
Chapter 3

Examples

In this chapter we present some examples of operators which often appear in the liter-
ature. Most of them are self-adjoint and were first introduced in relation with quantum
mechanics. Indeed, any physical system is described with such an operator. Self-adjoint
operators are the natural generalization of Hermitian matrices. Obviously, the following
list of examples is only very partial, and many other operators should be considered as
well.

3.1 Multiplication and convolution operators

In this section, we introduce two natural classes of operators on Rd. This material is
standard and can be found for example in the books [Amr] and [Tes]. We start by
considering multiplication operators on the Hilbert space L2(Rd).

For any measurable complex function φ on Rd let us define the multiplication op-
erator φ(X) on H(Rd) := L2(Rd) by

[φ(X)f ](x) = φ(x)f(x) ∀x ∈ Rd

for any

f ∈ D
(
φ(X)

)
:=

{
g ∈ H(Rd) |

∫
Rd

|φ(x)|2|g(x)|2dx <∞
}
.

Clearly, the properties of this operator depend on the function φ. More precisely:

Lemma 3.1.1. Let φ(X) be the multiplication operator on H(Rd). Then φ(X) belongs
to B

(
H(Rd)

)
if and only if φ ∈ L∞(Rd), and in this case ∥φ(X)∥ = ∥φ∥∞.

Proof. One has

∥φ(X)f∥2 =
∫
Rd

|φ(x)|2|f(x)|2dx ≤ ∥φ∥2∞
∫
Rd

|f(x)|2dx = ∥φ∥2∞∥f∥2.

Thus, if φ ∈ L∞(Rd), then D
(
φ(X)

)
= H(Rd) and ∥φ(X)∥ ≤ ∥φ∥∞.
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Now, assume that φ ̸∈ L∞(Rd). It means that for any n ∈ N there exists a measur-
able set Wn ⊂ Rd with 0 < |Wn| < ∞ such that |φ(x)| > n for any x ∈ Wn. We then
set fn = χWn and observe that fn ∈ H(Rd) with ∥fn∥2 = |Wn| and that

∥φ(X)fn∥2 =
∫
Rd

|φ(x)|2|fn(x)|2dx =

∫
Wn

|φ(x)|2dx > n2∥fn∥2,

from which one infers that ∥φ(X)fn∥/∥fn∥ > n. Since n is arbitrary, the operator φ(X)
can not be bounded.

Let us finally show that if φ ∈ L∞(Rd), then ∥φ(X)∥ ≥ ∥φ∥∞. Indeed, for any ε > 0,
there exists a measurable set Wε ⊂ Rd with 0 < |Wε| <∞ such that |φ(x)| > ∥φ∥∞− ε
for any x ∈ Wε. Again by setting fε = χWε one gets that ∥φ(X)fε∥/∥fε∥ > ∥φ∥∞ − ε,
from which one deduces the required inequality.

If φ ∈ L∞(Rd), one easily observes that φ(X)∗ = φ(X), and thus φ(X) is self-
adjoint if and only if φ is a real function. The operator φ(X) is a projection if and only
if φ(x) ∈ {0, 1} for almost every x ∈ Rd. Similarly, the operator φ(X) is unitary if and
only if |φ(x)| = 1 for almost every x ∈ Rd. Observe also that φ(X) is a partial isometry
if and only if |φ(x)| ∈ {0, 1} for almost every x ∈ Rd. However, since φ(X) and φ(X)
commute, it is impossible to obtain φ(X)∗φ(X) = 1 without getting automatically that
φ(X) is a unitary operator. In other words, there does not exist any isometry φ(X)
which is not unitary.

If φ is real but does not belong to L∞(Rd), one can show that
(
φ(X),D

(
φ(X)

))
defines a self-adjoint operator in H(Rd), see also [Ped, Example 5.1.15]. In particular,
if φ ∈ C(Rd) or if |φ| is polynomially bounded, then the mentioned operator is self-
adjoint, see [Amr, Prop. 2.29]. For example, for any j ∈ {1, . . . , d} the operator Xj

defined by [Xjf ](x) = xjf(x) is a self-adjoint operator with domain D(Xj). Note that
the d-tuple (X1, . . . , Xd) is often referred to as the position operator in H(Rd). More
generally, for any α ∈ Nd one also sets

Xα = Xα1
1 . . . Xαd

d

and this expression defines a self-adjoint operator on its natural domain. Other useful
multiplication operators are defined for any s > 0 by the functions

Rd ∋ x 7→ ⟨x⟩s :=
(
1 +

d∑
j=1

x2j

)s/2

∈ R.

The corresponding operators
(
⟨X⟩s,Hs(Rd)

)
, with

Hs(Rd) :=
{
f ∈ H(Rd) | ⟨X⟩sf ∈ H(Rd)

}
=

{
f ∈ H(Rd) |

∫
Rd

⟨x⟩2s|f(x)|2dx <∞
}
,

are again self-adjoint operators on H(Rd). Note that one usually calls Hs(Rd) the
weighted Hilbert space with weight s since it is naturally a Hilbert space with the scalar
product ⟨f, g⟩s :=

∫
Rd f(x)g(x)⟨x⟩2sdx.
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Exercise 3.1.2. For any real φ ∈ C(Rd) or φ ∈ L∞(Rd), show that the spectrum of
the self-adjoint multiplication operator φ(X) coincides with the closure of φ(Rd) in R.

We shall now introduce a new type of operators on H(Rd), but for that purpose
we need to recall a few results about the usual Fourier transform on Rd. The Fourier
transform F is defined on any f ∈ Cc(Rd) by the formula1

[Ff ](ξ) ≡ f̂(ξ) :=
1

(2π)d/2

∫
Rd

e−iξ·xf(x)dx. (3.1)

This linear transform maps the Schwartz space S(Rd) onto itself, and its inverse is
provided by the formula [F−1f ](x) ≡ f̌(x) := 1

(2π)d/2

∫
Rd e

iξ·xf(ξ) dξ. In addition, by

taking Parseval’s identity
∫
Rd |f(x)|2dx =

∫
Rd |f̂(ξ)|2dξ into account, one obtains that

the Fourier transform extends continuously to a unitary map on H(Rd). We shall keep
the same notation F for this continuous extension, but one must be aware that (3.1) is
valid only on a restricted set of functions.

Let us use again the multi-index notation and set for any α ∈ Nd

(−i∂)α = (−i∂1)α1 . . . (−i∂d)αd = (−i)|α|∂α1
1 . . . ∂αd

d

with |α| = α1 + · · · + αd. With this notation at hand, the following relations hold for
any f ∈ S(Rd) and any α ∈ Nd:

F(−i∂)αf = XαFf,

or equivalently (−i∂)αf = F∗XαFf . Keeping these relations in mind, one defines for
any j ∈ {1, . . . , d} the self-adjoint operator Dj := F∗XjF with domain F∗D(Xj).
Similarly, for any s > 0, one also defines the operator ⟨D⟩s := F∗⟨X⟩sF with domain

Hs(Rd) :=
{
f ∈ H(Rd) | ⟨X⟩sFf ∈ H(Rd)

}
≡

{
f ∈ H(Rd) | ⟨X⟩sf̂ ∈ H(Rd)

}
. (3.2)

Note that the space Hs(Rd) is called the Sobolev space of order s, and (D1, . . . , Dd) is
usually called the momentum operator 2.

We can now introduce the usual Laplace operator −∆ acting on any f ∈ S(Rd) as

−∆f = −
d∑

j=1

∂2j f =
d∑

j=1

(−i∂j)2f =
d∑

j=1

D2
jf. (3.3)

This operator admits a self-adjoint extension with domain H2(Rd), i.e.
(
−∆,H2(Rd)

)
is a self-adjoint operator in H(Rd). However, let us stress that the expression (3.3) is not
valid (pointwise) on all the elements of the domain H2(Rd). On the other hand, one has

1Even if the group Rd is identified with its dual group, we will keep the notation ξ for points of its
dual group.

2In physics textbooks, the position operator is often denoted by (Q1, . . . , Qd) while (P1, . . . , Pd) is
used for the momentum operator.
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−∆ = F∗X2F , with X2 =
∑d

j=1X
2
j , from which one easily infers that σ(−∆) = [0,∞).

Indeed, this follows from the content of Exercise 3.1.2 together with the invariance of
the spectrum through the conjugation by a unitary operator.

Before going on with other operators of the form φ(D), let us provide some addi-
tional information on the space H2(Rd) for d ∈ {1, 2, 3}.
Lemma 3.1.3. Let d ≤ 3 and assume that f ∈ H2(Rd). Then f ∈ C0(Rd), and for any
α > 0 there exists β > 0 such that

∥f∥∞ ≤ α∥∆f∥+ β∥f∥, f ∈ H2(Rd).

In the following proof we shall denote by ∥g∥1 the L1-norm of g ∈ L1(Rd), i.e.

∥g∥1 =
∫
Rd

|g(x)|dx. (3.4)

Proof. For any γ > 0 let us set gγ : R3 → R defined by gγ(ξ) := (ξ2 + γ2)−1. The key
observation is that gγ belongs to L2(Rd) if d ≤ 3. Then, for f ∈ H2(Rd) one has

(X2 + γ2)f̂ =
[
(X2 + γ2)⟨X⟩−2

]
⟨X⟩2f̂ ∈ L2(Rd)

by (3.2), and one infers by the Cauchy-Schwarz inequality that

∥f̂∥1 =
∫
Rd

∣∣(ξ2 + γ2)−1(ξ2 + γ2)f̂(ξ)
∣∣dξ ≤ ∥gγ∥∥(X2 + γ2)f̂∥ <∞

which implies that f̂ belongs to L1(Rd). By the Riemann-Lebesgue lemma (as presented
for example in [Tes, Lem. 7.6]) one deduces that f ∈ C0(Rd), and more precisely that

∥f∥∞ ≤ (2π)−d/2∥gγ∥∥(X2 + γ2)f̂∥
≤ (2π)−d/2γ−2+d/2∥g1∥

(
∥∆f∥+ γ2∥f∥

)
= (2π)−d/2∥g1∥

(
γ−2+d/2∥∆f∥+ γd/2∥f∥

)
.

For any measurable function φ on Rd let us now set φ(D) := F∗φ(X)F , with
domain D

(
φ(D)

)
=

{
f ∈ H(Rd) | f̂ ∈ D

(
φ(X)

)}
, and as before this operator is self-

adjoint in H(Rd), as for example for a continuous function φ or for a polynomially
bounded function φ. Then, if one defines the convolution of two (suitable) functions on
Rd by the formula

[k ∗ f ](x) = 1

(2π)d/2

∫
Rd

k(y)f(x− y)dy

and if one takes the equality ǧ ∗ f = F∗(gf̂) into account, one infers that the operator
φ(D) corresponds to a convolution operator, namely

φ(D)f = φ̌ ∗ f. (3.5)

Obviously, the meaning of such an equality depends on the class of functions f and g
considered.
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Exercise 3.1.4. Show that the following relations hold on the Schwartz space S(Rd):
[iXj, Xk] = 0 = [Dj, Dk] for any j, k ∈ {1, . . . , d} while [iDj, Xk] = 1δjk.

3.1.1 The harmonic oscillator

An example of an operator which can be expressed easily in terms of the families of
operators {Xj} and {Dj} is the harmonic oscillator, namely the operator

H = −∆+ ω2X2 =
d∑

j=1

D2
j + ω2

d∑
j=1

X2
j =

d∑
j=1

(
D2

j + ω2X2
j

)
,

where ω is a strictly positive constant. This operator can be defined on several domain,
as for example on C∞

c (Rd) or on the Schwartz space S(Rd). An other domain which is
quite convenient is the following:

D(H) := Vect
(
Rd ∋ x 7→ xα e−x2/2 ∈ R | α ∈ Nd

)
⊂ L2(Rd).

It is easily observed that the operator H is symmetric on D(H), and it can be
shown that this operator is in fact essentially self-adjoint on the domain D(H), see
Definition 2.1.14 for the notion of essential self-adjointness. In addition, H can be
completely studied by some algebraic methods, by considering the so-called creation
and annihilation operators. Let us simply mention that

σ(H) = {(2n+ d)ω | n ∈ N}

and that the corresponding eigenfunctions can be expressed in terms of the Hermite
polynomials.

Extension 3.1.5. Work on the details of the algebraic methods for the harmonic os-
cillator. In particular, describe the eigenvalues, the corresponding eigenfunctions and
determine the multiplicity of each eigenvalue.

3.2 Schrödinger operators

In this section, we introduce some well-studied operators
First of all, let h : Rd → R be a continuous real function which diverges at infinity.

Equivalently, we assume that h satisfies (h − z)−1 ∈ C0(Rd) for some z ∈ C \ R.
The corresponding convolution operator h(D), defined by F∗h(X)F , is a self-adjoint
operator with domain F∗D

(
h(X)

)
. Clearly, the spectrum of such an operator is equal

to the closure of h(Rd) in R.
Some examples of such a function h which are often considered in the literature

are the functions defined by h(ξ) = ξ2, h(ξ) = |ξ| or h(ξ) =
√
1 + ξ2 − 1. In these

cases, the operator h(D) = −∆ corresponds to the free Laplace operator, the operator
h(D) = |D| is the relativistic Schrödinger operator without mass, while the operator
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h(D) =
√
1−∆− 1 corresponds to the relativistic Schrödinger operator with mass. In

these three cases, one has σ
(
h(D)

)
= [0,∞) while σp

(
h(D)

)
= ∅.

Let us now perturb this operator h(D) with a multiplication operator V (X). If
the measurable function V : Rd → R is not essentially bounded, then the operator
h(D) + V (X) can only be defined on the intersection of the two domains, and checking
that there exists a self-adjoint extension of this operator is not always an easy task. On
the other hand, if one assumes that V ∈ L∞(Rd), then we can define the operator

H := h(D) + V (X) with D(H) = D
(
h(D)

)
(3.1)

and this operator is self-adjoint. A lot of investigations have been performed on such
an operator H when V vanishes at infinity, in a suitable sense. On the other hand,
much less is known on this operator when the multiplication operator V (X), also called
the potential, has an anisotropic behavior. Let us just mention that a C∗-algebraic
framework has been developed for dealing with this anisotropic behavior and that it
involves crossed product C∗-algebras.

3.2.1 The hydrogen atom

Let us briefly introduce the operator used for describing a simple model of an atom
with a single electron in R3. It is assumed that the nucleus of the atom is fixed at the
origin, and the electron moves in the external potential generated by the nucleus. If the
electrostatic force is taken into account, the resulting operator has the form

H = −∆− γ

|X|
(3.2)

where −∆ is the Laplace operator introduced in (3.3), γ > 0 is called the coupling
constant, and 1

|X| is the operator of multiplication by the function R3 ∋ x 7→ 1
|x| ∈ R.

A priori, the operator exhibited in (3.2) is well-defined only on D(−∆) ∩ D(|X|−1).
However, it follows from Lemma 3.1.3 that D(−∆) ⊂ D(|X|−1). Indeed, since any
f ∈ D(−∆) also belongs to C0(R3) one has (B1(0) denotes the open ball centered at 0
and of radius 1)∫

R3

∣∣ 1
|x|
f(x)

∣∣2dx =

∫
B1(0)

∣∣ 1
|x|
f(x)

∣∣2dx+ ∫
R3\B1(0)

∣∣ 1
|x|
f(x)

∣∣2dx
≤ ∥f∥2∞

∫
B1(0)

1

|x|2
dx+

∫
R3\B1(0)

|f(x)|2dx

<∞.

As a consequence, D(−∆) ∩ D(|X|−1) = D(−∆).
In order to check that the operator H is self-adjoint on D(−∆) = H2(R3), let us

decompose the function x 7→ −γ 1
|x| into V1 + V2 with V1(x) = −γ 1

|x| if |x| < 1 and 0

otherwise, and V2(x) = −γ 1
|x| if |x| ≥ 1 and 0 otherwise. Clearly, V2 defines a bounded



3.3. THE WEYL CALCULUS 37

self-adjoint operator, and adding it to −∆ will not cause any problem. For V1, one can
observe that for any c > 0 the function

R3 × R3 ∋ (x, ξ) 7→ V1(x)(ξ
2 + c)−1 ∈ R

belongs to L2(R3 × R3). Since an operator with L2-kernel corresponds to a Hilbert-
Schmidt operator, the operator V1(X)(−∆ + c)−1 is Hilbert-Schmidt (see Extension
1.4.14) and thus is compact. As a consequence of Proposition 2.3.5 one deduces that
V1(X) is a multiplication operator which is −∆-bounded with relative bound equal to
0. By the Rellich-Kato theorem (see Theorem 2.3.3) one infers that −∆ + V1(X) is
self-adjoint on H2(R3), and then that −∆+V1(X)+V2(X) = −∆− γ 1

|X| is self-adjoint

on H2(R3).

Let us add a few information about the operator (3.2) and refer to [Tes, Chap. 10] for
more information. One has [0,∞) ⊂ σ(H). In fact, [0,∞) corresponds to the essential
spectrum of H, as defined in the next chapter. In addition, the operator H possesses an
infinite number of eigenvalues, which can be computed explicitly. More precisely, by a
decomposition of this operator into the spherical harmonics {Y m

l } where l ∈ N, m ∈ Z
with |m| ≤ l, and by studying the resulting operator for each index l one can get that

σp(H) =
{
−

(
γ

2(n+1)

)2 | n ∈ N
}
.

Each eigenvalue has a multiplicity (n+1)2, which means that there are (n+1)2 linearly

independent functions in H2(R3) satisfying Hf = −
(

γ
2(n+1)

)2
f . These functions can be

expressed in terms of the Laguerre polynomials.

Extension 3.2.1. Work on the details of the Hydrogen atom, and in particular study
its eigenvalues and the corresponding eigenfunctions.

3.3 The Weyl calculus

In section 3.1 we have seen how to define multiplication operators φ(X) and convolution
operators φ(D) on the Hilbert space H := L2(Rd). A natural question is how to define
a more general operator f(X,D) on L2(Rd) for a function f : Rd × Rd → C.

This can be seen as the problem of constructing a functional calculus f 7→ f(X,D)
for the family X1, . . . , Xd, D1, . . . , Dd of 2d self-adjoint, non-commuting operators. One
also would like to define a multiplication (f, g) 7→ f ◦ g satisfying (f ◦ g)(X,D) =
f(X,D)g(X,D) as well as an involution f → f ◦ leading to f ◦(X,D) = f(X,D)∗. The
deviation of ◦ from pointwise multiplication is imputable to the fact that X and D do
not commute.

The solution of these problems is called the Weyl calculus, or simply the pseudod-
ifferential calculus. In order to define it, let us set Ξ := Rd × R̂d ∼= Rd × Rd, which
corresponds to the direct product of a locally compact Abelian group G and of its dual
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group Ĝ. Elements of Ξ will be denoted by x = (x, ξ), y = (y, η) and z = (z, ζ). We also
set

σ(x, y) := σ
(
(x, ξ), (y, η)

)
= y · ξ − x · η

for the standard symplectic form on Ξ. The prescription for f(X,D) ≡ Op(f) with
f : Ξ → C is then defined for u ∈ H and x ∈ Rd by

[Op(f)u](x) :=
1

(2π)d

∫
Rd

∫
R̂d

ei(x−y)·ηf

(
x+ y

2
, η

)
u(y)dydη, (3.1)

the involution is f ◦(x) := f(x) and the multiplication (called the Moyal product) is

(f ◦ g)(x) := 4d

(2π)2d

∫
Ξ

∫
Ξ

e−2iσ(x−y,x−z)f(y)g(z)dydz. (3.2)

Obviously, these formulas must be taken with some care: for many symbols f and g
they need a suitable reinterpretation. Also, the normalization factors should always be
checked once again, since they mainly depend on the conventions of each author.

Exercise 3.3.1. Check that if f(x, ξ) = f(ξ) (f is independent of x), then Op(f) =
f(D), while if f(x, ξ) = f(x) (f is independent of ξ), then Op(f) = f(X).

Beside the encouraging results contained in the previous exercise, let us try to show
where all the above formulas come from. We consider the strongly continuous unitary
maps Rd ∋ x 7→ Ux ∈ U (H) and R̂d ∋ ξ 7→ Vξ := e−iX·ξ ∈ U (H), acting on H as

[Uxu](y) = u(y + x) and [Vξu](y) = e−iy·ξ u(y), u ∈ H, y ∈ Rd.

These operators satisfy the Weyl form of the canonical commutation relations

UxVξ = e−ix·ξ VξUx, x ∈ Rd, ξ ∈ R̂d, (3.3)

as well as the identities UxUx′ = Ux′Ux and VξVξ′ = Vξ′Vξ for x, x′ ∈ Rd and ξ, ξ′ ∈ R̂d.
These can be considered as a reformulation of the content of Exercise 3.1.4 in terms of
bounded operators.

A convenient way to condense the maps U and V in a single one is to define the
Schrödinger Weyl system {W (x, ξ) | x ∈ Rd, ξ ∈ R̂d} by

W (x) ≡ W (x, ξ) := e
i
2
x·ξ UxVξ = e−

i
2
x·ξ VξUx, (3.4)

which satisfies the relationW (x)W (y) = e
i
2
σ(x,y) W (x+y) for any x, y ∈ Ξ. This equality

encodes all the commutation relations between the basic operators X and D. Explicitly,
the action of W on u ∈ H is given by

[W (x, ξ)u](y) = e−i( 1
2
x+y)·ξ u(y + x), x, y ∈ Rd, ξ ∈ R̂d. (3.5)

Now, recall that for a family of m commuting self-adjoint operators S1, . . . , Sm one
usually defines a functional calculus by the formula f(S) := 1

(2π)m/2

∫
Rm f̌(t)e

−it·Sdt,
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where t · S = t1S1 + . . . + tmSm and f̌ is the inverse Fourier transform of f , see
the next chapter for a simplified version of this formula. The prescription (3.1) can
be obtained by a similar computation. For that purpose, let us define the symplectic
Fourier transformation FΞ : S ′(Ξ) → S ′(Ξ) by

(FΞf)(x) :=
1

(2π)d

∫
Ξ

eiσ(x,y)f(y)dy.

Now, for any function f : Ξ → C belonging to the Schwartz space S(Ξ), we set

Op(f) :=
1

(2π)d

∫
Ξ

(F−1
Ξ f)(x)W (x)dx. (3.6)

By using (3.5), one gets formula (3.1). Then it is easy to verify that the relation
Op(f)Op(g) = Op(f ◦g) holds for f, g ∈ S(Ξ) if one uses the Moyal product introduced
in (3.2).

Exercise 3.3.2. Check that the above statements are correct, and in particular that the
normalization factors are suitably chosen.

3.4 Schrödinger operators with 1
x2
-potential

In this section we consider various realizations of an operator on H := L2(R+), and
study some properties of the resulting operators. Our aim is to emphasize the role played
by the realization, or in other words by the choice of the domain for this operator. As
mentioned at the end of the section, depending on the realization, this operator can
have zero eigenvalue, a finite number of eigenvalues, or even an infinite number of
eigenvalues. On the other hand, the rest of the spectrum is stable and corresponds to
the half-line [0,∞).

For any α ∈ C we consider the differential expression

Lα := −∂2x +
(
α− 1

4

)
x−2

acting on distributions on R+, and denote by Lmin
α and Lmax

α the corresponding minimal
and maximal operators associated with it in H, see [BDG, Sec. 4 & App. A] for details.
We simply recall from this reference that

D(Lmax
α ) = {f ∈ H | Lαf ∈ H}

and that D(Lmin
α ) is the closure of the restriction of Lα to C∞

c (R+). In fact, it can be
shown that the following relation holds:(

Lmin
α

)∗
= Lmax

ᾱ .

Let us recall some additional results which have been obtained in [BDG, Sec. 4].
For that purpose, we say that f ∈ D(Lmin

α ) around 0, (or, by an abuse of notation,
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f(x) ∈ D(Lmin
α ) around 0) if there exists ζ ∈ C∞

c

(
[0,∞[

)
with ζ = 1 around 0 such that

fζ ∈ D(Lmin
α ). In addition, it turns out that it is useful to introduce a parameter m ∈ C

such that α = m2, even though there are two m corresponding to a single α ̸= 0. In
other words, we shall consider from now on the operator

Lm2 := −∂2x +
(
m2 − 1

4

)
x−2.

With this notation, if ℜ(m) ≥ 1 (we use the notation ℜ(m) for the real part of the
complex number m) then Lmin

m2 = Lmax
m2 , while if |ℜ(m)| < 1 then Lmin

m2 ( Lmax
m2 and

D(Lmin
m2 ) is a closed subspace of codimension 2 of D(Lmax

m2 ). More precisely, if |ℜ(m)| < 1
and if f ∈ D(Lmax

m2 ) then there exist a, b ∈ C such that:

f(x)− ax1/2−m − bx1/2+m ∈ D(Lmin
m2 ) around 0 if m ̸= 0,

f(x)− ax1/2 ln(x)− bx1/2 ∈ D(Lmin
0 ) around 0.

In addition, the behavior of any function g ∈ D(Lmin
m2 ) is known, namely g ∈ H1

0(R+)
(the completion of C1

c (R+) with the H1-norm) and as x→ 0:

g(x) = o
(
x3/2

)
and g′(x) = o

(
x1/2

)
if m ̸= 0,

g(x) = o
(
x3/2 ln(x)

)
and g′(x) = o

(
x1/2 ln(x)

)
if m = 0.

3.4.1 Two families of Schrödinger operators

Let us first recall from [BDG, Def. 4.1] that for any m ∈ C with ℜ(m) > −1 the
operator Hm has been defined as the restriction of Lmax

m2 to the domain

D(Hm) =
{
f ∈ D(Lmax

m2 ) | for some c ∈ C,
f(x)− cx1/2+m ∈ D(Lmin

m2 ) around 0
}
.

It is then proved in this reference that {Hm}ℜ(m)>−1 is a holomorphic family of closed
operators in H. In addition, if ℜ(m) ≥ 1, then

Hm = Lmin
m2 = Lmax

m2 .

For this reason, we shall concentrate on the case −1 < ℜ(m) < 1, considering a larger
family of operators.

For |ℜ(m)| < 1 and for any κ ∈ C ∪ {∞} we define a family of operators Hm,κ :

D(Hm,κ) =
{
f ∈ D(Lmax

m2 ) | for some c ∈ C, (3.7)

f(x)− c
(
κx1/2−m + x1/2+m

)
∈ D(Lmin

m2 ) around 0
}
, κ ̸= ∞;

D(Hm,∞) =
{
f ∈ D(Lmax

m2 ) | for some c ∈ C, (3.8)

f(x)− cx1/2−m ∈ D(Lmin
m2 ) around 0

}
.
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For m = 0, we introduce an additional family of operators Hν
0 with ν ∈ C ∪ {∞} :

D(Hν
0 ) =

{
f ∈ D(Lmax

0 ) | for some c ∈ C, (3.9)

f(x)− c
(
x1/2 ln(x) + νx1/2

)
∈ D(Lmin

0 ) around 0
}
, ν ̸= ∞;

D(H∞
0 ) =

{
f ∈ D(Lmax

0 ) | for some c ∈ C, (3.10)

f(x)− cx1/2 ∈ D(Lmin
0 ) around 0

}
.

The following properties of these families of operators are immediate:

Lemma 3.4.1. (i) For any |ℜ(m)| < 1 and any κ ∈ C ∪ {∞},

Hm,κ = H−m,κ−1 . (3.11)

(ii) The operator H0,κ does not depend on κ, and all these operators coincide with
H∞

0 .

As a consequence of (ii), all the results about the case m = 0 will be formulated in
terms of the family Hν

0 .
Let us now derive an additional result for this family of operators. For its proof, we

recall that the Wronskian W (f, g) of two continuously differentiable functions f, g on
R+ is given by the expression

Wx(f, g) ≡ W (f, g)(x) := f(x)g′(x)− f ′(x)g(x). (3.12)

Proposition 3.4.2. For any m ∈ C with |ℜ(m)| < 1 and for any κ, ν ∈ C∪ {∞}, one
has

(Hm,κ)
∗ = Hm̄,κ̄ and (Hν

0 )
∗ = H ν̄

0 (3.13)

with the convention that ∞̄ = ∞.

Proof. Recall from [BDG, App. A] that for any f ∈ D(Lmax
m2 ) and g ∈ D(Lmax

m̄2 ), the
functions f, f ′, g, g′ are continuous on R+, and that the equality

⟨Lmax
m2 f, g⟩ − ⟨f, Lmax

m̄2 g⟩ = −W0(f̄ , g)

holds with W0(f̄ , g) = lim
x→0

Wx(f̄ , g) and Wx defined in (3.12). In particular, if f ∈
D(Hm,κ) one infers that

⟨Hm,κf, g⟩ = ⟨f, Lmax
m̄2 g⟩ −W0(f̄ , g).

Thus, g ∈ D
(
(Hm,κ)

∗) if and only ifW0(f̄ , g) = 0, and then (Hm,κ)
∗g = Lmax

m̄2 g. Then, by
taking into account the explicit description of D(Hm,κ), straightforward computations
show that W0(f̄ , g) = 0 if and only if g ∈ D(Hm̄,κ̄). One then deduces that (Hm,κ)

∗ =
Hm̄,κ̄.

A similar computation leads to the equality (Hν
0 )

∗ = H ν̄
0 .
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Corollary 3.4.3. (i) The operator Hm,κ is self-adjoint for m ∈] − 1, 1[ and κ ∈
R ∪ {∞}, and for m ∈ iR and |κ| = 1.

(ii) The operator Hν
0 is self-adjoint for ν ∈ R ∪ {∞}.

Proof. For the operators Hm,κ one simply has to take formula (3.13) into account for
the first case, and the same formula together with (3.11) in the second case. Finally for
the operators Hν

0 , taking formula (3.13) into account leads directly to the result.

Let us finally state the a result about the point spectrum for the self-adjoint oper-
ators. In this statement, Γ denotes the Γ-function.

Theorem 3.4.4. (i) If m ∈] − 1, 1[\{0}, then Hm,κ is self-adjoint if and only if
κ ∈ R ∪ {∞}, and then

σp(Hm,κ) =
{
− 4

(
κ
Γ(−m)

Γ(m)

)−1/m}
for κ ∈]−∞, 0[,

σp(Hm,κ) = ∅ for κ ∈ [0,∞],

(ii) If m = imi ∈ iR \ {0}, then Himi,κ is self-adjoint if and only if |κ| = 1, and then

σp(Himi,κ) =

{
− 4 exp

(
−

arg
(
κΓ(−imi)

Γ(imi)

)
+ 2πj

mi

)
| j ∈ Z

}
(iii) Hν

0 is self-adjoint if and only if ν ∈ R ∪ {∞}, and then

σp(H
ν
0 ) =

{
− 4 e2(ν−γ)

}
for ν ∈ R,

σp(H
∞
0 ) = ∅.

The proof of this theorem, as well as much more information about these families
of operators, can be found in the preprint [DR].


