω.

i) For shortness let us set

σn(A) :=
d∑
j=1

µj(A) for any A ∈ K (H)+, (3.8)

and observe that for any A,B ∈ K (H) and any n ∈ N the following inequalities hold:

σn(A+B) ≤ σn(A) + σn(B) ≤ σ2n(A+B). (3.9)

Their proof is quite similar to the min-max principle introduced in Theorem 2.2.1.
Indeed, one easily observes that

σn(A) = sup
{
Tr(AP ) | P ∈ P(H) with dim(PH) = n

}
.

The first inequality follows then directly from this observation and from the linearity of
the trace Tr. For the second, fixed any ε > 0 and let PA, PB be such that dim(PAH) =
n = dim(PBH) and Tr(APA) > σn(A)− ε and Tr(BPB) > σn(B)− ε. By setting P for
the orthogonal projection on PAH + PBH (often denoted by P := PA ∨ PB) then we
infer that

Tr
(
(A+B)P

)
= Tr(AP ) + Tr(BP ) ≥ Tr(APA) + Tr(BPB) > σn(A) + σn(B)− 2ε.
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Since dim(PH) ≤ 2n and since ε is arbitrarily small, one gets

σ2n(A+B) ≥ Tr
(
(A+B)P

)
≥ σn(A) + σn(B)

which corresponds to the second inequality of (3.9).
ii) Let us now define a, b, c ∈ ℓ∞ by

an :=
1

ln(n+ 1)
σn(A), bn :=

1

ln(n+ 1)
σn(B), and cn :=

1

ln(n+ 1)
σn(A+B).

Then the inequality (3.9) reads

cn ≤ an + bn ≤ ln(2n+1)
ln(n+1)

c2n. (3.10)

The first inequality together with the positivity of the state ω directly leads to the
inequality Trω(A+B) ≤ Trω(A)+Trω(B) for any A,B ∈

(
M1,∞

)
+
. On the other hand,

since limn→∞
ln(2n+1)
ln(n+1)

= 1 and since ω vanishes on c0 we infer that

ω
(
(c2n)n∈N

)
= ω

(( ln(2n+1)
ln(n+1)

c2n
)
n∈N

)
.

Thus, since we will show below that ω
(
(c2n)n∈N

)
= ω

(
(cn)n∈N

)
, one infers from (3.10)

that ω(a) + ω(b) ≤ ω(c), or in other words that Trω(A) + Trω(B) ≤ Trω(A + B). The
two inequalities obtained above prove the additivity of the map Trω.

iii) It remains to show that

ω
(
(c2n)n∈N

)
= ω

(
(cn)n∈N

)
. (3.11)

For that purpose, let us simply write the l.h.s. by ω
(
(c2n)

)
, and observe that by the

invariance of ω under D2 one has

ω
(
(c2n)

)
= ω

(
D2(c2n)

)
= ω

(
(c2, c2, c4, c4, c6, c6, . . . )

)
.

Then, since ω(a) = 0 for any a ∈ c0, it is sufficient to show that

(c2, c2, c4, c4, c6, c6, . . . )− (c1, c2, c3, c4, c5, c6, . . . ) ∈ c0

in order to obtain (3.11). Thus, we are left in proving that limn→∞
(
c2n − c2n−1

)
= 0.

By the definitions of quantities introduced so far one has

c2n − c2n−1

=
1

ln(2n+ 1)
σ2n(A+B)− 1

ln(2n)
σ2n−1(A+B)

=
( 1

ln(2n+ 1)
− 1

ln(2n)

)
σ2n−1(A+B) +

1

ln(2n+ 1)
µ2n(A+B).

Clearly, the second term on the last line tends to 0 as n→ ∞. For the first term of the
last line, since A,B ∈

(
M1,∞

)
+
, one infers that σ2n−1(A+B) = O

(
ln(2n)

)
. Then, since(

1
ln(2n+1)

− 1
ln(2n)

)
= o

(
1

ln(2n+1)

)
one deduces that the first term goes to 0 as n → ∞ as

well. This completes the proof of the statement.
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Before extending the map Trω, let us observe that this map is non-trivial.

Exercise 3.3.3. Show that there exists an element A ∈
(
M1,∞

)
+

which satisfies

Trω(A) = 1.

By linearity, the map Trω can then be extended to any element of M1,∞. More
precisely, for any self-adjoint B ∈ M1,∞ we set Trω(B) = Trω(B+) − Trω(B−), and
the Dixmier trace for an arbitrary B ∈ M1,∞ is defined by Trω(B) = Trω

(
ℜ(B)

)
+

iTrω
(
ℑ(B)

)
. In addition, by setting Trω(A) = ∞ for all A ∈ B(H)+ \

(
M1,∞

)
+
one

gets that Trω is a weight on B(H). Also, since µj(BB
∗) = µj(B

∗B) for any B ∈ K (H)
and when these expressions are different from 0 one easily infers that Trω is a tracial
weight on B(H)

Exercise 3.3.4. Show that for any A ∈ M1,∞ one has |Trω(A)| ≤ ∥A∥M1,∞, with

∥A∥M1,∞ := sup
n≥1

1

ln(n+ 1)

d∑
j=1

µj(A).

Exercise 3.3.5. Show that for any A ∈ J1 one has Trω(A) = 0.

As a consequence of the statement contained in the previous exercise, the tracial
weight Trω is non-normal, see Definition 2.6.9. Indeed, any approximation of a compact
operator by finite rank operators would lead to a trivial trace Trω. It only remains to
show that the Trω is a trace on M1,∞.

Lemma 3.3.6. For any A ∈ M1,∞ and B ∈ B(H) one has Trω(AB) = Trω(BA).

Proof. Recall that every element of B(H) can be written has a linear combination of
four unitary operators, see for example [Mur, Rem. 2.2.2]. Thus, by linearity it is suffi-
cient to show that Trω(AU) = Trω(UA) for any unitary U ∈ B(H). In addition, since
A itself is a linear combination of positive operators, if is sufficient to show the previous
equality for positive A. Now, such an equality follows directly from the observation that
µj(AU) = µj(UA) = µj(A) for any j ∈ N.

Let us finally observe that the trace Trω is a symmetric functional in the following
sense: If A,B ∈

(
M1,∞

)
+
satisfy µn(A) = µn(B) for any n ∈ N, then Trω(A) = Trω(B).

Remark 3.3.7. The construction above is based on an invariant states ω and on the
use of the function n 7→ ln(n + 1). It it natural to wonder how much freedom one has
for these choices, and how many different Dixmier traces exist ? Deep investigations in
that direction have recently been performed and lot’s of material has been gathered in
[LSZ]. In the next section we present part of this material.

3.4 Generalizations of the Dixmier trace

In this section we recast the construction of the Dixmier trace in a more general frame-
work, as presented in [SU, SUZ1].
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3.4.1 Extended limits

The first step consists in using the more developed theory of extended limits on L∞

instead of states on ℓ∞. More precisely, we shall consider L∞(R) and L∞(R+) as the
set of essentially bounded Lebesgue measurable functions on R and R+ endowed with
the norm ∥f∥∞ = ess supx∈R|f(x)| or ∥f∥∞ = ess supx∈R+

|f(x)| respectively. One aim
for considering more general extended limits is to analysis the dependence on ω of the
r.h.s. of (3.6).

In analogy to the operations acting on ℓ∞ we start by introducing the translation
operators, namely for any y ∈ R we define the operator Ty : L∞(R) → L∞(R) by the
relation

[Tyf ](x) := f(x+ y), f ∈ L∞(R).

We can now set:

Definition 3.4.1. A linear functional ω on L∞(R) is called a translation invariant
extended limit on L∞(R) if the following conditions are satisfied:

(i) ω is positive, i.e. ω(f) ≥ 0 whenever f ∈ L∞ satisfies f ≥ 0,

(ii) ω(1) = 1 where 1 is the constant function equal to 1 in L∞(R),

(iii) ω(χ(−∞,0)) = 0 where χ(−∞,0) corresponds to the characteristic function on R−,

(iv) ω(Tyf) = ω(f) for every y ∈ R and f ∈ L∞(R).

Let us note that a more appropriate name would be an extended limit at +∞ since
the behavior near −∞ does not really matter.

Exercise 3.4.2. Show that if limx→∞ f(x) exists, then one has ω(f) = limx→∞ f(x),
which justifies the name extended limit. For that purpose, one can start by showing that
if f ∈ L∞(R) has support on R−, then ω(f) = 0.

The following functional has been introduced and studied in [SUZ1, Sec. 3]. For any
real-valued f ∈ L∞(R) we set

pT (f) := lim
x→∞

sup
h≥0

1

x

∫ x

0

f(y + h)dy . (3.12)

Note that the index T refers to translation. The main utility of this functional is con-
tained in the following statements, whose proofs are given in [SUZ1, Thms. 13 & 14].

Theorem 3.4.3. For any uniformly continuous and real-valued function f ∈ L∞(R)
the following equality holds:

[−pT (−f), pT (f)] =
{
ω(f) | ω is a translation invariant extended limit on L∞(R)

}
.

Note that the assumption about uniform continuity is necessary. As a consequence,
one infers a continuous analogue of the classical result on extended limits of [Lor].
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Theorem 3.4.4. Let f be a uniformly continuous and real-valued function f ∈ L∞(R)
and let c ∈ R. The equality ω(f) = c holds for every translation invariant extended
limits on L∞(R) if and only if

lim
x→∞

1

x

∫ x

0

f(y + h)dy = c

uniformly in h ≥ 0.

Extension 3.4.5. Study the previous two theorems and their proof.

Let us now switch from extended limits on L∞(R) to extended limits on L∞(R+).
Again, by analogy with the operation acting on ℓ∞ we can introduce the dilation oper-
ator by β > 0 by σ1/β : L∞(R+) → L∞(R+) defined by

[σ1/βf ](x) := f(βx), f ∈ L∞(R+).

In this framework, the notion of dilation invariant extended limit is provided by:

Definition 3.4.6. A linear functional ω on L∞(R+) is called a dilation invariant ex-
tended limit on L∞(R+) if the following conditions are satisfied:

(i) ω is positive,

(ii) ω(1) = 1 where 1 is the constant function equal to 1 in L∞(R+),

(iii) ω(χ(0,1)) = 0 where χ(0,1) corresponds to the characteristic function on (0, 1),

(iv) ω(σ1/βf) = ω(f) for every β > 0 and f ∈ L∞(R+).

Obviously, Definitions 3.4.1 and 3.4.6 have been chosen such that there is a one-
to-one correspondence between them. Indeed if ω is a translation invariant extended
limit on L∞(R), then the linear functional exp∗ ω defined on any f ∈ L∞(R+) by
[exp∗ ω](f) := ω(f ◦exp) is a dilation invariant extended limit on L∞(R+). The converse
statement also holds, by using a logarithmic function.

Exercise 3.4.7. Fix the details of the previous observation.

By analogy to (3.12) it is now natural to introduce the functional on any real-valued
f ∈ L∞(R+) by

pD(f) := lim
x→∞

sup
β≥1

1

ln(x)

∫ x

1

f(βy)
dy

y
. (3.13)

From the previous correspondence and from Theorems 3.4.3 and 3.4.4 one directly
deduces that:

Theorem 3.4.8. For any real f ∈ L∞(R+) such that f ◦ exp is uniformly continuous
on R, the following equality holds:

[−pD(−f), pD(f)] =
{
ω(f) | ω is a dilation invariant extended limit on L∞(R+)

}
.



56 CHAPTER 3. THE DIXMIER TRACE

Theorem 3.4.9. Let f ∈ L∞(R) be real and such that f ◦exp is a uniformly continuous
function on R, and let c ∈ R. The equality ω(f) = c holds for every dilation invariant
extended limits on L∞(R+) if and only if

lim
x→∞

1

ln(x)

∫ x

1

f(βy)
dy

y
= c

uniformly in β ≥ 1.

3.4.2 Additional spaces on R+

In this subsection we mention the analogue of the sequence spaces introduced in Section
3.2 but in the continuous setting. As a first step and in order to take benefit of R+

instead of N let us provide an extension of the function µ giving the singular values of
any A ∈ K (H). More precisely, for any A ∈ K (H) let us set

µ(·, A) :=
∞∑
j=1

µj(A)χ(j−1,j](·) (3.14)

Clearly, this function is non-increasing and satisfies the equality µ(n,A) = µn(A) for
any n ∈ N. It is natural to call µ(·, A) the singular values function of A.

Remark 3.4.10. A slightly different but more common definition for this function could
be given by

µ(t, A) := inf
{
s ≥ 0 | Tr

(
χ(s,∞)(|A|)

)
≤ t

}
(3.15)

where χ(s,∞)(|A|)
)
denotes the spectral projection associated with |A| on the interval

(s,∞). Clearly, Tr
(
χ(s,∞)(|A|)

)
gives the number of eigenvalues of |A| inside the interval

(s,∞) multiplicity counted. Thus, for a given t > 0 the r.h.s. of (3.14) provides the
minimal value s such that |A| has t eigenvalues in the interval (s,∞). With the notation
of (3.14) this function is equal to

∑∞
j=1 µj(A)χ[j−1,j)(·), and thus µ(n,A) would not be

equal to µn(A) but to µn+1(A). By changing our convention on the index of the singular
values (and starting with µ0(A) instead of µ1(A)), one could have used (3.15). Note
that the interest in (3.15) is that it extends quite straightforwardly to the more general
context of semi-finite von Neumann algebra endowed with a semi-finite normal trace,
see [LSZ] for this general framework.

Let us now denote by Ψinc
con(R+) the set of increasing and concave functions ψ :

R+ → R+ satisfying limx→0 ψ(x) = 0 and limx→∞ ψ(x) = ∞. In the present context
and for any ψ ∈ Ψinc

con(R+) it is natural to define the Lorentz ideal Mψ by

Mψ =
{
A ∈ K (H) | ∥A∥ψ := sup

x>0

1

ψ(x)

∫ x

0

µ(y, A)dy <∞
}
. (3.16)

Also, when ψ(x) = ln(1 + x) the Lorentz ideal will be denoted by M1,∞. This ideal is
sometimes called the Dixmier ideal. The spaces Lp,∞ are then defined for any p ≥ 1 by

Lp,∞ =
{
A ∈ K (H) | sup

x>0
x1/pµ(x,A) <∞

}
. (3.17)
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3.4.3 Dixmier traces

In this subsection we generalize the construction of Dixmier by considering dilation
invariant extended limits on R+. Recall that the notion of weight has been introduced
in Definition 2.6.7 and corresponds to a positive homogeneous and additive functional.

Definition 3.4.11. Let ω be a dilation invariant extended limit on L∞(R+) and let
ψ ∈ Ψinc

con(R+). If the functional Trω : (Mψ)+ → [0,∞) defined on A ∈ (Mψ)+ by

Trω(A) := ω
(
x 7→ 1

ψ(x)

∫ x

0

µ(y,A)dy
)

(3.18)

is a weight on Mψ, then its extension by linearity on Mψ is called a Dixmier trace on
Mψ.

Based on a rather deep analysis, the following result has been proved in [DPSS,
Thm. 3.4] and in [LSZ, Thm.6.3.3]. Note that the result is in fact proved in a slightly
more general context, namely without referring to compact operators and to the spe-
cific functions µ(·, A). In addition, more precise information on the functional Trω are
provided in [DPSS].

Theorem 3.4.12. The Lorentz ideal Mψ admits non-trivial Dixmier traces if and only
if the function ψ ∈ Ψinc

con(R+) satisfies the additional condition

lim inf
x→∞

ψ(2x)

ψ(x)
= 1. (3.19)

Before going on, let us compare this result with the result obtained in the previous
section. Here we consider arbitrary ψ ∈ Ψinc

con(R+) while in Section 3.3 only the special
case ψ(x) = ln(x+ 1) was considered. In addition, the properties

lim
n→∞

ln(2n+ 1)

ln(n+ 1)
= 1

1

ln(2n+ 1)
− 1

ln(2n)
= o

( 1

ln(2n+ 1)

)
have been explicitly used in the previous proof. In the result mentioned above, only
the condition (3.19) is necessary. In addition, since the above result corresponds to a
necessary and sufficient condition it can be considered as a rather deep extension of the
construction of Dixmier.

Our next aim is to characterize the dilation invariant extended limits which generate
a Dixmier trace on Mψ. For that purpose, the following definition is useful.

Definition 3.4.13. For any ψ ∈ Ψinc
con(R+), a dilation invariant extended limit ω on

L∞(R+) is ψ-compatible or compatible with ψ if

ω
(
x 7→ ψ(2x)

ψ(x)

)
= 1.
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With this definition at hand, the following result has been proved in [KSS, Thm. 10]
or in [SU, Thm. 2.15].

Theorem 3.4.14. Let ψ ∈ Ψinc
con(R+) satisfying condition (3.19). Let ω be a dilation

invariant extended limit on L∞(R+) which is compatible with ψ. Then the functional
Trω defined by (3.18) on (Mψ)+ defines a non-normal Dixmier trace.

In fact, a stronger statement has been proved in these references. First of all, if the
functional defined by (3.18) defines a Dixmier trace, then the corresponding state ω
is ψ-compatible. In addition, to any normalized fully symmetric functional φ on Mψ

one can associate a dilation invariant extended limit on L∞(R+) such that Trω = φ.
Since the notion of fully symmetric has not been introduced here (but corresponds to
the property appearing in Theorem 2.3.11.(b) in the restricted setting of Section 2) we
shall not go further in this direction.

It is now time to show that the continuous approach considered in this section
coincides with the discrete approach of Section 3.3.

Exercise 3.4.15. Show that if ψ(x) = ln(x + 1), then Theorem 3.3.1 and the results
presented in this section are equivalent.

Up to now, one question has not been discussed: how many values can one generate
by Trω(A) for different dilation invariant extended limits ω ? In order to answer this
question, let us first introduce the following definition:

Definition 3.4.16. Let ψ ∈ Ψinc
con(R+) satisfying condition (3.19). An operator A ∈ Mψ

is called Dixmier measurable if all values of the Dixmier traces Trω(A) coincide.

Let us also recall that for any A ∈ Mψ one has the unique decomposition A =
A1 − A2 + iA3 − iA4 with each Aj ∈ (Mψ)+. It then follows that

Trω(A) = Trω(A1)− Trω(A2) + iTrω(A3)− iTrω(A4)

= ω
(
x 7→ 1

ψ(x)

∫ x

0

(
µ(y,A1)− µ(y, A2) + iµ(y, A3)− iµ(y, A4)

)
dy

)
= ω

(
x 7→ 1

ψ(x)

∫ x

0

µ̃(y,A)dy
)

with µ̃(y,A) := µ(y,A1)− µ(y, A2) + iµ(y, A3)− iµ(y, A4). Since the function

x 7→ 1

ψ(x)

∫ x

0

µ̃(y,A)dy

is absolutely continuous, we can then use the criterion introduced in Theorem 3.4.9 and
infer (see also [SUZ2, Cor. 3.2]) :

Theorem 3.4.17. Let ψ ∈ Ψinc
con(R+) satisfying condition (3.19). An element A ∈ Mψ

is Dixmier measurable if and only if the limit

lim
x→∞

1

ln(x)

∫ x

1

( 1

ψ(βy)

∫ βy

0

µ̃(z, A)dz
)dy
y

exists uniformly in β ≥ 1. If so, Trω(A) is equal to this limit for all Dixmier traces.
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Let us finally mention that for positive operators, the above condition can be sim-
plified, but the condition on ψ is slightly more restrictive.

Theorem 3.4.18. Let ψ ∈ Ψinc
con(R+) satisfying the condition limx→∞

ψ(2x)
ψ(x)

= 1. An

element A ∈ (Mψ)+ is Dixmier measurable if and only if the limit

lim
x→∞

1

ψ(x)

∫ x

0

µ(y, A)dy

exists. If so, Trω(A) is equal to this limit for all Dixmier traces.

As a final remark, let us recall that this theory can be applied to a large class of von
Neumann algebra instead of B(H). However, one has to be cautious with the hypotheses
in all the statements since counterexamples have been constructed for checking the
optimality of several results. Some of them are recalled in the reference [SU] which has
been the main source of inspiration for this section.



60 CHAPTER 3. THE DIXMIER TRACE



Chapter 4

Heat kernel and ζ-function

In this chapter we present the links between the Dixmier traces and two other func-
tions which are also quite well-known. Some additional definitions or results skipped
in Chapter 3 will be introduced on the way. First of all, the notion of symmetric or
fully symmetric linear functional can not be avoided any further. Recall that for any
A ∈ K (H) the function µ(·, A) has been introduced in (3.14).

Definition 4.0.19. Let Mψ be a Lorentz ideal introduced in (3.16), and let φ be a
linear functional on Mψ.

(i) φ is symmetric if for any A,B ∈ Mψ with A ≥ 0, B ≥ 0 and satisfying µ(·, B) =
µ(·, A) one has φ(B) = φ(A),

(ii) φ is fully symmetric if for any A,B ∈ Mψ with A ≥ 0, B ≥ 0 and satisfying∫ x
0
µ(y,B)dy ≤

∫ x
0
µ(y, A)dy for any x > 0 one has φ(B) ≤ φ(A).

Note that for the notion of a symmetric norm on ℓ∞ had already been introduced in
Definition 2.3.8 and coincide with the previous one in the discrete setting. On the other
hand, the notion of fully symmetric functional was only mentioned in Section 3.4.3
but was not further developed at this place. However, the inequality

∫ x
0
µ(y,B) dy ≤∫ x

0
µ(y, A)dy corresponds to the notation B Î A in the discrete setting of Section 2.3.

Note finally that a fully symmetric linear functional φ is automatically positive since
0 ≤ A implies that 0 =

∫ x
0
µ(y, 0) dy ≤

∫ x
0
µ(y, A) dy for any x > 0, from which one

infers that 0 = φ(0) ≤ φ(A).

4.1 ζ-function residue

For a positive operator A the corresponding ζ-function is defined by the map

s 7→ ζ(s) := Tr(As)

whenever this expression is meaningful. For example if there exists s0 > 1 such that As0

belongs to the trace class ideal J1, then the previous expression is well-defined for any

61
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s ≥ s0. A rather common assumption on A is to assume that As ∈ J1 for any s > 1
and to study the asymptotic behavior of (s− 1)ζ(s) as s↘ 1. For example if A ∈ J1,
then the limit clearly exists and is equal to 0. The aim of this section is to consider more
general positive operator A and to relate the limits (suitably defined) at s = 1 with
some Dixmier traces. Here suitable means that we shall consider the limits in a broad
sense, namely with the notion of extended limits already used in the previous chapter.
Note that for convenience and in order to stay closer to the notations introduced so far,
we shall replace the parameter s by 1 + 1/x and consider the limit x→ ∞.

First of all, recall that an extended limit γ on L∞(R+) is a positive element of
L∞(R+)

∗ satisfying γ(1) = 1 and such that γ(f) = 0 whenever f ∈ L∞(R+) has
compact support. Then, for any extended limit γ on L∞(R+) one can define the function
ζγ :

(
M1,∞

)
+
→ R+ by

ζγ(A) := γ
(
x 7→ 1

x
Tr

(
A1+1/x

))
. (4.1)

Our first duty is to check that this expression is well-defined. For that purpose, we
shall need a result of which can be useful in other context. Its proof can be found in
[Fac, Lem. 4.1].

Lemma 4.1.1. Let µ1, µ2 : R+ → R be two decreasing and upper-bounded functions
satisfying for any x > 0 ∫ x

0

µ1(y)dy ≤
∫ x

0

µ2(y)dy.

Then, for any convex and increasing function f : R → R and for any x > 0 one has∫ x

0

f
(
µ1(y)

)
dy ≤

∫ x

0

f
(
µ2(y)

)
dy.

Note that if µ1 and µ2 takes values in R+ an important example for the function f
consists in the map R+ ∋ x 7→ xt for any t ≥ 1.

Lemma 4.1.2. For any extended limit γ on L∞(R+) and for any A ∈
(
M1,∞

)
+
one

has ζγ(A) <∞.

Proof. Observe first that if C is trace class and positive, then

Tr(C) =
∑
j

λj(C) =
∑
j

µj(C) =

∫ ∞

0

µ(y, C)dy

where the function µ(·, C) was introduced in (3.14). Thus, for any C ≥ 0 such that
C1+1/x ∈ J1 for some x > 0, one deduces by functional calculus that

Tr(C1+1/x) =

∫ ∞

0

µ(y, C)1+1/xdy. (4.2)
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On the other hand, for any A ∈
(
M1,∞

)
+
one has

sup
z>0

1

ln(z + 1)

∫ z

0

µ(y,A)dy =: ∥A∥1,∞

which implies that for any z > 0∫ z

0

µ(y, A)dy ≤ ∥A∥1,∞ ln(1 + z) =

∫ z

0

∥A∥1,∞
1 + y

dy. (4.3)

Now, by taking these results into account as well as the content of the previous
lemma one infers that

Tr(A1+1/x) =

∫ ∞

0

µ(y,A)1+1/xdy ≤
∫ ∞

0

(∥A∥1,∞
1 + y

)1+1/x

dy

= ∥A∥1+1/x
1,∞

∫ ∞

0

1

(1 + y)1+1/x
dy = x∥A∥1+1/x

1,∞ .

As a consequence of this inequality and since γ is an extended limit one directly gets
that ζγ(A) ≤ ∥A∥1,∞.

The main property of the map ζγ is summarized in the following statement whose
proof can be find either in [LSZ, Thm. 8.6.4] or in [SZ, Thm. 8].

Theorem 4.1.3. For any extended limit γ on L∞(R+) the map ζγ extends by linearity
to a fully symmetric linear functional on M1,∞.

Let us just mention that for the linearity it is sufficient to show that ζγ is a weight
on

(
M1,∞

)
+
, namely that it is positive homogeneous and additive, see Definition 2.6.7.

The map ζγ is sometimes called a ζ-function residue.
As already mentioned at the end of Chapter 3, the set of all normalized (i.e. of

norm 1) fully symmetric linear functionals on M1,∞ is in bijective correspondence with
the set of all Dixmier traces, as defined in Definition 3.4.11. This statement corresponds
to the main result of [KSS]. We are naturally led to the following result.

Corollary 4.1.4. For any extended limit γ on L∞(R+) there exists a dilation invariant
extended limit ω on L∞(R+) such that

ζγ = Trω.

It is then natural to wonder about the relation between γ and ω. In fact, a sim-
ple relation has been exhibited only in a restricted setting, see [SZ, Thm. ] or [LSZ,
Thm. 8.6.8]. For stating the result, let us recall from Section 3.4.1 that starting from a
translated invariant extended limit ω on L∞(R) we have defined a dilatation invariant
extended limit exp∗ ω on L∞(R+). Conversely, starting from a dilation invariant ex-
tended limit ω on L∞(R+) one easily observes that defining ln

∗ ω by [ln∗ ω](f) = ω(f◦ln)
we get a translation invariant extended limit on L∞(R). Note that this extended limit
is often denoted by ω ◦ ln but we shall avoid this ambiguous notation.
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Theorem 4.1.5. Let ω be a dilatation invariant extended limit on L∞(R+) and assume
that the extended limit ln∗ ω is also dilation invariant on R+. Then one has

ζln∗ ω = Trω.

Remark 4.1.6. In Corollary 4.1.4 it is claimed that one can associate to every ζ-
function residue constructed with an extended limit γ on L∞(R+) a Dixmier trace Trω.
However, let us mention that the converse is not true, namely the set of Dixmier traces
on M1,∞ is strictly larger than the set of ζ-function residues. We refer to [LSZ, Sec. 8.7]
for more explanations and for a concrete counterexample.

Let us close this section with a result about the uniqueness of the values taken
by the ζ-function residues. This result will complement the one already mentioned in
Theorem 3.4.18. Its proof can be found in [CS2, Thm. 7]. Recall that the notion of
Dixmier measurable has been introduced in Definition 3.4.16 and means that all values
obtained by Trω(A) are the same, for all dilation invariant extended limits ω.

Theorem 4.1.7. For any A ∈
(
M1,∞

)
+
the following conditions are equivalent:

(i) A is Dixmier measurable,

(ii) The limit limx→∞
1

ln(x+1)

∫ x
0
µ(y,A)dy exits,

(iii) The limit limx→∞
1
x
Tr

(
A1+1/x

)
exits,

(iv) The limit lims↘1(s− 1)Tr
(
As

)
exits,

Furthermore, if any of these conditions is satisfied, all limiting values exist and coincide
with Trω(A) for any dilation invariant extended limit on L∞(R+). These values also
coincide with the limit lims↘1(s− 1)ζγ(s) for any extended limit γ on L∞(R+).

4.2 The heat kernel functional

The ζ-function mentioned in the previous section shares many properties with the heat
kernel functional that we shall briefly introduce here. For a positive operator A the
corresponding heat kernel function is defined by the map

s 7→ Tr
(
exp(−sA−1)

)
whenever such an expression is meaningful. Since the behavior of this function is usually
studied around 0, we shall replace the parameter s by 1/x and consider the map x 7→
1
x
Tr

(
exp(−(xA)−1)

)
.

In order to study this function, we introduce the logarithmic mean M : L∞(R+) →
L∞(R+) defined for f ∈ L∞(R+) and any x > 1 by

[Mf ](x) :=
1

ln(x)

∫ x

1

f(y)
dy

y
. (4.4)
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With this definition at hand, we define for any extended limit ω on L∞(R+) the func-
tional ξω :

(
M1,∞

)
+
→ R+ by

ξω(A) := (ω ◦M)
(
x 7→ 1

x
Tr

(
exp(−(xA)−1)

))
. (4.5)

In the next statement we ensure that the above expression is well defined.

Lemma 4.2.1. Let A ∈
(
M1,∞

)
+
and consider ω an extended limit on L∞(R+)

(i) The image by M of the function x 7→ 1
x
Tr

(
exp(−(xA)−1)

)
belongs to L∞(R+),

(ii) The following equality holds

ξω(A) = ω
(
x 7→ 1

ln(x+ 1)
Tr

(
A exp(−(xA)−1)

))
where ξω(A) is defined by (4.5).

Proof. 1) Let us first consider A ∈
(
M1,∞

)
+
and µ(y) := ∥A∥1,∞ 1

1+y
for any y > 0.

Then, by the inequality (4.3) one has for any z > 0∫ z

0

µ(y, A)dy ≤
∫ z

0

∥A∥1,∞
1 + y

dy =

∫ z

0

µ(y)dy. (4.6)

For any fixed x > 0, since the function f : R+ → R+ defined by fx(z) := z e−(xz)−1

is convex and increasing on R+ we infer from Lemma 4.1.1 and from the functional
calculus of self-adjoint operators that for any x > 0 one has

Tr
(
A exp(−(xA)−1)

)
=

∫ ∞

0

fx
(
µ(y,A)

)
dy

≤
∫ ∞

0

fx
(
µ(y)

)
dy

=

∫ ∞

0

µ(y) e−(xµ(y))−1

dy

=

∫ ∞

0

∥A∥1,∞
1

1 + y
e−(x∥A∥1,∞)−1(1+y) dy

= ∥A∥1,∞
∫ ∞

(x∥A∥1,∞)−1

1

z
e−z dz

<∞.

One thus deduces that A exp(−(xA)−1) ∈ J1 and that

Tr
(
A exp(−(xA)−1)

)
∈ O

(
ln(x+ 1)

)
for x→ ∞. (4.7)



66 CHAPTER 4. HEAT KERNEL AND ζ-FUNCTION

2) By definition we have

M
(
x 7→ 1

x
Tr

(
exp(−(xA)−1)

))
=

(
x 7→ 1

ln(x)

∫ x

1

Tr
(
e−(yA)−1 )dy

y2

)
.

However, since ∫ x

1

e−(yA)−1 dy

y2
=

∫ 1

1/x

e−uA
−1

du = A e−(xA)−1 −A e−A
−1

,

it follows that

M
(
x 7→ 1

x
Tr

(
exp(−(xA)−1)

))
=

(
x 7→ 1

ln(x)

(
Tr(A e−(xA)−1

)− Tr(A e−A
−1

)
))
. (4.8)

3) By taking the previous expression into account as well as the estimate obtained

in (4.7), one infers that M
(
x 7→ 1

x
Tr

(
exp(−(xA)−1)

))
is bounded for x large. In

addition, since the r.h.s. of (4.8) is continuous and vanishes when x↘ 0, one deduces the
statement (i). Since ω is an extended limit and thus vanishes on C0(R+), the statement
(ii) easily follows from the expression obtained in (4.8).

The next statement is the analogue of Theorem 4.1.3 but for the heat kernel. Its
proof can be found in [LSZ, Thm. 8.2.4].

Theorem 4.2.2. For any dilation invariant extended limit γ on L∞(R+) the map ξγ
extends by linearity to a fully symmetric linear functional on M1,∞.

By the previous result one directly infers that a statement similar to the content
of Corollary 4.1.4 holds for the functional ξγ. However, an even stronger result holds in
this case.

Theorem 4.2.3. (i) If ω is a dilation invariant extended limit on L∞(R+) satisfying
ω ◦M = ω, then ξω = Trω,

(ii) For any normalized fully symmetric linear functional φ on M1,∞ there exists a
dilation invariant extended limit ω on L∞(R+) such that φ = ξω.

These two results can be found in [LSZ, Thm. 8.2.9 & Thm. 8.3.6] to which we refer
for the proofs and for more information.



Chapter 5

Traces of pseudo-differential
operators

In this chapter we look at applications of the Dixmier traces in the context of pseudo-
differential operators. Again, our main source of inspirations will be [SU] and [LSZ] but
also the book [RT].

5.1 Pseudo-differential operators on Rd

In this first section we recall a few classical definitions and results related to pseudo-diffe-
rential operators. Our setting is clearly not the most general one and many extensions
are possible. We shall use the usual multi-index notation, namely α = (α1, . . . , αd)
with αj ∈ {0, 1, 2, . . . }. For shortness, we shall write α ∈ Nd

0 with N0 = {0, 1, 2 . . . }
(recall that the convention of Chapter 2 is that N = {1, 2, 3 . . . }). We shall also use
|α| :=

∑d
j=1 αj and α! = α1! . . . αd!. The other standard notations which are going to

be used are ∇ := (∂1, . . . , ∂d) with ∂j := ∂xj , −∆ := −
∑d

j=1 ∂
2
j which is a positive

operator, and ⟨x⟩ :=
(
1 +

∑d
j=1 x

2
j

)1/2
for any x = (x1, . . . , xd) ∈ Rd. In the Hilbert

space L2(Rd), we shall also use the notation X = (X1, . . . , Xd) with Xj the self-adjoint
operator of multiplication by the variable xj, and D = (D1, . . . , Dd) with Dj the self-
adjoint operator corresponding to the operator −i∂j.

Definition 5.1.1. 1) For any m ∈ R, ρ ∈ [0, 1], and δ ∈ [0, 1), a function a ∈ C∞(R3d)
is called an amplitude of order m if it satisfies∣∣[∂γy∂βx∂αξ a](x, y, ξ)∣∣ ≤ Cα,β,γ⟨ξ⟩m−ρ|α|+δ(|β|+|γ|) (5.1)

for any α, β, γ ∈ Nd
0 and all x, y, ξ ∈ Rd. The set of all amplitudes satisfying (5.1) is

denoted by Am
ρ,δ(Rd). Note that the constants Cα,β,γ depend also on the function a but

not on x, y and ξ.

67
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2) For any amplitude a ∈ Am
ρ,δ(Rd) the corresponding amplitude operator of order

m is defined on f ∈ S(Rd) by

[a(X, Y,D)f ](x) =

∫
Rd

∫
Rd

e2πi(x−y)·ξ a(x, y, ξ)f(y)dydξ. (5.2)

The corresponding set of operators is denoted by Op
(
Am
ρ,δ(Rd)

)
.

Remark 5.1.2. It can be shown that the operator defined in (5.2) is continuous from
S(Rd) to S(Rd), when this space is endowed with its usual Fréchet topology. Note also
that the presence of 2π is irrelevant and mainly depends on several conventions about
the Fourier transform. In fact, the above operator should be denoted by a

(
X, Y, 1

2π
D
)

according to the convention taken in [RT]. In these notes, we mainly follow the conven-
tion of [LSZ] but warn the reader(s) that some constants have not been double-checked.
It is possible that sometimes the equality 2π = 1 holds !

The main interest for dealing with amplitudes is that the expression for the adjoint
operator is simple. Indeed, by using the usual scalar product ⟨·, ·⟩ of L2(Rd) one defines
the adjoint of a(X, Y,D) by the relation⟨

a(X, Y,D)∗f, g
⟩
=

⟨
f, a(X,Y,D)g

⟩
, f, g ∈ S(Rd). (5.3)

It then follows that a(X, Y,D)∗ is also an amplitude operator of order m with symbol
a∗ given by

a∗(x, y, ξ) = a(y, x, ξ). (5.4)

The adjoint operator plays an important role for the extension by duality to oper-
ators acting on tempered distributions. Indeed, if S ′(Rd) denotes the set of tempered
distributions on Rd and if Ψ ∈ S ′(Rd), then we can define a(X, Y,D) : S ′(Rd) → S ′(Rd)
by

[a(X,Y,D)Ψ](f) := Ψ
(
a(X, Y,D)∗f

)
∀f ∈ S(Rd).

Let us now explain the link between amplitudes and more usual symbols of the class
Smρ,δ(Rd). For that purpose, we define the Fourier transform for any f ∈ L1(Rd) by

[Ff ](ξ) ≡ f̂(ξ) :=

∫
Rd

e−2πix·ξ f(x)dx. (5.5)

The inverse Fourier transform is then provided by [F−1f ](x) =
∫
Rd e

2πix·ξ f(ξ)dξ

Definition 5.1.3. 1) For any m ∈ R, ρ ∈ [0, 1], and δ ∈ [0, 1), a function a ∈ C∞(R2d)
is called a symbol of order m if it satisfies∣∣[∂βx∂αξ a](x, ξ)∣∣ ≤ Cα,β⟨ξ⟩m−ρ|α|+δ|β| (5.6)

for any α, β ∈ Nd
0 and all x, ξ ∈ Rd. The set of all symbols satisfying (5.6) is denoted

by Smρ,δ(Rd). Note that the constants Cα,β depend also on the function a but not on x
and ξ.
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2) For any symbol a ∈ Smρ,δ(Rd) the corresponding pseudo-differential operator of

order m is defined on f ∈ S(Rd) by

[a(X,D)f ](x) =

∫
Rd

e2πix·ξ a(x, ξ)f̂(ξ)dξ (5.7)

and a(X,D)f ∈ S(Rd). The corresponding set of operators is denoted by Op
(
Smρ,δ(Rd)

)
.

3) We set S−∞(Rd) :=
∩
m∈R ∈ Smρ,δ(Rd) (which is independent of ρ and δ) and call

a smoothing operator a pseudo-differential operator a(X,D) with a ∈ S−∞(Rd).

Before going on, let us look at the Fourier transform of a symbol. More precisely,
observe that

[a(X,D)f ](x) =

∫
Rd

e2πix·ξ a(x, ξ)f̂(ξ)dξ

=

∫
Rd

∫
Rd

e2πi(x−y)·ξ a(x, ξ)f(y)dydξ

=

∫
Rd
k(x, y)f(y)dy

with

k(x, y) =

∫
Rd

e2πi(x−y)·ξ a(x, ξ)dξ. (5.8)

Remark 5.1.4. The integral in (5.8) does not converge absolutely in general. This
integral is usually understood as an oscillatory integral. We shall not develop this any
further in these notes. However, if the function (x, ξ) 7→ a(x, ξ) decreases fast enough
in ξ, then the integral can be understood in the usual sense.

The map (x, y) 7→ k(x, y) is sometimes called the kernel (or Schwartz kernel1) of
the operator a(X,D). One of its important property is given in the following statement,
see [RT, Thm. 2.3.1].

Theorem 5.1.5. For any a ∈ Sm1,0(Rd), the corresponding kernel k(x, y) defined by
(5.8) satisfies ∣∣[∂βx,yK]

(x, y)
∣∣ ≤ CN,β|x− y|−N

for any N > m+n+ |β| and x ̸= y. In other words, for x ̸= y the map (x, y) 7→ k(x, y)
is a smooth function which decays at infinity, together with all its derivatives, faster
that any power of |x− y|−1.

Additional results for pseudo-differential operators are summarized in the following
statements, see [RT, Thm. 2.4.2 and Thm. 2.5.1].

1In the context of operators K defined by [Kf ](x) =
∫
Rd k(x, y)f(y)dy for f ∈ Cc(Rd) with kernel

k ∈ L1
loc(R2d) one can not prevent from recalling the important Schur’s lemma which says that if the

two conditions supx∈Rd

∫
Rd |k(x, y)|dy < ∞ and supy∈Rd

∫
Rd |k(x, y)|dx < ∞ hold, then K defines a

bounded operator on L2(Rd).
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Theorem 5.1.6 (L2-boundedness). Let a ∈ S0
1,0(Rd), then the operator a(X,D) extends

continuously to an element of B
(
L2(Rd)

)
.

Theorem 5.1.7 (Composition formula). Let a ∈ Sma1,0 (Rd) and b ∈ Smb1,0 (Rd), then there

exists c ∈ Sma+mb1,0 (Rd) such that the equality

a(X,D)b(X,D) = c(X,D)

holds, where the product of operators in considered on the l.h.s. Moreover, one has the
asymptotic formula

c ∼
∑
α∈Nd0

(−i)|α|

α!
(∂αξ a)(∂

α
x b) (5.9)

where the meaning of (5.9) is

c−
∑
|α|<N

(−i)|α|

α!
(∂αξ a)(∂

α
x b) ∈ Sma+mb−N(Rd) (5.10)

for any N > 0.

Exercise 5.1.8. Provide a proof of the previous statements, and check what happens
for symbols in Smρ,δ(Rd) with 0 ≤ δ < ρ ≤ 1. In particular for Theorem 5.1.7 show that

if a ∈ Smaρ,δ (Rd) and b ∈ Smbρ,δ (Rd) then c ∈ Sma+mbρ,δ (Rd).

The link between amplitudes and symbols can now be established. Clearly, any
symbol a ∈ Smρ,δ(Rd) defines the amplitude a ∈ Am

ρ,δ(Rd). Conversely one has:

Theorem 5.1.9. For any amplitude c ∈ Am
ρ,δ(Rd) with 0 ≤ δ < ρ ≤ 1, there exits a

symbol a ∈ Smρ,δ(Rd) such that a(X,D) = c(X, Y,D). Moreover, the symbol a admits the
asymptotic expansion given by

(x, ξ) 7→ a(x, ξ)−
∑
|α|<N

(−i)|α|

α!
[∂αξ ∂

α
y c](x, x, ξ) ∈ Sm−(ρ−δ)N(Rd)

for any N > 0.

The proof of the previous statement for (ρ, δ) = (1, 0) can be found in [RT,
Thm. 2.5.8]. Its extension to amplitudes with (ρ, δ) ̸= (1, 0) can be performed as an
exercise.

For any operator a(X,D), we define its L2-adjoint by the formula⟨
a(X,D)∗f, g

⟩
=

⟨
f, a(X,D)g

⟩
, f, g ∈ S(Rd)

which corresponds to the relation (5.3) for amplitudes. Then, by the content of Theorem
5.1.9 together with the formula (5.4) for the amplitude of an adjoint one directly infers:
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Corollary 5.1.10. For any a ∈ Smρ,δ(Rd) with 0 ≤ δ < ρ ≤ 1 there exists a symbol a∗ ∈
Smρ,δ(Rd) such that a(X,D)∗ = a∗(X,D). Moreover a∗ admits the asymptotic expansion

(x, ξ) 7→ a∗(x, ξ)−
∑
|α|<N

(−i)|α|

α!
[∂αξ ∂

α
y ā](x, ξ) ∈ Sm−(ρ−δ)N(Rd)

for any N ≥ 0. Here ā means the complex conjugate function.

The previous result implies that any pseudo-differential operator a(X,D) extends
to a continuous linear map from S ′(Rd) to S ′(Rd). Let us then note that a rather simple
criterion allows us to know if a continuous linear operator from S ′(Rd) to S ′(Rd) is of the
previous form. More precisely, if for any ξ ∈ Rd one sets eξ : Rd → C by eξ(x) := e2πix·ξ

then one has:

Theorem 5.1.11. A continuous linear operator T from S ′(Rd) to S ′(Rd) is a pseudo-
differential (with symbol a) if and only if the symbol a defined by

a(x, ξ) := e−ξ(x)[T eξ](x)

belong to S∞(Rd) :=
∪
m∈R Sm1,0(Rd).

Among the set of pseudo-differential operators let us still introduce those which have
a classical symbol. For that purpose, we say that a function a ∈ C∞(R2d) is homogeneous
of order k for some k ∈ R if for all x ∈ Rd

a(x, λξ) = λka(x, ξ), ∀λ > 1, ∀ξ ∈ Rd with |ξ| ≥ 1. (5.11)

Definition 5.1.12. 1) A symbol a ∈ Sm1,0(Rd) is called classical if there exists an asymp-
totic expansion a ∼

∑∞
k=0 am−k where each function am−k is homogeneous of orderm−k,

and if a−
∑N

k=0 am−k ∈ Sm−N−1
1,0 (Rd) for all N ≥ 0. The set of all classical symbols of

order m is denoted by Smcl (Rd).
2) For a classical symbol a ∈ Smcl (Rd), its principal symbol corresponds to the term

am in the mentioned expansion.

Note that the notion of principal symbol can be defined for more general pseudo-
differential operators. For a symbol in Sm1,0(Rd) its principal symbol corresponds to the

equivalent class of this symbol modulo the subclass Sm−1
1,0 (Rd). More precisely, we set:

Definition 5.1.13. For a, b ∈ Sm1,0(Rd) we write a ∼ b if the difference a− b belongs to

Sm−1
1,0 (Rd). For a ∈ Sm1,0(Rd) we denote by [a] the equivalent class defined by the previous

equivalence relation and call it the principal symbol of a(X,D).

Examples 5.1.14. 1) The simplest and main example of a pseudo-differential operator
is provided by the relation[

(1−∆)m/2f
]
(x) =

∫
Rd

e2πix·ξ⟨2πξ⟩mf̂(ξ)dξ ∀f ∈ S(Rd). (5.12)
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In other terms the symbol corresponding to the operator (1 − ∆)m/2 is the map ξ 7→
⟨2πξ⟩m. In addition, since the equality ⟨x⟩m = |x|m(1 + |x|−2)m/2 holds, by using a
binomial expansion for |x| > 1 one observes that any symbol which agrees with (2π)m|x|m
for |x| ≥ 1, up to a symbol in Sm−1

1,0 (Rd), share the same principal symbol as the one of

(1−∆)m/2.
2) Let ϕ be an element of C∞

b (Rd), which corresponds to the set of smooth func-
tions with all derivatives bounded. Then the multiplication operator ϕ(X) defined by
[ϕ(X)f ](x) = ϕ(x)f(x) is a pseudo-differential operator belonging to S0

1,0(Rd). In ad-

dition, the operator ϕ(X)(1 − ∆)m/2 belongs to Op
(
Sm1,0(Rd)

)
and the corresponding

symbol is the map (x, ξ) 7→ ϕ(x)⟨2πξ⟩m.
3) For any ϕ ∈ C∞

b (Rd), one infers from Theorem 5.1.7 that

[ϕ(X), (1−∆)m/2] ∈ Op
(
Sm−1
1,0 (Rd)

)
.

More generally, if A ∈ Op
(
Sma1,0 (Rd)

)
and B ∈ Op

(
Smb1,0 (Rd)

)
then one has [A,B] ∈

Op
(
Sma+mb−1
1,0 (Rd)

)
. This information means also that AB and BA share the same

principal symbol.

Let us briefly mention the link between pseudo-differential operators and Sobolev
spaces. First of all recall that for any s ≥ 0 the Sobolev space Hs(Rd) is defined by

Hs(Rd) :=
{
f ∈ L2(Rd) | ∥f∥Hs := ∥⟨X⟩sFf∥ <∞

}
. (5.13)

Note that this space coincide with the completion of S(Rd) with the norm ∥ · ∥Hs .
For s > 0, the spaces H−s(Rd) can either be defined by duality, namely H−s(Rd) =
Hs(Rd)∗, or by the completion of S(Rd) with the norm ∥f∥H−s := ∥⟨X⟩−sFf∥. Then,
the main link between these spaces and pseudo-differential operators is summarized in
the following statement. Recall that the definition of closed operators has been provided
in Definition 1.4.6.

Theorem 5.1.15. Let A := a(X, Y,D) be the operator defined on S(Rd) by an ampli-
tude a ∈ Am

1,0(Rd) with m ≥ 0.

(i) A extends continuously to a bounded linear operator from Hs(Rd) to Hs−m(Rd)
for any s ∈ R,

(ii) If m > 0 then the extension of A : Hm(Rd) → H0(Rd) ≡ L2(Rd) defines a closed
operator,

(iii) If m = 0 then the extension of A : L2(Rd) → L2(Rd) defines an element of
B
(
L2(Rd)

)
.

Clearly, the point (iii) in the previous statement is a slight extension of the result
already mentioned in Theorem 5.1.6 for symbols instead of for amplitudes Let us now
close this section with the notion of compactly supported and compactly based pseudo-
differential operators. Such operators have nice extension properties.
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Definition 5.1.16. Let A : S(Rd) → S(Rd) be a pseudo-differential operator.

(i) A is compactly supported if the exists ϕ, ψ ∈ C∞
c (Rd) such that A = ϕ(X)Aψ(X),

(ii) A is compactly based if the exists ϕ ∈ C∞
c (Rd) such that A = ϕ(X)A.

Based on these definitions one easily infers the following lemma. Recall that the set
S−∞(Rd) has been introduced in Definition 5.1.3.

Lemma 5.1.17. Let A,B be pseudo-differential operators. Then

(i) If A,B are compactly supported, so are A∗, AB and BA,

(ii) A is compactly supported if and only if A and A∗ are compactly based,

(iii) If A is compactly based, so is AB,

(iv) If A is compactly based, then there exists a compactly supported pseudo-differential
operator A′ such that A− A′ ∈ S−∞(Rd).

Exercise 5.1.18. Provide a proof of the last statement of the previous lemma.

In relation with this last statement, let us mention a useful result about the dif-
ference A − A′. Unfortunately, we can not prove it here because it would require the
definition of the so-called Shubin pseudo-differential operators. These operators are de-
fined with slightly different classes of symbols. We refer to the book [Shu] for a different
approach to pseudo-differential operators, and especially to Section 27 of this reference
for a proof of the subsequent statement.

Lemma 5.1.19. For any compactly based pseudo-differential operator A of order m
there exists a compactly supported pseudo-differential operator A′ of order m such that
the difference A− A′ is trace class, i.e. A− A′ ∈ J1.

The following statement will play an essential role subsequently. We shall comment
about its generality and its proof after the statement.

Theorem 5.1.20. Let A be a compactly based pseudo-differential operator of order m.
If m < 0 then the extension of A : L2(Rd) → L2(Rd) defines a compact operator. If
m < −d then this extension defines a trace class operator.

The previous statement is quite well-known for compactly supported pseudo-diffe-
rential operators. A more general statement for arbitrary Schatten ideals can be found
in [Ars], or an approach using operators of the form f(X)g(D) can be borrowed from
[Sim, Chap. 4]. The extension to compactly based pseudo-differential operators follows
then directly from Lemma 5.1.19.
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Remark 5.1.21. In relation with the paper [Ars] let us mention that there exists sev-
eral types of quantization of symbols on R2d. The one introduced so far corresponds to
the so-called Kohn-Nirenberg quantization. Each of these quantizations has some prop-
erties of special interest: for example the Weyl quantization of real-valued functions
provides self-adjoint operators, the Berezin quantization of positive functions provides
positive operators, etc. Some of these quantizations can be recast in a single quantization
(τ -quantization) which depends on an additional parameter τ . We refer the interested
reader to Chapter 2 of the reference [Del] which presents the similarities and the differ-
ences between some of these quantizations.

Extension 5.1.22. Study some alternative quantization, as presented for example in
[Del].

5.2 Noncommutative residue

In this section we introduce the concept of noncommutative residue on the set of classical
and compactly based pseudo-differential operators of order −d, where n is the space
dimension. This concept is also called Wodzicki residue after the seminal papers [Wod1,
Wod2]. In these papers the general theory is presented in the framework of global
analysis on manifolds, and the special case presented here corresponds to the Remark
7.13 of [Wod1].

Before introducing the definition of noncommutative residue let us observe that if a
is a classical symbol of orderm with a(X,D) compactly based, then one can impose that
each term the expansion a ∼

∑∞
k=0 am−k has a compact support for the first variable

(the variable x). Note that such symbols will simply be called classical and compactly
based symbols. In addition, if m is an integer, then a−d is well-defined and is equal to
0 if −d > m, while if m is not an integer, then we set a−d := 0.

Definition 5.2.1. Let a ∈ Smcl (Rd) be a classical and compactly based symbols of order
m. The noncommutative residue of a(X,D) is defined by

ResW
(
a(X,D)

)
:=

1

d

∫
Sd−1

∫
Rd
a−d(x, θ)dxdθ. (5.14)

Before stating and proving some of the properties of this noncommutative residue,
let us come back to the Examples 5.1.14. For ϕ in C∞

c (Rd) let us consider the operator
ϕ(X)(1 − ∆)−d/2 which is associated with a classical and compactly based symbol of
order −d. Its principal symbol is given for |ξ| ≥ 1 by the map (x, ξ) 7→ ϕ(x)(2π|ξ|)−d.
Thus, we easily get

ResW
(
ϕ(X)(1−∆)−d/2

)
=

1

d

∫
Sd−1

∫
Rd
ϕ(x)(2π)−ddxdθ

=
Vol(Sd−1)

d(2π)d

∫
Rd
ϕ(x)dx,

where Vol(Sd−1) denotes the volume of the sphere Sd−1.
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Proposition 5.2.2. The noncommutative residue ResW

(i) is a linear functional on the set of all classical and compactly based pseudo-
differential operators with symbol of order −d,

(ii) vanishes on compactly based pseudo-differential operators with symbol of order m
with m < −d (and in particular on trace class operators),

(iii) is a trace in the sense that if A is a classical and compactly based pseudo-differen-
tial operator of order ma and if B is a classical and compactly based pseudo-
differential operator of order mb with ma +mb = −d, then

ResW ([A,B]) = 0.

Proof. For (i), the linearity of ResW is a direct consequence of the linearity of the
action of taking the principal symbol on S−d

cl (Rd). For symbols of order m < −d the
noncommutative residue is trivial by its definition, which implies the statement (ii).
Finally, since AB and BA share the same principal symbol, as mentioned in Examples
5.1.14, it follows that the principal symbol of [A,B] is of order −d− 1. The statement
(iii) follows then from (ii).

It was A. Connes who realized in [Con] that this noncommutative residue can be
linked to the Dixmier trace, with an equality of the form ResW (A) = Trω(A) for some
states ω. Such an equality is often called Connes’ trace theorem. Again this was proved
in the context of global analysis on manifolds. In order to understand such a result in
our context of pseudo-differential operators on Rd and in the framework developed in
Chapter 3, additional information are necessary. In particular, since there exist several
different Dixmier traces on operator which are not Dixmier measurable (see Definition
3.4.16) it is important to understand when an equality with the noncommutative residue
is possible ?

5.3 Modulated operators

In this section we introduce the concept of modulated operators and study their proper-
ties. Most of this material is borrowed from [KLPS] and [LSZ]. In the sequel H denotes
the Hilbert space L2(Rd), and we recall that the Hilbert-Schmidt norm is denoted by
∥ · ∥2. Part of the theory can be built with an abstract bounded and positive operator
V in H, but for simplicity and for our purpose, we shall only consider the operator
V := (1−∆)−d/2.

Definition 5.3.1. An operator T ∈ B(H) is Laplacian-modulated if the operator

T
(
1 + t(1−∆)−d/2

)−1
is a Hilbert-Schmidt operator for any t > 0, and

∥T∥mod := sup
t>0

t1/2
∥∥T(1 + t(1−∆)−d/2

)−1∥∥
2
<∞.
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Note that a Laplacian-modulated operator T is automatically Hilbert-Schmidt since
one has

∥T∥2 =
∥∥T(1 + (1−∆)−d/2

)−1(
1 + (1−∆)−d/2

)∥∥
2

≤
∥∥1 + (1−∆)−d/2

∥∥∥∥T(1 + (1−∆)−d/2
)−1∥∥

2

≤
(
1 +

∥∥(1−∆)−d/2
∥∥)∥T∥mod.

The following statement can also easily be proved by taking into account the com-
pleteness of J2, see also [LSZ, Prop. 11.2.2].

Proposition 5.3.2. The set of all Laplacian-modulated operator is a Banach space
with the norm ∥ · ∥mod. In addition, if B is Laplacian-modulated and A ∈ B(H) one
has ∥AB∥mod ≤ ∥A∥∥B∥mod.

In order to further study this Banach space, let us come back to some algebras of
functions.

Definition 5.3.3. A function f ∈ L1(Rd) is a modulated function, written f ∈
L1
mod(Rd), if

∥f∥L1
mod

:= sup
t>0

(1 + t)d
∫
|x|>t

|f(x)|dx <∞. (5.15)

Clearly, the inequality ∥f∥L1 ≤ ∥f∥L1
mod

holds. Observe also that the natural oper-
ation on such functions is the convolution, as shown in the next statement.

Lemma 5.3.4. If f, g ∈ L1
mod(Rd) then the convolution f ∗ g belongs to L1

mod(Rd).

Proof. For any t > 0 observe that for |y| > |x|/2 one has∫
|x|>t

∫
|y|>|x|/2

|g(y)||f(x− y)|dydx ≤
∫
Rd

∫
|y|>t/2

|g(y)||f(x− y)|dydx

= ∥f∥L1

∫
|y|>t/2

|g(y)|dy.

On the other hand, if |y| ≤ |x|/2 and |x| > t it follows that |x− y| ≥ |x|/2 ≥ t/2, and
then ∫

|x|>t

∫
|y|<|x|/2

|g(y)||f(x− y)|dydx ≤
∫∫

|x−y|>t/2
|g(y)||f(x− y)|dydx

=

∫∫
|x|>t/2

|g(y)||f(x)|dydx

= ∥g∥L1

∫
|x|>t/2

|f(x)|dx.
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By splitting the following integral into two parts and by using the previous estimates
one gets

∥f ∗ g∥L1
mod

= sup
t>0

(1 + t)d
∫
|x|>t

|[f ∗ g](x)|dx

= sup
t>0

(1 + t)d
∫
|x|>t

∫
Rd

|g(y)||f(x− y)|dydx

≤ ∥f∥L1∥g∥L1
mod

+ ∥g∥L1∥f∥L1
mod

≤ 2∥f∥L1
mod

∥g∥L1
mod

(5.16)

which leads directly to the result.

Based on the previous result, one gets:

Lemma 5.3.5. L1
mod(Rd) endowed with the convolution product is a Banach algebra.

Proof. 1) With the definition of ∥f∥L1
mod

provided in (5.15) the space L1
mod(Rd) is clearly

a normed space. We first show that this space is complete. Since the inequality ∥f∥ ≤
∥f∥L1

mod
holds, if {fp} is a Cauchy sequence in the L1

mod-norm it is also a Cauchy

sequence in the L1-norm. Let f ∈ L1(Rd) denote the limit of this Cauchy sequence.
Then, for any fixed ε > 0 let us choose N ∈ N such that

(1 + t)d
∫
|x|>t

|fn(x)− fm(x)|dx ≤ ε

for any n,m ≥ N and every t > 0. Then one infers by the dominated convergence
theorem that for arbitrary t > 0 and n ≥ N one has

(1 + t)d
∫
|x|>t

|fn(x)− f(x)|dx = lim
q→∞

(1 + t)d
∫
|x|>t

|fn(x)− fm(x)|dx ≤ ε.

Since ε is arbitrary, one concludes that L1
mod(Rd) is a complete vector space.

2) It has already been proved in the previous lemma that L1
mod(Rd) is an algebra

with the convolution product. In addition, it has been proved in (5.16) that ∥f∗g∥L1
mod

≤
2∥f∥L1

mod
∥g∥L1

mod
which proves the continuity of the product, and hence makes L1

mod(Rd)
a Banach algebra.

Additional properties of this Banach algebra are presented in [LSZ, Sec. 11.3]. For
example, it is proved that the set of compactly supported L1-functions is not dense in
L1
mod(Rd). A similar space with L2-functions is also introduced and studied, namely

L2
mod(Rd) :=

{
f ∈ L2(Rd) | |f |2 ∈ L1

mod(Rd)
}

endowed with the norm ∥f∥L2
mod

:= ∥|f |2∥1/2
L1
mod

. This space is again a Banach space, but

despite the fact that it is made of L2-functions, this space has not good properties with
respect to the Fourier transform.
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Extension 5.3.6. Study the previous statements.

Our next aim is to connect this Banach algebra L1
mod(Rd) with the concept of

Laplacian-modulated operators. For that purpose, let us recall that there exists a bijec-
tive relation between the set of Hilbert-Schmidt operators in H = L2(Rd) and the set of
L2(Rd×Rd)-functions, see Theorem 2.5.1. We present below a slightly modified version
of this correspondence, which is based on the mentioned theorem and on Plancherel
theorem.

Lemma 5.3.7. For any Hilbert-Schmidt operator T ∈ B(H) there exists a unique
function pT ∈ L2(Rd × Rd) such that the following relation holds:

[Tf ](x) =

∫
Rd

e2πix·ξ pT (x, ξ)f̂(ξ)dξ, ∀f ∈ L2(Rd). (5.17)

Definition 5.3.8. For any Hilbert-Schmidt operator T , the unique function pT ∈
L2(Rd × Rd) satisfying (5.17) is called the symbol of the operator T .

Clearly, the previous definition is slightly ambiguous since it does not require the
regularity conditions of the symbols of a pseudo-differential operators. However, the
context together with the index T should prevent any confusion. On the other hand,
the very good point of this definition is that if T is a pseudo-differential operator and
a Hilbert-Schmidt operator, its symbol as a pseudo-differential operator and its symbol
as a Hilbert-Schmidt operator coincide.

The main result linking all these notions is:

Proposition 5.3.9. A Hilbert-Schmidt operator T ∈ B(H) is Laplacian-modulated if
and only if its symbol pT satisfies∫

Rd
|pT (x, ·)|2dx ∈ L1

mod(Rd).

We provide below a proof of this statement. However, it involves an equivalent
definition for Laplacian-modulated operator which is only provided in Lemma 5.4.9 in
a slightly more general context.

Proof. It follows from Lemma 5.4.9 that T is Laplacian-modulated if and only if∥∥TE(1−∆)−d/2
(
[0, t−1]

)∥∥
2
= O(t−1/2) ∀t > 0, (5.18)

where E(1−∆)−d/2 denotes the spectral measure associated with the operator (1−∆)−d/2.

The key point is that the spectral projection E(1−∆)−d/2
(
[0, t−1]

)
is explicitly known,

namely for suitable f and any x ∈ Rd

[
E(1−∆)−d/2

(
[0, t−1]

)
f
]
(x) =

∫
(1+4π2|ξ|2)−d/2≤t−1

e2πix·ξ[Ff ](ξ)dξ.
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Now, let us define a family of projections Pt by the formula

[Ptf ](x) :=

∫
|ξ|>t

e2πix·ξ[Ff ](ξ)dξ.

By a simple computation we then find that for any t ≥ 1

P(cmint)1/d ≤ E(1−∆)−d/2
(
[0, t−1]

)
≤ P(cmaxt)1/d

with cmin := (4π2 + 1)−d/2 and cmax := (4π2)−d/2. It follows from (5.18) that T is
Laplacian-modulated if and only if ∥TPt∥2 = O(t−d/2). The statement can finally easily
be obtained by observing that

∥TPt∥22 =
∫
|ξ|>t

∫
Rd

|pT (x, ξ)|2dxdξ.

Remark 5.3.10. By endowing the set of symbols of Hilbert-Schmidt Laplacian-modula-
ted operators with the norm

∥pT∥mod :=
(
sup
t>0

(1 + t)d
∫
|ξ|>t

∫
Rd

|pT (x, ξ)|2dxdξ
)1/2

, (5.19)

it follows from the previous proposition and its proof that there is an isometry between
the Banach space of Laplacian-modulated symbols and the Banach space of Laplacian-
modulated operators mentioned in Proposition 5.3.2. Both norms have been denoted by
∥ · ∥mod for that purpose.

We shall soon show that the set of Laplacian-modulated operators is an exten-
sion of the set of compactly based pseudo-differential operators of order −d. For that
purpose, observe first that the definition of compactly supported or compactly based
operators can also be used in the context of bounded operators, namely an opera-
tor A ∈ B

(
L2(Rd)

)
is compactly supported if the exists ϕ, ψ ∈ C∞

c (Rd) such that
A = ϕ(X)Aψ(X), while A is compactly based if the exists ϕ ∈ C∞

c (Rd) such that
A = ϕ(X)A. Then, one easgets that a Laplacian-modulated operator T is compactly
supported if and only if its Schwartz kernel is compactly supported. On the other hand,
this operator is compactly based if and only if its symbol pT is compactly supported
in the first variable. Note that the notion of a compactly supported operator does not
really fit well with the notion of the symbol of a pseudo-differential operator or of
a Laplacian-modulated operator. On the other hand, this notion can be used for the
Schwartz kernel or for the kernel of an amplitude operator.

In the next statement we show that the concept of Laplacian-modulated operator
extends the notion of compactly based pseudo-differential operator of degree −d.

Theorem 5.3.11. Let A = a(X,D) be a compactly based pseudo-differential opera-
tor with symbol in a ∈ S−d

1,0 (Rd), Then A and A∗ extends continuously to Laplacian-
modulated operators.
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We provide below the proof of the statement for the operator A. The proof for A∗

is slightly more complicated and involves Shubin pseudo-differential operators already
mentioned in Section 5.1. We refer to[LSZ, Thm. 11.3.17] for the details.

Proof. By assumption one has |a(x, ξ)| ≤ C⟨ξ⟩−d for all x ∈ Rd and a constant C
independent of x and ξ. In addition, since the operator A is compactly based, its symbol
a is compactly supported in the first variable. Thus, there exists a compact set Ω ⊂ Rd

such that a(x, ξ) = 0 for any x ̸∈ Ω. We then infer that

sup
t>0

(1 + t)d
∫
|ξ|>t

∫
Rd

|a(x, ξ)|2dxdξ = sup
t>0

(1 + t)d
∫
|ξ|>t

∫
Ω

|a(x, ξ)|2dxdξ

≤ C2 |Ω| sup
t>0

(1 + t)d
∫
|ξ|>t

⟨ξ⟩−2ddξ

≤ C ′|Ω| sup
t>0

(1 + t)d
∫ ∞

t

r−2drd−1dr

=
C ′

d
|Ω| sup

t>0
(1 + t)d t−d

<∞,

where |Ω| means the Lebesgue measure of the set Ω, and C ′ is a constant. It follows from
Proposition 5.3.9 that a corresponds to the symbol of a Laplacian-modulated operator.
As a consequence, the operator A extends continuously to a Hilbert-Schmidt operator
which is Laplacian-modulated.

In order to extend the noncommutative residue to all compactly based Laplacian-
modulated operators, the following rather technical lemma is necessary. For that pur-
pose we recall that any Laplacian-modulated operator T is itself a Hilbert-Schmidt
operator.

Lemma 5.3.12. Let T be a compactly based Laplacian-modulated operator, and let pT
denotes its symbol. Then the map

N ∋ n 7→ 1

ln(n+ 1)

∫
|ξ|≤n1/d

∫
Rd
pT (x, ξ)dxdξ ∈ C

is bounded

Proof. Recall first that since the operator T is compactly based, its symbol pT is com-
pactly supported in the first variable. Thus, there exists a compact set Ω ⊂ Rd such
that pT (x, ξ) = 0 for any x ̸∈ Ω. Observe in addition that there exists a constant C
(depending only on the space dimension d) such that for any k ≥ 0∣∣Ω×

{
ξ ∈ Rd | ek ≤ |ξ| ≤ ek+1

}∣∣ = C|Ω| ekd .
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It then follows by an application of Cauchy-Schwartz inequality that∫
ek≤|ξ|≤ek+1

∫
Rd

|pT (x, ξ)|dxdξ

=

∫
ek≤|ξ|≤ek+1

∫
Ω

|pT (x, ξ)|dxdξ

≤ C1/2|Ω|1/2
(
(ek)d

∫
ek≤|ξ|≤ek+1

∫
Ω

|pT (x, ξ)|2dxdξ
)1/2

≤ C1/2|Ω|1/2∥pT∥mod,

where the definition (5.19) has been used in the last step.
Based on this estimate one infers that for t > 1∣∣∣ ∫

|ξ|≤t

∫
Rd
pT (x; ξ)dxdξ

∣∣∣
≤

∣∣∣ ∫
|ξ|≤1

∫
Rd
pT (x; ξ)dxdξ

∣∣∣+ ⌊ln(t)⌋∑
k=0

∫
ek≤|ξ|≤ek+1

∫
Rd

|pT (x, ξ)|dxdξ

≤
(
ln(t) + 1

)
C1/2|Ω|1/2∥pT∥mod +D

with D independent of t. By setting then t = n1/d for n > 1 one gets

1

ln(n+ 1)

∣∣∣ ∫
|ξ|≤n1/d

∫
Rd
pT (x, ξ)dxdξ

∣∣∣
≤ ln(n1/d) + 1

ln(n+ 1)
C1/2|Ω|1/2∥pT∥mod + o(n)

=
1
d
ln(n) + 1

ln(n+ 1)
C1/2|Ω|1/2∥pT∥mod + o(n)

which clearly defines a bounded function of n ∈ N.

Based on this result, it is now natural to set:

Definition 5.3.13. The map Res, from the set of compactly based Laplacian-modulated
operator to the quotient ℓ∞/c0, is defined for any compactly based Laplacian-modulated
operator T by

Res(T ) :=
[( 1

ln(n+ 1)

∫
|ξ|≤n1/d

∫
Rd
pT (x, ξ)dxdξ

)
n∈N

]
(5.20)

where pT denotes the symbol associated with T and [ · ] denotes the equivalence class in
ℓ∞/c0. This map is called the generalized residue.

Let us directly check that this notion extends the noncommutative residue intro-
duced in Section 5.2. First of all we need a preliminary lemma, which uses the fact
proved in Theorem 5.3.11 that any compactly based pseudodifferential operator of or-
der −d extends to a compactly based Laplacian-modulated operator.
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Lemma 5.3.14. The generalized residue of a compactly based pseudo-differential oper-
ator of order −d depends only on its principal symbol.

Proof. Let A1 and A2 be two compactly based pseudo-differential operators of order −d
sharing the same principal symbol. Then the difference A1 − A2 is a compactly based
pseudo-differential operator of order −d − 1, which means that its symbol a satisfies
a|(x, ξ)| ≤ C⟨ξ⟩−d−1 for all x, ξ ∈ Rd and a constant C independent of x and ξ. Since a
has compact support in the first variable, there exists a compact set Ω ⊂ Rd such that
a(x, ξ) = 0 if x ̸∈ Ω. Then one has

∣∣∣ ∫
Rd

∫
Rd
a(x, ξ)dxdξ

∣∣∣ ≤ C|Ω|
∫
Rd
⟨ξ⟩−d−1dξ <∞.

As a consequence of this estimate, it follows from the definition of Res provided in (5.20)
that Res(A1 − A2) = 0, and therefore that Res(A1) = Res(A2).

In the next statement we clearly identify C with the set of constant elements of ℓ∞.

Proposition 5.3.15. For any a ∈ S−d
cl (Rd) with compact support in the first variable of

all elements of its asymptotic expansion, or equivalently for any classical and compactly
based pseudo-differential operator A of order −d (with A = a(X,D)) one has

ResW (A) = Res(A).

Proof. Let us denote by a−d the principal symbol of the operator a. By the previous
lemma Res(A) depends only on the symbol a−d, and is determined by the equivalence
class in ℓ∞/c0 of the sequence

( 1

ln(n+ 1)

∫
|ξ|≤n1/d

∫
Rd
a−d(x, ξ)dxdξ

)
n∈N

.

Since a−d is homogeneous of order −d and is compact in its first variable one has∫
|ξ|≤n1/d

∫
Rd
a−d(x, ξ)dxdξ =

∫
Rd

∫
1<|ξ|≤n1/d

|ξ|−da−d
(
x,

ξ

|ξ|

)
dξdx+ C

=

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx

∫ n1/d

1

r−drd−1dr + C

=

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx ln
(
n1/d

)
+ C

=
ln(n)

d

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx ln(n) + C
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with C a constant independent of n. As a consequence one infers that

Res(A) =
[( 1

ln(n+ 1)

∫
|ξ|≤n1/d

∫
Rd
a−d(x, ξ)dxdξ

)
n∈N

]
=

[( ln(n)

ln(n+ 1)

1

d

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx+
C

ln(n+ 1)

)
n∈N

]
=

[(1
d

∫
Rd

∫
Sd−1

a−d(x, θ)dθdx
)
n∈N

]
= ResW (A)

with the identification mentioned before the statement of the proposition.

In reference [LSZ], it is shown that there exist some symbols for which the general-
ized residue is not a constant sequence. We provide a counterexample in the following
exercise, and refer to Example 10.2.10 and Proposition 11.3.22 of that reference for
more information.

Exercise 5.3.16. Consider the smooth function a⋆ : {ξ ∈ Rd | |ξ| > 4} → R given by

a⋆(ξ) := |ξ|m
(
sin

(
ln(ln(|ξ|))

)
+ cos

(
ln(ln(|ξ|))

))
∀|ξ| > 4.

1) Based on this function, show that there exists a symbol a ∈ Sm1,0(Rd) such that
its principal symbol can not be a homogeneous function. For that purpose one can show
that the map

ξ 7→ a⋆(2|ξ|)− 2ma⋆(|ξ|)

does not belong to Sm−1
1,0 (Rd).

2) In the special case m = −d, let ϕ ∈ C∞
c (Rd) and let a ∈ S−d

1,0 (Rd) satisfying
a(x, ξ) := ϕ(x)a⋆(ξ) for any |ξ| > 4 and any x ∈ Rd. Show that

Res
(
a(X,D)

)
=

[
(bn)n∈N

]
with bn = 1

d
sin

(
ln(ln(n1/d))

)
for n large enough. The sequence (bn) is clearly not a

convergent sequence.

5.4 Connes’ trace theorem

In this section we state a generalized version of Connes’ trace theorem and sketch the
main arguments of its proof. Again, our framework are operators acting Rd while the
original setting was for operators acting on compact manifolds.

Recall that the space L1,∞ has been introduced in (3.3) and corresponds to{
A ∈ K (H) | µn(A) ∈ O

(
n−1

)}
. (5.21)
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Theorem 5.4.1. Let T be a compactly supported Laplacian modulated operator with
symbol pT , and let ω be any dilation invariant extended limit on ℓ∞. Then:

(i) T belongs to L1,∞ and

Trω(T ) = ω
(
Res(T )

)
,

(ii) T is Dixmier measurable if and only if Res(T ) is a constant sequence, and then
Trω(T ) = Res(T ).

Remark 5.4.2. In the corresponding statement [LSZ, Thm. 11.5.1] the dilation in-
variance of the extended limit ω is not required. Indeed, it is shown in [LSZ, Sec. 9.7]
that once applied to operators in L1,∞ the dilation invariance of ω holds automatically.
However, since we have not introduced this material and since our Dixmier traces were
introduced on the more general space M1,∞ we shall not consider this refinement here.

As mentioned before, the sketch of the proof will be given subsequently. Our aim is
to mention some corollaries of the previous statement.

Theorem 5.4.3. Let A be a compactly based pseudo-differential operator of order −d.
Then A extends continuously to an element of L1,∞ and satisfies Trω(A) = ω

(
Res(A)

)
for any dilation invariant extended limit ω on ℓ∞.

Proof. First of all, it follows from Theorem 5.3.11 that the operator A extends con-
tinuously to a Laplacian modulated operator. In addition, there exists a function ϕ ∈
C∞
c (Rd) such that ϕ(X)A = A. The operator A′ := Aϕ(X) is then compactly supported

and the difference A−A′ is a compactly based operator and a pseudodifferential opera-
tor of order −∞. Note that the operator A′ corresponds to the one already mentioned in
the statement (iv) of Lemma 5.1.17 and in Lemma 5.1.19. It then follows from Lemma
5.3.14 that Res(A) = Res(A′), and from Lemma 5.1.19 that A − A′ ∈ J1. Thus, one
infers from Theorem 5.4.1 that A′ ∈ L1,∞, and since J1 ⊂ L1,∞ one also gets that
A ∈ L1,∞. Finally, again from Theorem 5.4.1 one deduces that

Trω(A) = Trω(A
′) = ω

(
Res(A′)

)
= ω

(
Res(A)

)
(5.22)

which corresponds to the statement.

Note that this result makes the Dixmier trace of any compactly based pseudo-
differential operator easily computable. Indeed, for a classical symbol the residue Res(A)
of the corresponding pseudo-differential operator A can be computed by its Wodzicki
residue, see Proposition 5.3.15, and the expression ω

(
Res(A)

)
does not depend on ω.

On the other hand, if the symbol is not classical, then the generalized residue Res(A) of
the corresponding operator can be computed by (5.20) in Definition 5.3.13. Then, if this
sequence is not constant, the r.h.s. of (5.22) does depend on ω, but nevertheless it makes
the Dixmier trace Trω(A) computable. For example, the pseudo-differential operator
a(X,D) exhibited in Exercise 5.3.16 is compactly based and possesses a generalized
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residue Res
(
a(X,D)

)
which is not a constant sequence. It then follows that the r.h.s. of

(5.22) depends on the choice of ω.
By collecting the information obtained so far one directly deduces the following

statement:

Corollary 5.4.4. For any ϕ ∈ C∞
c (Rd) and for any dilation invariant extended limit

ω on ℓ∞ one has

Trω
(
ϕ(X)(1−∆)−d/2

)
=

Vol(Sd−1)

d(2π)d

∫
Rd
ϕ(x)dx.

Let us mention that the above equality still holds if ϕ belongs to L2(Rd) and has
compact support. We refer to [LSZ, Thm. 11.7.5] for the proof of this extension.

We now come to the proof of Theorem 5.4.1. In fact, its content is a simple conse-
quence of the following two major statements.

Theorem 5.4.5. Let T be a compactly supported Laplacian-modulated operator with
symbol pT . Then T ∈ L1,∞ and the map

N ∋ n 7→
n∑
j=1

λj(T )−
∫
Rd

∫
|ξ|<n1/d

pT (x, ξ)dξdx ∈ C (5.23)

is bounded, where λj(T ) denote the eigenvalues of T and these eigenvalues are ordered
such that their modulus decrease.

Note that this result should be read with the content of Theorem 2.6.6 in mind.
Indeed, in that result and for a trace class operator A its trace was expressed as a
integral over its Schwartz symbol. Here, the operator T is not trace class, and pT is not
a Schwartz kernel, but anyway the difference between the partial sum of eigenvalues
and a partial integral over the kernel pT remains bounded, as a function of n.

Theorem 5.4.6 (Lidskii’s type formula for the Dixmier trace). For any A ∈ M1,∞ and
for any dilation invariant extended limit on ℓ∞ the following formula holds:

Trω(A) = ω
(( 1

ln(n+ 1)

n∑
j=0

λj(A)
)
n∈N

)
where again λj(T ) denote the eigenvalues of T and these eigenvalues are ordered such
that their modulus decrease.

Based on the previous two statements one has:

Proof of Theorem 5.4.1. i) By Theorem 5.4.5 and the definition of the residue Res(T )
one has T ∈ L1,∞ and

Res(T ) =
[( 1

ln(n+ 1)

n∑
j=1

λj(T )
)
n∈N

]
.
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Since L1,∞ ⊂ M1,∞ we can then apply Theorem 5.4.6 and infer that

Trω(T ) = ω
(( 1

ln(n+ 1)

n∑
j=1

λj(T )
)
n∈N

)
= ω

(
Res(T )

)
.

ii) It is clear that if Res(T ) is a constant sequence, then ω
(
Res(T )

)
= Res(T ) for

any dilation invariant extended limit ω on ℓ∞. For the reverse implication, we refer to
[LSZ, Thm. 10.1.3.(f)] since the statement is based on the notion of Tauberian operator
(see Definition 9.7.1 of that reference) which has not been introduced in these notes.

In the rest of this section we provide some information about the proofs of Theorems
5.4.5 and 5.4.6. These results are rather deep statements and we shall not be able to
prove them in detail. We start with Theorem 5.4.6 which also provides the necessary
tools for the proof of the initial Lidskii’s theorem. We first prove a necessary estimate.

Lemma 5.4.7. Let ω be a dilation invariant extended limit on ℓ∞, and let A ∈ M1,∞.
Then one has

ω
(( n

ln(n+ 1)
µn(A)

)
n∈N

)
= 0

Proof. Since ω = ω ◦ D2 with D2 the dilation operator introduced in Section 3.1 one
infers that

ω
(( 1

ln(n+ 1)

n∑
j=1

µj(A)
)
n∈N

)
= ω

(( 1

ln(⌊n/2⌋+ 1)

⌊n/2⌋∑
j=1

µj(A) + o(n)
)
n∈N

)

= ω
(( 1

ln(n+ 1)

⌊n/2⌋∑
j=1

µj(A) + o(n)
)
n∈N

)
where we have used that limn→∞

ln(n+1)
ln(⌊n/2⌋+1)

= 1. As a consequence, one has

0 = ω
(( 1

ln(n+ 1)

n∑
j=1

µj(A)
)
n∈N

)
− ω

(( 1

ln(n+ 1)

⌊n/2⌋∑
j=1

µj(A) + o(n)
)
n∈N

)
= ω

(( 1

ln(n+ 1)

n∑
j=⌊n/2⌋+1

µj(A) + o(n)
)
n∈N

)
≥ ω

(( n

2 ln(n+ 1)
µn(A)

)
n∈N

)
from which one deduces the statement.

Proof of Theorem 5.4.6. 1) First of all, let A ∈ M1,∞ be self-adjoint, and recall that
A = A+ − A− with A± ≥ 0. By the linearity of the Dixmier trace one has

Trω(A) = Trω(A+)− Trω(A−) = ω
(( 1

ln(n+ 1)

n∑
j=1

{
λj(A+)− λj(A−)

})
n∈N

)
.
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In the point 2) below we shall prove that∣∣∣ n∑
j=1

{
λj(A)− λj(A+) + λj(A−)

}∣∣∣ ≤ nµn(A). (5.24)

It then follows from Lemma 5.4.7 that ω
((

1
ln(n+1)

nµn(A)
)
n∈N

)
= 0, and therefore

Trω(A) = ω
(( 1

ln(n+ 1)

n∑
j=1

λj(A)
)
n∈N

)
.

If A ∈ M1,∞ is a normal operator, it follows from the previous paragraph that

Trω(A) = Trω
(
ℜ(A)

)
+ iTrω

(
ℑ(A)

)
= ω

(( 1

ln(n+ 1)

n∑
j=1

{
λj
(
ℜ(A)

)
+ iλj

(
ℑ(A)

)})
n∈N

)
.

Again in the point 2) below we shall prove that∣∣∣ n∑
j=1

{
λj(A)− λj

(
ℜ(A)

)
− iλj

(
ℑ(A)

)}∣∣∣ ≤ 5nµn(A), (5.25)

from which one infers with Lemma 5.4.7 that

Trω(A) = ω
(( 1

ln(n+ 1)

n∑
j=1

λj(A)
)
n∈N

)
.

For the general case A ∈ M1,∞ one has to rely on a rather deep decomposition of
A, namely A = N + Q with N,Q ∈ M1,∞, N normal, Q satisfying Trω(Q) = 0, and
λj(A) = λj(N). This decomposition is provided for example in [LSZ, Thm. 5.5.1] in
a more general framework. Note also that this decomposition can be used for proving
the usual Lidskii’s theorem, see (2.33). With this information at hand, the proof of the
statement follows directly.

2) For (5.24) one first observes that for any n ∈ N{
λj(A)

}n
j=1

⊂
{{
λj(A+)

}n
j=1

∪
{
− λj(A−)

}n
j=1

}
.

Indeed, this easily follows from the functional calculus of the self-adjoint operator A.
In addition, one also observes that{{

λj(A+)
}n
j=1

∪
{
− λj(A−)

}n
j=1

}
\
{
λj(A)

}n
j=1

⊂
{
λ ∈ C | |λ| ≤ |λn(A)|

}
and that the cardinality of the set on the l.h.s. contains at most n elements. It then
follows that ∣∣∣ n∑

j=1

{
λj(A)− λj(A+) + λj(A−)

}∣∣∣ ≤ n|λn(A)| = nµn(A). (5.26)
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For (5.25) recall first that since A is a normal compact operator it has the canonical
form A =

∑
j λj(A)|fj⟩⟨fj| for λj(A) ∈ C ordered with a decrease of their modulus. It

then follows that for any n ∈ N{
σ(A) ∩ {λ ∈ C | |λ| > µn(A)}

}
⊂ {λj(A)}nj=1 .

One also observes that

{λj(A)}nj=1 \
{
σ(A) ∩ {λ ∈ C | |λ| > µn(A)}

}
⊂ {λ ∈ C | |λ| ≤ µn(A)}

and that the cardinality of the set on the l.h.s. contains at most n elements. As a
consequence one has ∣∣∣ n∑

j=1

λj(A)−
∑

λ∈σ(A),|λ|>µn(A)

λ
∣∣∣ ≤ nµn(A).

By a similar argument one also gets that∣∣∣ n∑
j=1

λj
(
ℜ(A)

)
−

∑
λ∈σ(ℜ(A)),|λ|>µn(A)

λ
∣∣∣ ≤ nµn(A).

Since ℜ
(
σ(A)

)
= σ

(
ℜ(A)

)
, by the normality of A, this is equivalent to∣∣∣ n∑

j=1

λj
(
ℜ(A)

)
−

∑
λ∈σ(A),|ℜ(λ)|>µn(A)

ℜ(λ)
∣∣∣ ≤ nµn(A). (5.27)

On the other hand one infers that∣∣∣ ∑
λ∈σ(A),|ℜ(λ)|>µn(A)

ℜ(λ)−
∑

λ∈σ(A),|λ|>µn(A)

ℜ(λ)
∣∣∣

≤
∑

λ∈σ(A),|ℜ(λ)|≤µn(A)| and |λ|≥µn(A)

|ℜ(λ)|

≤
∑

λ∈σ(A),|λ|≥µn(A)

µn(A)

= nµn(A).

By this estimate together with (5.27) we finally infer that∣∣∣ n∑
j=1

λj
(
ℜ(A)

)
−

∑
λ∈σ(A),|λ|>µn(A)

ℜ(λ)
∣∣∣ ≤ 2nµn(A).

Similarly, one can also deduce that∣∣∣ n∑
j=1

λj
(
ℑ(A)

)
−

∑
λ∈σ(A),|λ|>µn(A)

ℑ(λ)
∣∣∣ ≤ 2nµn(A).
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By combining the previous two estimates one infers that∣∣∣ n∑
j=1

λj
(
ℜ(A)

)
+ iλj

(
ℑ(A)

)
−

∑
λ∈σ(A),|λ|>µn(A)

λ
∣∣∣ ≤ 4nµn(A), (5.28)

It finally follows from (5.26) and (5.28) that∣∣∣ n∑
j=1

{
λj(A)− λj

(
ℜ(A)

)
− iλj

(
ℑ(A)

)}∣∣∣ ≤ 5nµn(A),

as announced.

Let us now come to the proof of Theorem 5.4.5 which is at the heart of Connes’
trace theorem. A first step in the proof consists in studying more deeply the notion
of V -modulated operator. As already mentioned at the beginning of Section 5.3 this
notion is more general than Laplacian-modulated and has some advantages. For the
record:

Definition 5.4.8. Let V ∈ B(H) be positive. An operator T ∈ B(H) is V -modulated

if the operator T
(
1 + tV

)−1
is a Hilbert-Schmidt operator for any t > 0, and

∥T∥mod := sup
t>0

t1/2
∥∥T(1 + tV

)−1∥∥
2
<∞. (5.29)

Before going on with the main result related to V -modulated operator, let us provide
an equivalent definition. It proof involves the functional calculus of the self-adjoint
operator V .

Lemma 5.4.9. Let V ∈ J2 be positive. An operator T ∈ B(H) is V -modulated if and
only if ∥∥TEV ([0, t−1]

)∥∥
2
= O(t−1/2) ∀t > 0, (5.30)

where EV denotes the spectral measure associated with the operator V .

Proof. For fixed t > 0, observe first that for any x ∈ R+ one has 1 ≤ 2(1 + tx)−1 if and
only if x ≤ 1/t. Since in addition 2(1+tx)−1 > 0 one infers that the following inequality
holds for functions: χ[0,1/t] ≤ 2(1 + t · )−1. By functional calculus for V it follows that

EV
(
[0, t−1]

)
≡ χ[0,1/t](V ) ≤ 2(1 + tV )−1.

Thus, if we assume that T satisfies (5.29) one infers that∥∥TEV ([0, t−1]
)∥∥

2
=

∥∥T(2(1 + tV
)−1)

EV
(
[0, t−1]

)(
2(1 + tV

)−1)−1∥∥
2

≤ 2
∥∥T (1 + tV

)−1∥∥
2

∥∥EV ([0, t−1]
)(
2(1 + tV

)−1)−1∥∥
≤

∥∥T (1 + tV
)−1∥∥

2

≤ ∥T∥mod t−1/2.
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For the converse assertion, let us first assume that ∥V ∥ < 1. Since the inequality
(5.29) is always satisfied for t ∈ (0, 1) we can consider without restriction that t ≥ 1.
Let k ∈ N0 such that t ∈ [2k, 2k+1). Then by assuming (5.30) one has

∥∥T(1 + tV
)−1∥∥ ≤

∥∥TEV ([0, 2−k])∥2 + k−1∑
j=0

∥∥TEV ((2−j−1, 2−j]
)
(1 + tV )−1

∥∥
2

≤ O(t−1/2) +
k−1∑
j=0

(1 + t2−j−1)−1
∥∥TEV ((2−j−1, 2−j]

)∥∥
2

≤ O(t−1/2) + C

k−1∑
j=0

(1 + 2k−j−1)−1 2−j/2

= O(t−1/2) + C
k−1∑
j=0

√
2 2−k/2

2(j−k+1)/2 + 2−(j−k+1)/2

≤ O(t−1/2).

Note that for the summation in the last term one can use an argument involving the
estimate

∫
R

1
cosh(x)

dx < 0.

For arbitrary V > 0 one can consider (1 + tV ) = (1 + {t∥V ∥}V̂ ) with V̂ = V
∥V ∥

which is of norm 1. The adaptation of the proof is then straightforward.

The main result in the present context is provided in [LSZ, Thm. 11.2.3]. We can
not provide a proof of this statement without additional efforts, but let us state it and
see its role in the proof of Theorem 5.4.5. By a strictly positive operator we denote a
positive operator with empty kernel.

Theorem 5.4.10. Let V ∈ L1,∞ be a strictly positive operator, and let T ∈ B(H)
be a V -modulated operator. Let {fn} be an orthonormal basis of H ordered such that
V fn = µn(V )fn for any n ∈ N. Then we have:

(i) T ∈ L1,∞ and the sequence
(
⟨fn, T fn⟩

)
n∈N belongs to ℓ1,∞,

(ii) The map

N ∋
n∑
j=1

λj(T )−
n∑
j=1

⟨fj, T fj⟩ ∈ C (5.31)

is bounded.

Note that equation (5.31) should be read with the results of Chapter 2 on the usual
trace in mind. Indeed, for a trace class operator A, the sum

∑
n⟨fn, Afn⟩ gives the same

value for an arbitrary orthonormal basis ofH, and by Lidskii’s theorem this sum is equal
to

∑
j λj(A). In the present situation, the operator T is not trace class, and therefore

neither
∑

j λj(T ) nor
∑

n⟨fn, T fn⟩ are well-defined. However, equation (5.31) states
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that a suitable difference (depending on a parameter n) of these expressions remains
bounded for all n. One additional difference with the content of Chapter 2 is that the
basis of H is not arbitrary but is adapted to the operator V to which the operator T is
modulated. In a vague sense it means that the chosen basis of H is made of elements
which have a certain regularity with respect to T .

Clearly, the above result can not be applied for any Laplacian-modulated operator
since the operator (1 − ∆)−d/2 is never a compact operator. However, the trick is to
replace the Laplacian operator by the Laplacian on a bounded domain. This change
will be possible thanks to the assumption on the support of the operator T . So, for
any m ∈ Zd let us set em ∈ L2([0, 1]d) by em(x) := e2πim·x and let us denote by
−∆0 the Laplacian in L2([0, 1]d) with domain D(−∆) := Span

(
{em}m∈Zd

)
. Clearly,

−∆0 em = 4π2m2 em. One major interest in this operator is that its resolvent has very
good spectral properties, more precisely one has (1−∆0)

−d/2 ∈ L1,∞ as a consequence
of Weyl law. In addition, this operator is strictly positive, and therefore satisfies the
assumptions of Theorem 5.4.10

Exercise 5.4.11. By using the Weyl asymptotic provided in the theorem on page 30 of
[Cha] show that (1 − ∆0)

−d/2 ∈ L1,∞. Show also that such an inclusion holds for the
Laplacian ∆0 for any bounded rectangular domain in Rd.

In the sequel, we shall consider the functions em as periodic functions on R2. Clearly,
these functions are not in L2(Rd), but nevertheless they are going to play an important
role.

For the next statement, recall that if T is a Hilbert-Schmidt operator and if {fn}
is an orthogonal basis of H, then the summation

∑
n ∥Tfn∥2 is finite, see Proposition

2.5.4. Clearly, the family of functions {em} is not suitable for such an estimate, but
once multiplied by a nice function one gets:

Lemma 5.4.12. Let T ∈ B(H) be a Laplacian-modulated operator, and let ϕ be an
arbitrary element of the Schwartz space S(Rd). Then one has∑

|m|>t

∥T (ϕ em)∥2 = O(t−d), ∀t > 0.

The rather lengthy proof of this lemma is provided in [LSZ, Lem. 11.4.2]. It is only
based on the properties of the Schwartz functions and makes an extensive used of the
algebra L1

mod(Rd).
With the previous result we can show that any compactly supported Laplacian-

modulated operator is also ∆0-modulated operator. For the compactly supported op-
erator, we shall assume from now on that the support is inside [0, 1]d. Obviously, this
is not a loss of generality since other arbitrary cubes could have been chosen, see also
Exercise 5.4.11.

Theorem 5.4.13. Let T ∈ B(H) be a compactly supported Laplacian-modulated opera-
tor with support in [0, 1]d. Then the operator T , considered from L2([0, 1]d) to L2([0, 1]d)
is ∆0-modulated.
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Proof. For any m ∈ Zd let em be the functions introduced above, seen either as element
of L2([0, 1]d) or as continuous and periodic functions on Rd. Let also ϕ ∈ S(Rd) be
positive and such that ϕ(x) = 1 for any x ∈ [0, 1]d. Since T is compactly supported,
one has T em = T (ϕ em).

Now, for any t > 0 and in the Hilbert space L2([0, 1]d) one has∥∥TE(1−∆0)−d/2([0, t
−1])

∥∥2

2
=

∑
1+4π2|m|2≥t2/d

∥T em ∥2

≤
∑

|m|≥t1/d/2π

∥T (ϕ em)∥2

= O(t−1)

where the last estimate is provided by Lemma 5.4.12. The statement follows now directly
from Lemma 5.4.9.

Based on Theorem 5.4.10 let us finally provide a sketch of the proof of Theorem
5.4.5.

Proof of Theorem 5.4.5. 1) We shall assume without loss of generality that the com-
pactly supported operator T has support in [0, 1]d. As already observed, the oper-
ator V := (1 − ∆0)

−d/2 belongs to L1,∞ and is strictly positive. In addition, one
has shown in Theorem 5.4.13 that T is ∆0-modulated, or more precisely that T :
L2([0, 1]d) → L2([0, 1]d) is V -modulated. As a consequence of Theorem 5.4.10 one infers
that T ∈ L1,∞

(
L2([0, 1]d)

)
, and then by the inclusion of L2([0, 1]d) into L2(Rd) that

T ∈ L1,∞
(
L2(Rd)

)
as well. In that respect it is worth noting that the eigenvalues of

T : L2([0, 1]d) → L2([0, 1]d) and of T : L2(Rd) → L2(Rd) coincide since the subspace
L2([0, 1]d) is left invariant by T .

Now, let {fn} be a rearrangement of the eigenfunctions {em} according to an in-
crease of |m|. More precisely for any given n ∈ N we have fn = emn with |mn| ≥ |mn′ |
whenever n > n′. One can also observe that |mn| ∼= n1/d. Then Theorem 5.4.10 implies
that

n∑
j=1

λj(T ) =
n∑
j=1

⟨fj, T fj⟩+O(1) =
∑

|m|≤n1/d

⟨em, T em⟩+O(1). (5.32)

2) For the initial statement, it remains to show that for any t > 0∫
|ξ|<t

∫
Rd

pT (x, ξ)dξdx−
∑
|m|≤t

⟨em, T em⟩ = O(1). (5.33)

For that purpose, let ϕ ∈ S(Rd) be positive and such that ϕ(x) = 1 for any x ∈ [0, 1]d.
We then have T em = T (ϕ em) and [F (ϕ em)](x) = [Fϕ](x −m). It then follows from
the explicit formula (5.17) that

⟨em, T em⟩ =
∫
Rd

∫
Rd

e2πix·(ξ−m) pT (x, ξ)[Fϕ](ξ −m)dξdx.
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By taking into account that pT (x, ξ) = 0 if x ̸∈ [0, 1]d, one gets∣∣∣ ∫
Rn

∫
|ξ|<t

pT (x, ξ)dξdx−
∑
|m|≤t

⟨em, T em⟩
∣∣∣

=
∣∣∣ ∫

Rd

∫
[0,1]d

pT (x, ξ)
( ∑

|m|≤t

e2πix·(ξ−m)[Fϕ](ξ −m)− ξ[0,t](|ξ|)
)
dxdξ

∣∣∣
Now, it has been shown in [LSZ, Lem. 11.4.4] that the term inside the big parenthesis
can be further estimated and one gets∑

|m|≤t

e2πix·(ξ−m)[Fϕ](ξ −m)− ξ[0,t](|ξ|) = O
(
⟨t− |ξ|⟩−d

)
for any t > 0 and ξ ∈ Rd, and uniformly in x ∈ [0, 1]d. It only remains then to estimate
the term ∫

Rd

∫
[0,1]d

|pT (x, ξ)|⟨t− |ξ|⟩−ddxdξ.

It is again shown in the technical statement [LSZ, Lem. 11.4.5] that this term is uni-
formly bounded for t > 0. By setting t = n1/d in (5.33) and by using (5.32) one directly
obtains the statement contained in (5.23).
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