
Chapter 4

Spectral theory for self-adjoint
operators

In this chapter we develop the spectral theory for self-adjoint operators. As already seen
in Lemma 2.2.6, these operators have real spectrum, however much more can be said
about them, and in particular the spectrum can be divided into several parts having
distinct properties. Note that this chapter is mainly inspired from Chapter 4 of [Amr]
to which we refer for additional information.

4.1 Stieltjes measures

We start by introducing Stieltjes measures, since they will be the key ingredient for the
spectral theorem. For that purpose, let us consider a function F : R → R satisfying the
following properties:

(i) F is monotone non-decreasing, i.e. λ ≥ µ =⇒ F (λ) ≥ F (µ),

(ii) F is right continuous, i.e. F (λ) = F (λ+ 0) := limε↘0 F (λ+ ε) for all λ ∈ R,

(iii) F (−∞) := limλ→−∞ F (λ) = 0 and F (+∞) := limλ→+∞ F (λ) <∞.

Note that F (λ + 0) := limε↘0 F (λ + ε) and F (λ− 0) := limε↘0 F (λ− ε) exist since F
is a monotone and bounded function.

Exercise 4.1.1. Show that such a function has at most a countable set of points of
discontinuity. For that purpose you can consider for fixed n ∈ N the set of points λ ∈ R
for which F (λ)− F (λ− 0) > 1/n.

With a function F having these properties, one can associate a bounded Borel
measure mF on R, called Stieltjes measure, starting with

mF

(
(a, b]

)
:= F (b)− F (a), a, b ∈ R (4.1)
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and extending then this definition to all Borel sets of R (we denote by AB the set of all
Borel sets on R). More precisely, for any set V ∈ AB one sets

mF (V ) = inf
∑
k

mF (Jk)

with {Jk} any sequence of half-open intervals covering the set V , and the infimum is
taken over all such covering of V . With this definition, note that mF (R) = F (+∞) and
that

mF

(
(a, b)

)
= F (b− 0)− F (a), mF

(
[a, b]

)
= F (b)− F (a− 0)

and therefore mF

(
{a}

)
= F (a)− F (a− 0) is different from 0 if F is not continuous at

the point a.
Note that starting with a bounded Borel measure m on R and setting F (λ) :=

m
(
(−∞, λ]

)
, then F satisfies the conditions (i)-(iii) and the associated Stieltjes measure

mF verifies mF = m. Observe also that if the measure is not bounded one can not have
F (+∞) < ∞. Less restrictively, if the measure is not bounded on any bounded Borel
set, then the function F can not even be defined.

Exercise 4.1.2. Work on the examples of functions F introduced in Examples 4.1 to
4.5 of [Amr], and describe the corresponding Stieltjes measures.

Let us now recall the three types of measures on Rthat are going to play an impor-
tant role in the decomposition of any self-adjoint operator. First of all, a Borel measure
is called pure point or atomic if the measure is supported by points only. More precisely,
a Borel measure m is of this type if for any Borel set V there exists a collection of points
{xj} ⊂ V such that

m(V ) =
∑
j

m({xj}).

Note that for Stieltjes measure, this set of points is at most countable. Secondly, a Borel
measure m is absolutely continuous with respect to the Lebesgue measure if there exists
a non-negative measurable function f such that for any Borel set V one has

m(V ) =

∫
V

f(x)dx

where dx denotes the Lebesgue measure on R. Thirdly, a Borel measure m is singular
continuous with respect to the Lebesgue measure if m({x}) = 0 for any x ∈ R and
if there exists a Borel set V of Lebesgue measure 0 such that the support of m is
concentrated on V . Note that examples of such singular continuous measure can be
constructed with Cantor functions, see for example [Amr, Ex. 4.5].

The following theorem is based on the Lebesgue decomposition theorem for mea-
sures.

Theorem 4.1.3. Any Stieltjes measure m admits a unique decomposition

m = mp +mac +msc



4.2. SPECTRAL MEASURES 45

where mp is a pure point measure (with at most a countable support), mac is an ab-
solutely continuous measure with respect to the Lebesgue measure on R, and msc is a
singular continuous measure with respect to the Lebesgue measure R.

4.2 Spectral measures

We shall now define a spectral measure, by analogy with the Stieltjes measure intro-
duced in the previous section. Indeed, instead of considering non-decreasing functions F
defined on R and taking values in R, we shall consider non-decreasing functions defined
on R but taking values in the set P(H) of orthogonal projections on a Hilbert space H.

Definition 4.2.1. A spectral family, or a resolution of the identity, is a family {Eλ}λ∈R
of orthogonal projections in H satisfying:

(i) The family is non-decreasing, i.e. EλEµ = Emin{λ,µ},

(ii) The family is strongly right continuous, i.e. Eλ = Eλ+0 = s− limε↘0Eλ+ε,

(iii) s− limλ→−∞Eλ = 0 and s− limλ→∞Eλ = 1,

It is important to observe that the condition (i) implies that the elements of the
families are commuting, i.e. EλEµ = EµEλ. We also define the support of the spectral
family as the following subset of R:

supp{Eλ} =
{
µ ∈ R | Eµ+ε − Eµ−ε ̸= 0, ∀ε > 0

}
.

Given such a family and in analogy with (4.1), one first defines

E
(
(a, b]

)
:= Eb − Ea, a, b ∈ R, (4.2)

and extends this definition to all sets V ∈ AB. As a consequence of the construction,
note that

E
(∪

k

Vk

)
=

∑
k

E(Vk) (4.3)

whenever {Vk} is a countable family of disjoint elements of AB. Thus, one ends up
with a projection-valued map E : AB → P(H) which satisfies E(∅) = 0, E(R) = 1,
E(V1)E(V2) = E(V1 ∩ V2) for any Borel sets V1, V2. In addition,

E
(
(a, b)

)
= Eb−0 − Ea, E

(
[a, b]

)
= Eb − Ea−0

and therefore E
(
{a}

)
= Ea − Ea−0.

Definition 4.2.2. The map E : AB → P(H) defined by (4.2) is called the spectral
measure associated with the family {Eλ}λ∈R. This spectral measure is bounded from
below if there exists λ− ∈ R such that Eλ = 0 for all λ < λ−. Similarly, this spectral
measure is bounded from above if there exists λ+ ∈ R such that Eλ = 1 for all λ > λ+.
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Let us note that for any spectral family {Eλ}λ∈R and any f ∈ H one can set

Ff (λ) := ∥Eλf∥2 = ⟨Eλf, f⟩.

Then, one easily checks that the function Ff satisfies the conditions (i)-(iii) of the
beginning of Section 4.1. Thus, one can associate with each element f ∈ H a Stieltjes
measure mf on R which satisfies

mf (V ) = ∥E(V )f∥2 = ⟨E(V )f, f⟩ (4.4)

for any V ∈ AB. Note in particular that mf (R) = ∥f∥2. Later on, this Stieltjes measure
will be decomposed according the content of Theorem 4.1.3.

Our next aim is to define integrals of the form∫ b

a

φ(λ)E(dλ) (4.5)

for a continuous function φ : [a, b] → C and for any spectral family {Eλ}λ∈R. Such
integrals can be defined in the sense of Riemann-Stieltjes by first considering a partition
a = x0 < x1 < ... < xn = b of [a, b] and a collection {yj} with yj ∈ (xj−1, xj) and by
defining the operator

n∑
j=1

φ(yj)E
(
(xj−1, xj]

)
. (4.6)

It turns out that by considering finer and finer partitions of [a, b], the corresponding
expression (4.6) strongly converges to an element of B(H) which is independent of the
successive choice of partitions. The resulting operator is denoted by (4.5).

The following statement contains usual results which can be obtained in this con-
text. The proof is not difficult, but one has to deal with several partitions of intervals.
We refer to [Amr, Prop. 4.10] for a detailed proof.

Proposition 4.2.3 (Spectral integrals). Let {Eλ}λ∈R be a spectral family, let −∞ <
a < b <∞ and let φ : [a, b] → C be continuous. Then one has

(i)
∥∥∥∫ b

a
φ(λ)E(dλ)

∥∥∥ = supµ∈[a,b]∩supp{Eλ} |φ(µ)|,

(ii)
(∫ b

a
φ(λ)E(dλ)

)∗
=

∫ b

a
φ(λ)E(dλ),

(iii) For any f ∈ H,
∥∥∥∫ b

a
φ(λ)E(dλ)f

∥∥∥2

=
∫ b

a
|φ(λ)|2mf (dλ),

(iv) If ψ : [a, b] → C is continuous, then∫ b

a

φ(λ)E(dλ) ·
∫ b

a

ψ(λ)E(dλ) =

∫ b

a

φ(λ)ψ(λ)E(dλ).
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Let us now observe that if the support supp{Eλ} is bounded, then one can consider

∫ ∞

−∞
φ(λ)E(dλ) = s− lim

M→∞

∫ M

−M

φ(λ)E(dλ). (4.7)

Similarly, by taking property (iii) of the previous proposition into account, one observes
that this limit can also be taken if φ ∈ Cb(R). On the other hand, if φ is not bounded
on R, the r.h.s. of (4.7) is not necessarily well defined. In fact, if φ is not bounded
on R and if supp{Eλ} is not bounded either, then the r.h.s. of (4.7) is an unbounded
operator and can only be defined on a dense domain of H.

Lemma 4.2.4. Let φ : R → C be continuous, and let us set

Dφ :=
{
f ∈ H |

∫ ∞

−∞
|φ(λ)|2mf (dλ) <∞

}
.

Then the pair
( ∫∞

−∞ φ(λ)E(dλ),Dφ

)
defines a closed linear operator on H. This oper-

ator is self-adjoint if and only if φ is a real function.

Proof. Observe first that Dφ = Dφ, and set A :=
∫∞
−∞ φ(λ)E(dλ). A is densely defined

because its domain contains all elements with compact support with respect to {Eλ},
i.e. it contains all g ∈ H satisfying g = E

(
(−N,N ]

)
g for some N < ∞. Thus, for

f, g ∈ Dφ one has by the point (ii) of Proposition 4.2.3

⟨f,Ag⟩ = lim
M→∞

⟨
f,

∫ M

−M

φ(λ)E(dλ)g
⟩

= lim
M→∞

⟨∫ M

−M

φ(λ)E(dλ)f, g
⟩
=

⟨∫ ∞

−∞
φ(λ)E(dλ)f, g

⟩
.

It thus follows that Dφ ⊂ D(A∗), and that A∗f =
∫∞
−∞ φ(λ)E(dλ)f for any f ∈ Dφ. As

a consequence A∗ is an extension of
∫∞
−∞ φ(λ)E(dλ), and in order to show that these

two operators are equal it is sufficient to show that D(A∗) ⊂ Dφ.

For that purpose, recall that if f ∈ D(A∗) there exists f ∗ ∈ H such that for any
g ∈ Dφ

⟨f, Ag⟩ = ⟨f ∗, g⟩.

In particular this equality holds if g has compact support with respect to {Eλ}. One
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then gets for any M ∈ (0,∞)∥∥E((−M,M ]
)
f ∗∥∥ = sup

g∈H,∥g∥=1

∣∣⟨E((−M,M ]
)
f ∗, g

⟩∣∣
= sup

g∈H,∥g∥=1

∣∣⟨f ∗, E
(
(−M,M ]

)
g
⟩∣∣

= sup
g∈H,∥g∥=1

∣∣∣⟨f, ∫ M

−M

φ(λ)E(dλ)g
⟩∣∣∣

= sup
g∈H,∥g∥=1

∣∣∣⟨ ∫ M

−M

φ(λ)E(dλ)f, g
⟩∣∣∣

=
∥∥∥ ∫ M

−M

φ(λ)E(dλ)f
∥∥∥ =

(∫ M

−M

|φ(λ)|2mf (dλ)
)1/2

.

As a consequence, one has

sup
M>0

∫ M

−M

|φ(λ)|2mf (dλ) ≤ ∥f ∗∥2 <∞

from which one infers that
∫∞
−∞ |φ(λ)|2mf (dλ) <∞. This shows that if f ∈ D(A∗) then

f ∈ Dφ.
Since A∗ is always closed by (i) of Lemma 2.1.10, one infers that

∫∞
−∞ φ(λ)E(dλ)

on Dφ is a closed operator. So the same holds for A on Dφ. Finally, since Dφ = Dφ, the
second statement is a direct consequence of the first one.

A function φ of special interest is the function defined by the identity function id,
namely id(λ) = λ.

Definition 4.2.5. For any spectral family {Eλ}λ∈R, the operator
( ∫∞

−∞ λE(dλ),Did

)
with

Did :=
{
f ∈ H |

∫ ∞

−∞
λ2mf (dλ) <∞

}
is called the self-adjoint operator associated with {Eλ}.

By this procedure, any spectral family defines a self-adjoint operator on H. The
spectral Theorem corresponds to the converse statement:

Theorem 4.2.6 (Spectral Theorem). With any self-adjoint operator (A,D(A)) on a
Hilbert space H one can associate a unique spectral family {Eλ}, called the spectral
family of A, such that D(A) = Did and A =

∫∞
−∞ λE(dλ).

In summary, there is a bijective correspondence between self-adjoint operators and
spectral families. This theorem extends the fact that any n × n hermitian matrix is
diagonalizable. The proof of this theorem is not trivial and is rather lengthy. In the
sequel, we shall assume it, and state various consequences of this theorem.
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Extension 4.2.7. Study the proof the Spectral Theorem, starting with the version for
bounded self-adjoint operators.

Based on this one-to-one correspondence it is now natural to set the following
definition:

Definition 4.2.8. Let A be a self-adjoint operator in H and {Eλ} be the corresponding
spectral family. For any bounded and continuous function φ : R → C one sets φ(A) ∈
B(H) for the operator defined by

φ(A) :=

∫ ∞

−∞
φ(λ)E(dλ). (4.8)

Exercise 4.2.9. For any self-adjoint operator A, prove the following equality:

supp{Eλ} = σ(A). (4.9)

Note that part of the proof consists in showing that if φz(λ) = (λ − z)−1 for some
z ∈ ρ(A), then φz(A) = (A− z)−1, where the r.h.s. has been defined in Section 2.2. Let
us also mention a useful equality which can be proved in this exercise: for any z ∈ ρ(A)
one has ∥∥(A− z)−1

∥∥ =
[
dist

(
z, σ(A)

)]−1
. (4.10)

For the next statement, we set Cb(R) for the set of all continuous and bounded
complex functions on R.

Proposition 4.2.10. a) For any φ ∈ Cb(R) one has

(i) φ(A) ∈ B(H) and ∥φ(A)∥ = supλ∈σ(A) |φ(λ)|,

(ii) φ(A)∗ = φ(A), and φ(A) is self-adjoint if and only if φ is real,

(iii) φ(A) is unitary if and only if |φ(λ)| = 1.

b) The map Cb(R) ∋ φ 7→ φ(A) ∈ B(H) is a ∗-homomorphism.
c) If φ ∈ C(R), then (4.8) defines a closed operator φ(A) with domain

D
(
φ(A)

)
=

{
f ∈ H |

∫ ∞

−∞
|φ(λ)|2mf (dλ) <∞

}
. (4.11)

In the point (iii) above, one can consider the function φt ∈ Cb(R) defined by φt(λ) :=
e−iλt for any fixed t ∈ R. Then, if one sets Ut := φt(A) one first observes that UtUs =
Ut+s. Indeed, one has

UtUs =

∫ ∞

−∞
eiλtE(dλ)

∫ ∞

−∞
e−iλsE(dλ) =

∫ ∞

−∞
e−iλt e−iλsE(dλ)

=

∫ ∞

−∞
e−iλ(t+s)E(dλ) = Ut+s.
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In addition, by an application of the dominated convergence theorem of Lebesgue,
one infers that the map R ∋ t 7→ Ut ∈ B(H) is strongly continuous. Indeed, since∣∣ e−iλ(t+ε)− e−iλt

∣∣2 ≤ 4 one has

∥Ut+εf − Utf∥2 =
∫ ∞

−∞

∣∣ e−iλ(t+ε)− e−iλt
∣∣2mf (dλ) → 0 as ε→ 0.

As a consequence, such a family {Ut}t∈R is called a strongly continuous unitary group.

Note that since e−iλt =
∑∞

k=0
(−iλt)k

k!
one also infers that whenever A is a bounded

operator

Ut =
∞∑
k=0

(−itA)k

k!
(4.12)

with a norm converging series. On the other hand, if A is not bounded, then this series
converges on elements f ∈ ∩∞

k=0D(A
k). In particular, it converges strongly on elements

of H which have compact support with respect to the corresponding spectral measure.
Let us now mention that the above construction is only one part of a one-to-one

relation between strongly continuous unitary groups and self-adjoint operators. The
proof of the following statement can be found for example in [Amr, Prop. 5.1].

Theorem 4.2.11 (Stone’s Theorem). There exists a bijective correspondence between
self-adjoint operators on H and strongly continuous unitary groups on H. More pre-
cisely, if A is a self-adjoint operator on H, then {e−itA}t∈R is a strongly continuous
unitary group, while if {Ut}t∈R is a strongly continuous unitary group, one sets

D(A) :=
{
f ∈ H | ∃ s− lim

t→0

1

t
[Ut − 1]f

}
and for f ∈ D(A) one sets Af = s − limt→0

i
t
[Ut − 1]f , and then

(
A,D(A)

)
is a self-

adjoint operator.

Exercise 4.2.12. Provide a precise proof of Stone’s theorem.

Let us close with section with two important observations. First of all, the map
φ 7→ φ(A) can be extended from continuous and bounded φ to bounded and measur-
able functions φ. This extension can be realized by considering the Lebesgue-Stieltjes
integrals in the weak form. In particular, this extension is necessary for defining φ(A)
whenever φ is the characteristic function on some Borel set V .

The second observation is going to provide an alternative formula for φ(A) in terms
of the unitary group {e−itA}t∈R. Indeed, assume that the inverse Fourier transform φ̌
of φ belongs to L1(R), then the following equality holds

φ(A) =
1√
2π

∫ ∞

−∞
φ̌(t) e−itA dt. (4.13)

Indeed, observe that

⟨f, φ(A)f⟩ =
∫
R
φ(λ)mf (dλ) =

∫
R
mf (dλ)

1√
2π

∫
R
e−iλt φ̌(t)dt.
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By application of Fubini’s theorem one can interchange the order of integrations and
obtain

⟨f, φ(A)f⟩ = 1√
2π

∫
R
dtφ̌(t)

∫
R
e−iλtmf (dλ)

=
1√
2π

∫
R
dt φ̌(t)⟨f, e−itA f⟩ =

⟨
f,

1√
2π

∫
R
dt φ̌(t) e−itA f

⟩
,

and one gets (4.13) by applying the polarisation identity (1.1).

4.3 Spectral parts of a self-adjoint operator

In this section, we consider a fixed self-adjoint operator A (and its associated spectral
family {Eλ}), and show that there exists a natural decomposition of the Hilbert space
H with respect to this operator. First of all, recall from Lemma 2.2.6 that the spectrum
of any self-adjoint operator is real. In addition, let us recall that for any µ ∈ R, one has

Ran
(
E({µ})

)
= {f ∈ H | E({µ})f = f}.

Then, one observes that the following equivalence holds:

f ∈ Ran
(
E({µ})

)
⇐⇒ f ∈ D(A) with Af = µf.

Indeed, this can be inferred from the equality

∥Af − µf∥2 =
∫ ∞

−∞
|λ− µ|2mf (dλ)

which itself can be deduced from the point (iii) of Proposition 4.2.3. In fact, since the
integrand is strictly positive for each λ ̸= µ, one has ∥Af − µf∥ = 0 if and only if
mf (V ) = 0 for any Borel set V on R with µ ̸∈ V . In other words, the measure mf is
supported only on {µ}.

Definition 4.3.1. The set of all µ ∈ R such that Ran
(
E({µ})

)
̸= 0 is called the point

spectrum of A or the set of eigenvalues of A. One then sets

Hp(A) :=
⊕

Ran
(
E({µ})

)
where the sum extends over all eigenvalues of A.

In accordance with what has been presented in Theorem 4.1.3, we define two addi-
tional subspaces of H.

Definition 4.3.2.

Hac(A) :=
{
f ∈ H | mf is an absolutely continuous measure

}
=

{
f ∈ H | the function λ 7→ ∥Eλf∥2 is absolutely continuous

}
,
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Hsc(A) :=
{
f ∈ H | mf is a singular continuous measure

}
=

{
f ∈ H | the function λ 7→ ∥Eλf∥2 is singular continuous

}
,

for which the comparison measure is always the Lebesgue measure on R.

Note that one also uses the notation Hc(A) for the set of f ∈ H such that mf is
continuous, i.e. mf ({x}) = 0 for any x ∈ R. One also speaks then about the continuous
subspace of H with respect to A.

The following statement provides the decomposition of any self-adjoint operator into
three distinct parts. Note that depending on the operators, some parts of the following
decomposition can be trivial. The proof of the statement is not difficult and consists in
some routine computations.

Theorem 4.3.3. Let A be a self-adjoint operator in a Hilbert space H.
a) This Hilbert space can be decomposed as follows

H = Hp(A)⊕Hac(A)⊕Hsc(A),

and the restriction of the operator A to each of these subspaces defines a self-adjoint
operator denoted respectively by Ap, Aac and Asc.

b) For any φ ∈ Cb(R), one has the decomposition

φ(A) = φ(Ap)⊕ φ(Aac)⊕ φ(Asc).

Moreover, the following equality holds

σ(A) = σ(Ap) ∪ σ(Aac) ∪ σ(Asc).

Exercise 4.3.4. Provide a full proof of the above statement.

Note that one often writes Ep(A), Eac(A) and Esc(A) for the orthogonal projection
on Hp(A), Hac(A) and Hsc(A), respectively, and with these notations one has Ap =
AEp(A), Aac = AEac(A) and Asc = AEsc(A). In addition, note that the relation between
the set of eigenvalues σp(A) introduced in Definition 2.2.4 and the set σ(Ap) is

σ(Ap) = σp(A).

Two additional sets are often introduced in relation with the spectrum of A, namely
σd(A) and σess(A).

Definition 4.3.5. An eigenvalue λ belongs to the discrete spectrum σd(A) of A if
and only if Ran

(
E({λ})

)
is of finite dimension, and λ is isolated from the rest of the

spectrum of A. The essential spectrum σess(A) of A is the complementary set of σd(A)
in σ(A), or more precisely

σess(A) = σ(A) \ σd(A).
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Since we have now all type of spectra at our disposal, let us come back to the
examples of Chapter 3. As already mentioned in Exercise 3.1.2 the spectrum of any
self-adjoint multiplication operator φ(X) in L2(Rd) is given by the closure of φ(Rd).
Now, it is easily observed that λ ∈ σp

(
φ(X)

)
if and only if there exists a Borel set

V with strictly positive Lebesgue measure such that φ(x) = λ for any x ∈ V . In this
case, the multiplicity of the eigenvalue is infinite, since an infinite family of orthogonal
eigenfunctions corresponding to the eigenvalue λ can easily be constructed. Obviously,
the previous requirement is not necessary for λ ∈ σess

(
φ(X)

)
. Let us also mention that

if the function φ is continuously differentiable and if ∇φ(x) ̸= 0 for any x ∈ Rd, then
the operator φ(X) has only absolutely continuous spectrum. Such a statement will be a
consequence of the conjugate operator method introduced in subsequent chapters. Note
also that for a convolution operator φ(D) the situation is rather similar, and this can
be deduced easily from Remark 4.3.6.

For the harmonic oscillator of Section 3.1.1, the corresponding operator has only
discrete eigenvalues and no continuous spectrum, i.e. Hc(A) = {0}. For Schrödinger
operators, one has typically a mixture of continuous spectrum and of point spectrum.
Note that the eigenvalues can be embedded in the continuous spectrum, but that the
situation of eigenvalues below the continuous spectrum often appears for such operators.
For the hydrogen atom of Section 3.2.1 this situation takes place, since the continuous
spectrum corresponds to [0,∞) while the point spectrum consists in the eigenvalues
which are all located below 0 and are converging to 0. For more general Schrödinger
operators, it is also often expected that Hsc(A) = {0}, but proving such a statement
can be a difficult task. We shall come back to this question in the following chapters.

Let us still consider any compact self-adjoint operator A in a Hilbert space H. It
is easily observed that for any ε > 0 the subspace E

(
(−∞,−ε]

)
H ∪ E

(
[ε,∞)

)
H is of

finite dimension, where E(·) corresponds to the spectral measure associated with A. In
other words, away from 0 the spectrum of A consists of eigenvalues of finite multiplicity,
and these eigenvalues can only converge to 0. On the other hand, 0 can be either an
eigenvalue with finite or infinite multiplicity, or a point of accumulation of the spectrum
without being itself a eigenvalue.

Remark 4.3.6. If A is a self-adjoint operator in a Hilbert space H and if U is a unitary
operator in H, conjugating A by U does not change its spectral properties. More pre-
cisely, in one considers AU := UAU∗ with domain D(AU) = UD(A), then this operator
is self-adjoint and the following equalities hold: σ(AU) = σ(A), σp(AU) = σp(A), ...
These facts are a consequence of the following observations: {UEλU

∗} corresponds to
the spectral family for the operator AU , and then for any Borel set V

mUf (V ) =
⟨(
UE(V )U∗)Uf, Uf⟩ = ⟨E(V )f, f⟩ = mf (V ).

We end this section with a few results which are related to the essential spectrum of
a self-adjoint operator. The first one provides another characterization of the spectrum
or of the essential spectrum of a self-adjoint operator A.
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Proposition 4.3.7 (Weyl’s criterion). Let A be a self-adjoint operator in a Hilbert
space H.

a) A real number λ belongs to σ(A) if and only if there exists a sequence {fn}n∈N ⊂
D(A) such that ∥fn∥ = 1 and s− limn→∞(A− λ)fn = 0.

b) A real number λ belongs to σess(A) if and only if there exists a sequence {fn}n∈N ⊂
D(A) such that ∥fn∥ = 1, w − limn→∞ fn = 0 and s− limn→∞(A− λ)fn = 0.

Exercise 4.3.8. Provide a proof of the above statement. For convenience, you can first
provide such a proof in the special case of a multiplication operator in the Hilbert space
L2(R).

The second result deals with the conservation of the essential spectrum under a rela-
tively compact perturbation. Before its statement, recall that the addition of a relatively
compact perturbation does not change the self-adjointness property, see Proposition
2.3.5 in conjunction with Rellich-Kato theorem.

Proposition 4.3.9. Let A be a self-adjoint operator in a Hilbert space H, and let B be
a symmetric operator in H which is A-compact. Then the following equality holds:

σess(A+B) = σess(A). (4.14)

Proof. Let us consider λ ∈ σess(A), and choose a sequence {fn}n∈N ⊂ D(A) such that
∥fn∥ = 1, w− limn→∞ fn = 0 and s− limn→∞(A− λ)fn = 0. Note that the existence of
such a sequence is provided by Proposition 4.3.7. By the same proposition, one would
get λ ∈ σess(A + B) if one shows that s − limn→∞(A + B − λ)fn = 0, which is itself
implied by s− limn→∞Bfn = 0.

For that purpose, let us fix z ∈ ρ(A) such that B(A− z)−1 ∈ K (H) and write

Bfn = [B(A− z)−1](A− z)fn

= [B(A− z)−1](A− λ)fn + (λ− z)[B(A− z)−1]fn.

Observe now that both terms converge to 0 as n → ∞. For the first term, this follows
directly from the assumptions. For the second one, recall that w − limn→∞ fn = 0 and
that a compact operator transform a weak convergence into a strong convergence, see
Proposition 1.4.12, which means that s− limn→∞[B(A− z)−1]fn = 0. As a consequence
one infers that σess(A) ⊂ σess(A+B).

The converse statement σess(A+B) ⊂ σess(A) can be obtained similarly by consid-
ering first A+B and by perturbing this operator with the relatively compact operator
−B. Note that the relative compactness of −B with respect to A + B is a direct con-
sequence of the point (iii) of Proposition 2.3.5.

In the previous statement we have obtained the stability of the essential spectrum
under relatively compact perturbation. However, this stability does not imply anything
about the conservation of the nature of the spectrum. In that respect the following
statement shows that the nature of the spectrum can drastically change even under a
small perturbation.
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Proposition 4.3.10 (Weyl-von Neumann). Let A be an arbitrary self-adjoint operator
in a Hilbert space. Then, for any ε > 0 there exists a self-adjoint Hilbert-Schmidt
operator B with its Hilbert-Schmidt norm ∥B∥HS satisfying ∥B∥HS < ε such that A+B
has only pure point spectrum.

Exercise 4.3.11. Study the proof of this proposition, as presented for example in [Kat,
Sec. X.2].

4.4 The resolvent near the spectrum

In this section we study the resolvent (A − z)−1 of any self-adjoint operator A when
z approaches a value in σ(A). Such investigations lead quite naturally to the spectral
theorem, but also allow us to deduce useful information on the spectrum of the operator
A. The spectral family {Eλ} associated with the operator A can also be deduced from
such investigations.

As a motivation, consider the following function defined for any λ ∈ R and any
ε > 0:

R ∋ x 7→ 1

x− λ− iε
− 1

x− λ+ iε
=

2iε

(x− λ)2 + ε2
∈ C.

It is known that this function converges as ε → 0 and in the sense of distributions to
2πiδ0(x − λ). Thus, if we replace x by the self-adjoint operator A one formally infers
that

1

2πi

∫ b

a

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ→

∫ b

a

δ0(A− λ)dλ = χ(a,b)(A)

= E
(
(a, b)

)
.

The next statement shows that this argument is almost correct, once the behavior
of the operator A at the endpoints a and b is taken into account.

Proposition 4.4.1 (Stone’s formula). Let A be a self-adjoint operator with associated
spectral family {Eλ}. Then for any −∞ < a < b <∞ the following formulas hold:

1

2πi
s− lim

ε↘0

∫ b

a

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ

= E
(
(a, b)

)
+

1

2
E({a}) + 1

2
E({b}) (4.15)

and

E
(
(a, b]

)
=

1

2πi
s− lim

δ↘0
s− lim

ε↘0

∫ b+δ

a+δ

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ . (4.16)

Note that in the last formula the order of the two limits is important.
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Proof. i) For any ε > 0 and λ ∈ R let us set

Ψε(λ) =
1

2πi

∫ b

a

( 1

x− λ− iε
− 1

x− λ+ iε

)
dx

=
1

2πi

∫ b

a

2iε

(x− λ)2 + ε2
dx

=
1

π

[
arctan

(b− λ

ε

)
− arctan

(a− λ

ε

)]
.

Clearly, Ψε is continuous in λ and satisfies |Ψε(λ)| ≤ 1 for any λ ∈ R. In addition, since
limε↘0 arctan

(
x−λ
ε

)
= π

2
if λ < x and limε↘0 arctan

(
x−λ
ε

)
= −π

2
if λ > x one infers that

Ψ0(λ) := lim
ε↘0

Ψε(λ) =
1

2

(
χ(a,b)(λ) + χ[a,b](λ)

)
. (4.17)

ii) For any ε > 0 the operator Ψε(A) :=
∫
R Ψε(λ)E(dλ) is well-defined and belongs

to B(H). Our aim is to show that this operator is strongly continuous in ε and strongly
convergent for ε ↘ 0 to a limit corresponding to what is suggested by (4.17). For any

f ∈ H one can write f = E({a})f + E({b})f + f0 with f0 ∈
(
E({a})H + E({b})H

)⊥
.

One then has

Ψε(A)E({a})f = Ψε(a)E({a})f =
1

π
arctan

(b− a

ε

)
E({a})f,

which converges strongly to 1
2
E({a})f as ε↘ 0. Similarly,

s− lim
ε↘0

Ψε(A)E({b})f =
1

2
E({b})f.

On the other hand, since E
(
(a, b)

)
f0 = E

(
[a, b]

)
f0 =

∫ b

a
E(dλ)f0 one has

E
(
(a, b)

)
f0 −Ψε(A)f0

=

∫ b

a

(
1−Ψε(λ)

)
E(dλ)f0 −

∫ a

−∞
Ψε(λ)E(dλ)f0 −

∫ ∞

b

Ψε(λ)E(dλ)f0.

By the dominated convergence theorem, one finds that each term on the right-hand
side converges strongly to zero. Thus we have obtained that

Ψ0(A) := s− lim
ε↘0

Ψε(A) = E
(
(a, b)

)
+

1

2
E({a}) + 1

2
E({b}).

iii) To obtain the validity of (4.15) it is now sufficient to verify that for ε > 0 one
has

Ψε(A) =
1

2πi

∫ b

a

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ.
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By the polarization identity, such an equality holds if one knows that for any f ∈ H

⟨f,Ψε(A)f⟩ =
1

2πi

∫ b

a

⟨f,
[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
f⟩dλ.

To prove this equality, one uses the first resolvent equation for the equality

(A− λ− iε)−1 − (A− λ+ iε)−1 = 2iε(A− λ− iε)−1(A− λ+ iε)−1

= 2iε

∫
R

1

(µ− λ)2 + ε2
E(dµ).

It then follows that

1

2πi

∫ b

a

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ =

ε

π

∫ b

a

dλ

∫
R

1

(µ− λ)2 + ε2
E(dµ)

and as a consequence

1

2πi

∫ b

a

⟨f,
[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
f⟩dλ =

ε

π

∫ b

a

dλ

∫
R

mf (dµ)

(µ− λ)2 + ε2
.

By an application of Fubini’s theorem one deduces that

1

2πi

∫ b

a

⟨f,
[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
f⟩dλ

=

∫
R
mf (dµ)

ε

π

∫ b

a

dλ
1

(µ− λ)2 + ε2

= ⟨f,Ψε(A)f⟩,

as expected.
iv) Let us finally deduce (4.16) from (4.15). As a consequence of the latter formula

one has

1

2πi
s− lim

δ↘0

∫ b+δ

a+δ

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ

= E
(
(a+ δ, b+ δ)

)
+

1

2
E({a+ δ}) + 1

2
E({b+ δ})

= Eb+δ − Ea+δ +
1

2
E({a+ δ})− 1

2
E({b+ δ}). (4.18)

Observe also that if µ ∈ R and δ > 0, then by the right continuity of the spectral family
one has

∥E({µ+ δ})f∥2 ≤
∥∥E((µ, µ+ δ]

)
f
∥∥2

= ∥(Eµ+δ − Eµ)f∥2 → 0 as δ → 0,

or in other words s − limδ↘0E({µ + δ}) = 0. Thus, by taking the right continuity
of {Eλ} again into account, one infers that the strong limit as δ ↘ 0 of (4.18) is
Eb − Ea ≡ E

(
(a, b]

)
, which proves (4.16).
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Let us now comment on the relation between the previous proposition and the
proof of the spectral theorem, as stated in Theorem 4.2.6. First of all, observe that the
uniqueness of the spectral family {Eλ} is a consequence of Stone’s formula. Indeed, if
{Eλ} and {E ′

λ} are two spectral families satisfying A =
∫
R λE(dλ) =

∫
R λE

′(dλ), then
it would follow from the equality (4.16) that E

(
(a, b]

)
= E ′((a, b]) (the l.h.s. of (4.16)

depends only A). Hence,

Eλ = s− lim
a→−∞

E
(
(a, λ]

)
= s− lim

a→−∞
E ′((a, λ]) = E ′

λ.

For the existence of the spectral family, the proof is much longer, and can be found
in several textbooks. However, let us just sketch it. The starting point for such a proof
is (almost) always the r.h.s. of (4.16), and one has to prove the existence of its r.h.s.
at least in the weak sense, and to show that the corresponding operators have the
properties of a spectral measure. For the existence of the limit, one has to consider

1

2πi
lim
δ↘0

lim
ε↘0

(∫ b+δ

a+δ

⟨f, (A− λ− iε)−1f⟩dλ−
∫ b+δ

a+δ

⟨f, (A− λ+ iε)−1f⟩dλ
)

= lim
δ↘0

lim
ε↘0

1

π

∫ b+δ

a+δ

ℑ⟨f, (A− λ− iε)−1f⟩dλ.

Thus, let us set Φ(z) := ⟨f, (A − z)−1f⟩ and observe that this C-valued function is
holomorphic in the upper half complex plane. Observe also that this function has a
non-negative imaginary part and satisfies the estimate |Φ(z)| ≤ c/ℑ(z) for some finite
constant c (which means that Φ(z) is a Nevanlinna function). Then one can use a
theorem on analytic functions saying that in such a case there exists a finite Stieltjes
measure m on R satisfying Φ(z) =

∫
R(λ−z)

−1m(dλ). In addition, this measure satisfies

m
(
(a, b]

)
= lim

δ↘0
lim
ε↘0

1

π

∫ b+δ

a+δ

ℑΦ(λ+ iε)dλ.

As a consequence, the application of this theorem provides us for any f ∈ H the measure
m ≡ mf . The rest of the proof consists in routine computations.

Let us add another comment in relation with the previous proposition. As already
mentioned in Exercise 4.2.9, and more precisely in (4.10), for any λ ∈ σ(A) one has

∥(A− λ∓ iε)−1∥ =
1

|ε|
.

However, for some particular f ∈ H the expressions (A−λ∓iε)−1f could be convergent
as ε↘ 0. In particular, this is the case if the associated measure mf is supported away
from the value λ, or equivalently if there exists κ > 0 such that E([λ− κ, λ+ κ])f = 0.
Indeed, in this situation one has

∥(A− λ∓ iε)−1f∥2 =
∫ λ−κ

−∞
|µ− λ∓ iε|−2mf (dµ) +

∫ ∞

λ+κ

|µ− λ∓ iε|−2mf (dµ)

≤ 1

κ2

∫
R
mf (dµ) =

1

κ2
∥f∥2.
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Since this estimate holds for any ε > 0, and even for ε = 0, one easily obtains from the
dominated convergence theorem that limε↘0 ∥(A− λ∓ iε)−1f − (A− λ)−1f∥ = 0.

Let us also observe that if λ ̸∈ σp(A), then the previous argument holds for a dense
set of elements of H. Indeed, in such a case one has s − limκ↘0E([λ − κ, λ + κ]) = 0.
However, if E({λ}) ̸= 0 then the above set of vectors can not be dense since it is
orthogonal to E({λ})H.

Let us still assume that λ ̸∈ σp(A). In the previous paragraphs, it was shown that
the set of vectors such that the limit s − limε↘0(A − λ ∓ iε)−1f exists is dense in
H, but the choice of this dense set was depending on λ. A more interesting situation
would be when this set can be chosen independently of λ, or at least for any λ in some
interval (a, b). In the next statement, we show that if this situation takes place, then the
spectrum of A in (a, b) is absolutely continuous. In order to get a better understanding
of the subsequent result, let us recall that if ϕ : R → C is a smooth function, then

lim
ε↘0

∫
R

ϕ(µ)

µ− λ− iε
dµ = iπϕ(λ) + Pv

∫
R

ϕ(µ)

µ− λ
dµ, (4.19)

where Pv denotes the principal value integral. In particular, let us now choose f ∈
Hac(A), which implies that there exists a non-negative measurable function θf : R → R+

such that mf (V ) =
∫
V
θf (µ)dµ. If we assume in addition some regularity on θf , as for

example θf ∈ C1, then one infers from (4.19) that

⟨f, (A− λ− iε)−1f⟩ =
∫
R

θf (µ)

µ− λ− iε
dµ→ iπθf (λ) + Pv

∫
R

θf (µ)

µ− λ
dµ as ε↘ 0.

The next statement clarifies the link between the existence of a limit for (A−λ−iε)−1

as ε↘ 0 and the existence of absolutely continuous spectrum for A.

Proposition 4.4.2. Let A be a self-adjoint operator and let J := (α, β) ⊂ R.

(i) Let f ∈ H such that for each λ ∈ J the expression ℑ⟨f, (A− λ− iε)−1f⟩ admits
a limit as ε ↘ 0 and that this convergence holds uniformly in λ on any compact
subset of J . Then E(J)f ∈ Hac(A),

(ii) Assume that there exists a dense set D ⊂ H such that the assumptions of (i) hold
for any f ∈ D, then E(J)H ⊂ Hac(A). In particular, it follows that

σp(A) ∩ J = ∅ = σsc(A) ∩ J.

Proof. i) First of all, for z in the upper half complex plane let us set

ϕ(z) := ℑ⟨f, (A− z)−1f⟩.

By assumption ϕ(λ) := limε↘0 ϕ(λ + iε) exists for any λ ∈ J and defines a bounded
and uniformly continuous function on any compact subset of J .
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Let us also consider λ ∈ [a, b] ⊂ J and deduce from Stone’s formula that⟨
f, E

(
(a, λ]

)
f
⟩
=

1

π
lim
δ↘0

lim
ε↘0

∫ λ+δ

a+δ

ℑ
⟨
f, (A− µ− iε)−1f

⟩
dµ

where we can choose δ small enough such that [a+δ, λ+δ] ⊂ J . Then, by the observation
made in the previous paragraph and by an application of the dominated convergence
theorem one infers that⟨

f, E
(
(a, λ]

)
f
⟩
=

1

π
lim
δ↘0

∫ λ+δ

a+δ

ϕ(µ)dµ =
1

π

∫ λ

a

ϕ(µ)dµ.

Since ϕ is continuous on [a, b] if follows that ϕ ∈ L1([a, b]). Finally, since E
(
(a, λ]

)
f =

E
(
(a, λ]

)
E(J)f one infers that the map λ 7→

⟨
f, E

(
(a, λ]

)
f
⟩
defines an absolutely

continuous measure on (a, b].
ii) One has E(J)f ∈ Hac(A) for each f ∈ D. Since D is assumed to be dense in H, it

easily follows that {E(J)f | f ∈ D} is dense in E(J)H, and hence E(J)H ⊂ Hac(A).

The following result will be at the root of the commutator methods introduced later
on.

Theorem 4.4.3 (Putnam’s theorem). Let H and A be bounded self-adjoint operators
satisfying [iH,A] ≥ CC∗ for some C ∈ B(H). Then for all λ ∈ R, any ε > 0 and each
f ∈ H one has

ℑ⟨Cf, (H − λ− iε)−1Cf⟩ ≤ 4∥A∥∥f∥2, (4.20)

and Ran(C) ⊂ Hac(H). In particular, if Ker(C∗) = {0}, then the spectrum of H is
purely absolutely continuous.

Proof. In this proof, we use the notation R(z) for (H − z)−1 when z ∈ ρ(H).
i) For any f ∈ H one has

ℑ⟨Cf,R(λ+ iε)Cf⟩ = 1

2i

⟨
Cf, [R(λ+ iε)−R(λ− iε)]Cf

⟩
= ε

⟨
Cf,R(λ+ iε)R(λ− iε)Cf

⟩
= ε∥R(λ− iε)Cf∥2

≤ ε∥R(λ− iε)C∥∥f∥2. (4.21)

Since for any bounded operator T one has ∥T∥2 = ∥TT ∗∥ one infers that

∥R(λ− iε)C∥2 = ∥R(λ− iε)CC∗R(λ+ iε)∥
= sup

f∈H,∥f∥=1

⟨
R(λ+ iε)f, CC∗R(λ+ iε)f

⟩
≤ sup

f∈H,∥f∥=1

⟨
R(λ+ iε)f, [iH,A]R(λ+ iε)f

⟩
=

∥∥R(λ− iε)[iH,A]R(λ+ iε)
∥∥

=
∥∥R(λ− iε)[i(H − λ+ iε), A]R(λ+ iε)

∥∥
≤ ∥AR(λ+ iε)∥+ ∥R(λ− iε)A∥+ ∥2iεR(λ− iε)AR(λ+ iε)∥.
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Finally, since ∥R(λ± iε)∥ ≤ ε−1 one gets ∥R(λ− iε)C∥2 ≤ 4ε−1∥A∥. By inserting this
estimate into (4.21) one directly deduces the inequality (4.20).

ii) Let {Eλ} be the spectral family of H. For any J = (a, b] one has by Stone’s
formula ⟨

Cf,E
(
(a, b]

)
Cf

⟩
=

1

π
lim
δ↘0

lim
ε↘0

∫ b+δ

a+δ

ℑ
⟨
Cf, (H − λ− iε)−1Cf

⟩
dλ.

Now since one has∫ b+δ

a+δ

ℑ
⟨
Cf, (H − λ− iε)−1Cf

⟩
dλ ≤ 4∥A∥∥f∥2 (b− a)

one infers that
⟨Cf,E(J)Cf⟩ ≡ mCf (J) ≤ 4∥A∥∥f∥2 |J |,

where |J | means the Lebesgue measure of J . Such an inequality implies that mCf (V ) ≤
4∥A∥ ∥f∥2 |V | for any Borel set V of R, and consequently that the measure mCf

is absolutely continuous with respect to the Lebesgue measure. It thus follows that
Cf ∈ Hac(H). Finally, if Ker(C∗) = {0}, then Ran(C) is dense in H, as proved in (ii)
of Lemma 2.1.10. As a consequence, one obtains that Hac(H) = H.



62 CHAPTER 4. SPECTRAL THEORY FOR SELF-ADJOINT OPERATORS


