
Chapter 1

Hilbert space and bounded linear
operators

This chapter is mainly based on the first two chapters of the book [Amr]. Its content
is quite standard and this theory can be seen as a special instance of bounded linear
operators on more general Banach spaces.

1.1 Hilbert space

Definition 1.1.1. A (complex) Hilbert space H is a vector space on C with a strictly
positive scalar product (or inner product) which is complete for the associated norm1

and which admits a countable orthonormal basis. The scalar product is denoted by ⟨·, ·⟩
and the corresponding norm by ∥ · ∥.

In particular, note that for any f, g, h ∈ H and α ∈ C the following properties hold:

(i) ⟨f, g⟩ = ⟨g, f⟩,

(ii) ⟨f, g + αh⟩ = ⟨f, g⟩+ α⟨f, h⟩,

(iii) ∥f∥2 = ⟨f, f⟩ ≥ 0, and ∥f∥ = 0 if and only if f = 0.

Note that ⟨g, f⟩ means the complex conjugate of ⟨g, f⟩. Note also that the linearity
in the second argument in (ii) is a matter of convention, many authors define the
linearity in the first argument. In (iii) the norm of f is defined in terms of the scalar
product ⟨f, f⟩. We emphasize that the scalar product can also be defined in terms of
the norm of H, this is the content of the polarisation identity :

4⟨f, g⟩ = ∥f + g∥2 − ∥f − g∥2 − i∥f + ig∥2 + i∥f − ig∥2. (1.1)

1Recall that H is said to be complete if any Cauchy sequence in H has a limit in H. More precisely,
{fn}n∈N ⊂ H is a Cauchy sequence if for any ε > 0 there exists N ∈ N such that ∥fn − fm∥ < ε
for any n,m ≥ N . Then H is complete if for any such sequence there exists f∞ ∈ H such that
limn→∞ ∥fn − f∞∥ = 0.
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From now on, the symbol H will always denote a Hilbert space.

Examples 1.1.2. (i) H = Cd with ⟨α, β⟩ =
∑d

j=1 αj βj for any α, β ∈ Cd,

(ii) H = l2(Z) with ⟨a, b⟩ =
∑

j∈Z aj bj for any a, b ∈ l2(Z),

(iii) H = L2(Rd) with ⟨f, g⟩ =
∫
Rd f(x)g(x)dx for any f, g ∈ L2(Rd).

Let us recall some useful inequalities: For any f, g ∈ H one has

|⟨f, g⟩| ≤ ∥f∥∥g∥ Schwarz inequality, (1.2)

∥f + g∥ ≤ ∥f∥+ ∥g∥ triangle inequality, (1.3)

∥f + g∥2 ≤ 2∥f∥2 + 2∥g∥2, (1.4)∣∣∥f∥ − ∥g∥
∣∣ ≤ ∥f − g∥. (1.5)

The proof of these inequalities is standard and is left as a free exercise, see also [Amr,
p. 3-4]. Let us also recall that f, g ∈ H are said to be orthogonal if ⟨f, g⟩ = 0.

Definition 1.1.3. A sequence {fn}n∈N ⊂ H is strongly convergent to f∞ ∈ H if
limn→∞ ∥fn − f∞∥ = 0, or is weakly convergent to f∞ ∈ H if for any g ∈ H one has
limn→∞⟨g, fn − f∞⟩ = 0. One writes s− limn→∞ fn = f∞ if the sequence is strongly
convergent, and w− limn→∞ fn = f∞ if the sequence is weakly convergent.

Clearly, a strongly convergent sequence is also weakly convergent. The converse is
not true.

Exercise 1.1.4. In the Hilbert space L2(R), exhibit a sequence which is weakly conver-
gent but not strongly convergent.

Lemma 1.1.5. Consider a sequence {fn}n∈N ⊂ H. One has

s− lim
n→∞

fn = f∞ ⇐⇒ w− lim
n→∞

fn = f∞ and lim
n→∞

∥fn∥ = ∥f∞∥.

Proof. Assume first that s− limn→∞ fn = f∞. By the Schwarz inequality one infers that
for any g ∈ H:

|⟨g, fn − f∞⟩| ≤ ∥fn − f∞∥∥g∥ → 0 as n→ ∞,

which means that w− limn→∞ fn = f∞. In addition, by (1.5) one also gets∣∣∥fn∥ − ∥f∞∥
∣∣ ≤ ∥fn − f∞∥ → 0 as n→ ∞,

and thus limn→∞ ∥fn∥ = ∥f∞∥.
For the reverse implication, observe first that

∥fn − f∞∥2 = ∥fn∥2 + ∥f∞∥2 − ⟨fn, f∞⟩ − ⟨f∞, fn⟩. (1.6)

If w− limn→∞ fn = f∞ and limn→∞ ∥fn∥ = ∥f∞∥, then the right-hand side of (1.6)
converges to ∥f∞∥2 + ∥f∞∥2 − ∥f∞∥2 − ∥f∞∥2 = 0, so that s− limn→∞ fn = f∞.
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Let us also note that if s− limn→∞ fn = f∞ and s− limn→∞ gn = g∞ then one has

lim
n→∞

⟨fn, gn⟩ = ⟨f∞, g∞⟩

by a simple application of the Schwarz inequality.

Exercise 1.1.6. Let {en}n∈N be an orthonormal basis of an infinite dimensional Hilbert
space. Show that w− limn→∞ en = 0, but that s− limn→∞ en does not exist.

Exercise 1.1.7. Show that the limit of a strong or a weak Cauchy sequence is unique.
Show also that such a sequence is bounded, i.e. if {fn}n∈N denotes this Cauchy sequence,
then supn∈N ∥fn∥ <∞.

For the weak Cauchy sequence, the boundedness can be obtained from the follow-
ing quite general result which will be useful later on. Its proof can be found in [Kat,
Thm. III.1.29]. In the statement, Λ is simply a set.

Theorem 1.1.8 (Uniform boundedness principle). Let {φλ}λ∈Λ be a family of contin-
uous maps2 φλ : H → [0,∞) satisfying

φλ(f + g) ≤ φλ(f) + φλ(g) ∀f, g ∈ H.

If the set {φλ(f)}λ∈Λ ⊂ [0,∞) is bounded for any fixed f ∈ H, then the family {φλ}λ∈Λ
is uniformly bounded, i.e. there exists c > 0 such that supλ φλ(f) ≤ c for any f ∈ H
with ∥f∥ = 1.

In the next definition, we introduce the notion of a linear manifold and of a subspace
of a Hilbert space.

Definition 1.1.9. A linear manifold M of a Hilbert space H is a linear subset of H,
or more precisely ∀f, g ∈ M and α ∈ C one has f + αg ∈ M. If M is closed (⇔ any
Cauchy sequence in M converges strongly in M), then M is called a subspace of H.

Note that if M is closed, then M is a Hilbert space in itself, with the scalar product
and norm inherited from H. Be aware that some authors call subspace what we have
defined as a linear manifold, and call closed subspace what we simply call a subspace.

Examples 1.1.10. (i) If f1, . . . , fn ∈ H, then Vect(f1, . . . , fn) is the closed vector
space generated by the linear combinations of f1, . . . fn. Vect(f1, . . . , fn) is a sub-
space.

(ii) If M is a subset of H, then

M⊥ := {f ∈ H | ⟨f, g⟩ = 0,∀g ∈ M} (1.7)

is a subspace of H.

2φλ is continuous if φλ(fn) → φλ(f∞) whenever s− limn→∞ fn = f∞.
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Exercise 1.1.11. Check that in the above example the set M⊥ is a subspace of H.

Exercise 1.1.12. Check that a linear manifold M ⊂ H is dense in H if and only if
M⊥ = {0}.

If M is a subset of H the subspace M⊥ is called the orthocomplement of M in
H. The following result is important in the setting of Hilbert spaces. Its proof is not
complicated but a little bit lengthy, we thus refer to [Amr, Prop. 1.7].

Proposition 1.1.13 (Projection Theorem). Let M be a subspace of a Hilbert space H.
Then, for any f ∈ H there exist a unique f1 ∈ M and a unique f2 ∈ M⊥ such that
f = f1 + f2.

Let us close this section with the so-called Riesz Lemma. For that purpose, recall
first that the dual H∗ of the Hilbert space H consists in the set of all bounded linear
functionals on H, i.e. H∗ consists in all mappings φ : H → C satisfying for any f, g ∈ H
and α ∈ C

(i) φ(f + αg) = φ(f) + αφ(g), (linearity)

(ii) |φ(f)| ≤ c∥f∥, (boundedness)

where c is a constant independent of f . One then sets

∥φ∥H∗ := sup
0̸=f∈H

|φ(f)|
∥f∥

.

Clearly, if g ∈ H, then g defines an element φg of H∗ by setting φg(f) := ⟨g, f⟩.
Indeed φg is linear and one has

∥φg∥H∗ := sup
0̸=f∈H

1

∥f∥
|⟨g, f⟩| ≤ sup

0̸=f∈H

1

∥f∥
∥g∥∥f∥ = ∥g∥.

In fact, note that ∥φg∥H∗ = ∥g∥ since 1
∥g∥φg(g) =

1
∥g∥∥g∥

2 = ∥g∥.
The following statement shows that any element φ ∈ H∗ can be obtained from an

element g ∈ H. It corresponds thus to a converse of the previous construction.

Lemma 1.1.14 (Riesz Lemma). For any φ ∈ H∗, there exists a unique g ∈ H such
that for any f ∈ H

φ(f) = ⟨g, f⟩.

In addition, g satisfies ∥φ∥H∗ = ∥g∥.

Since the proof is quite standard, we only sketch it and leave the details to the
reader, see also [Amr, Prop. 1.8].
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Sketch of the proof. If φ ≡ 0, then one can set g := 0 and observe trivially that φ = φg.
If φ ̸= 0, let us first define M := {f ∈ H | φ(f) = 0} and observe that M is

a subspace of H. One also observes that M ̸= H since otherwise φ ≡ 0. Thus, let
h ∈ H such that φ(h) ̸= 0 and decompose h = h1 + h2 with h1 ∈ M and h2 ∈ M⊥ by
Proposition 1.1.13. One infers then that φ(h2) = φ(h) ̸= 0.

For arbitrary f ∈ H one can consider the element f − φ(f)
φ(h2)

h2 ∈ H and observe that

φ
(
f − φ(f)

φ(h2)
h2
)
= 0. One deduces that f − φ(f)

φ(h2)
h2 belongs to M, and since h2 ∈ M⊥

one infers that

φ(f) =
φ(h2)

∥h2∥2
⟨h2, f⟩.

One can thus set g := φ(h2)
∥h2∥2h2 ∈ H and easily obtain the remaining parts of the state-

ment.

As a consequence of the previous statement, one often identifies H∗ with H itself.

Exercise 1.1.15. Check that this identification is not linear but anti-linear.

1.2 Vector-valued functions

LetH be a Hilbert space and let Λ be a set. A vector-valued function if a map f : Λ → H,
i.e. for any λ ∈ Λ one has f(λ) ∈ H. In application, we shall mostly consider the special
case Λ = R or Λ = [a, b] with a, b ∈ R and a < b.

The following definitions are mimicked from the special case H = C, but different
topologies on H can be considered:

Definition 1.2.1. Let J := (a, b) with a < b and consider a vector-valued function
f : J → H.

(i) f is strongly continuous on J if for any t ∈ J one has limε→0 ∥f(t+ε)−f(t)∥ = 0,

(ii) f is weakly continuous on J if for any t ∈ J and any g ∈ H one has

lim
ε→0

⟨
g, f(t+ ε)− f(t)

⟩
= 0,

(iii) f is strongly differentiable on J if there exists another vector-valued function
f ′ : J → H such that for any t ∈ J one has

lim
ε→0

∥∥1
ε

(
f(t+ ε)− f(t)

)
− f ′(t)

∥∥ = 0,

(iii) f is weakly differentiable on J if there exists another vector-valued function f ′ :
J → H such that for any t ∈ J and g ∈ H one has

lim
ε→0

⟨
g, 1

ε

(
f(t+ ε)− f(t)

)
− f ′(t)

⟩
= 0,
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The map f ′ is called the strong derivative, respectively the weak derivative, of f .

Integrals of vector-valued functions can be defined in several senses, but we shall
restrict ourselves to Riemann-type integrals. The construction is then similar to real or
complex-valued functions, by considering finer and finer partitions of a bounded interval
J . Improper Riemann integrals can also be defined in analogy with the scalar case by
a limiting process. Note that these integrals can exist either in the strong sense (strong
topology on H) or in the weak sense (weak topology on H). In the sequel, we consider
only the existence of such integrals in the strong sense.

Let us thus consider J := (a, b] with a < b and let us set Π = {s0, . . . , sn;u1, . . . un}
with a = s0 < u1 ≤ s1 < u2 ≤ s2 < · · · < un ≤ sn = b for a partition of J . One also
sets |Π| := maxk∈{1,...,n} |sk − sk−1| and the Riemann sum

Σ(Π, f) :=
n∑

k=1

(sk − sk−1)f(uk).

If one considers then a sequence {Πi}i∈N of partitions of J with |Πi| → 0 as i→ ∞ one
writes ∫

J

f(t)dt ≡
∫ b

a

f(t)dt = s− lim
i→∞

Σ(Πi, f)

if this limit exists and is independent of the sequence of partitions. In this case, one
says that f is strongly integrable on (a, b]. Clearly, similar definitions hold for J = (a, b)
or J = [a, b]. Infinite intervals can be considered by a limiting process as long as the
corresponding limits exist.

The following statements can then be proved in a way similar to the scalar case.

Proposition 1.2.2. Let (a, b] and (b, c] be finite or infinite intervals and suppose that
all the subsequent integrals exist. Then one has

(i)
∫ b

a
f(t)dt+

∫ c

b
f(t)dt =

∫ c

a
f(t)dt,

(ii)
∫ b

a

(
αf1(t) + f2(t)

)
dt = α

∫ b

a
f1(t)dt+

∫ b

a
f2(t)dt,

(iii)
∥∥∥ ∫ b

a
f(t)dt

∥∥∥ ≤
∫ b

a
∥f(t)∥dt.

For the existence of these integrals one has:

Proposition 1.2.3. (i) If [a, b] is a finite closed interval and f : [a, b] → H is

strongly continuous, then
∫ b

a
f(t)dt exists,

(ii) If a < b are arbitrary and
∫ b

a
∥f(t)∥dt <∞, then

∫ b

a
f(t)dt exists,

(iii) If f is strongly differentiable on (a, b) and its derivative f ′ is strongly continuous
and integrable on [a, b] then∫ b

a

f ′(t)dt = f(b)− f(a).
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1.3 Bounded linear operators

First of all, let us recall that a linear map B between two complex vector spaces M
and N satisfies B(f + αg) = Bf + αBg for all f, g ∈ M and α ∈ C.

Definition 1.3.1. A map B : H → H is a bounded linear operator if B : H → H is a
linear map, and if there exists c > 0 such that ∥Bf∥ ≤ c∥f∥ for all f ∈ H. The set of
all bounded linear operators on H is denoted by B(H).

For any B ∈ B(H), one sets

∥B∥ := inf{c > 0 | ∥Bf∥ ≤ c∥f∥ ∀f ∈ H}

= sup
0 ̸=f∈H

∥Bf∥
∥f∥

. (1.8)

and call it the norm of B. Note that the same notation is used for the norm of an
element of H and for the norm of an element of B(H), but this does not lead to any
confusion. Let us also introduce the range of an operator B ∈ B(H), namely

Ran(B) := BH = {f ∈ H | f = Bg for some g ∈ H}. (1.9)

This notion will be important when the inverse of an operator will be discussed.

Exercise 1.3.2. Let M1,M2 be two dense linear manifolds of H, and let B ∈ B(H).
Show that

∥B∥ = sup
f∈M1,g∈M2 with ∥f∥=∥g∥=1

|⟨f,Bg⟩|. (1.10)

Exercise 1.3.3. Show that B(H) is a complete normed algebra and that the inequality

∥AB∥ ≤ ∥A∥∥B∥ (1.11)

holds for any A,B ∈ B(H).

An additional structure can be added to B(H): an involution. More precisely, for
any B ∈ B(H) and any f, g ∈ H one sets

⟨B∗f, g⟩ := ⟨f,Bg⟩. (1.12)

Exercise 1.3.4. For any B ∈ B(H) show that

(i) B∗ is uniquely defined by (1.12) and satisfies B∗ ∈ B(H) with ∥B∗∥ = ∥B∥,

(ii) (B∗)∗ = B,

(iii) ∥B∗B∥ = ∥B∥2,

(iv) If A ∈ B(H), then (AB)∗ = B∗A∗.
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The operator B∗ is called the adjoint of B, and the proof the unicity in (i) involves
the Riesz Lemma. A complete normed algebra endowed with an involution for which
the property (iii) holds is called a C∗-algebra. In particular B(H) is a C∗-algebra. Such
algebras have a well-developed and deep theory, see for example [Mur]. However, we
shall not go further in this direction in this course.

We have already considered two distinct topologies on H, namely the strong and
the weak topology. On B(H) there exist several topologies, but we shall consider only
three of them.

Definition 1.3.5. A sequence {Bn}n∈N ⊂ B(H) is uniformly convergent to B∞ ∈
B(H) if limn→∞ ∥Bn − B∞∥ = 0, is strongly convergent to B∞ ∈ B(H) if for any
f ∈ H one has limn→∞ ∥Bnf − B∞f∥ = 0, or is weakly convergent to B∞ ∈ B(H)
if for any f, g ∈ H one has limn→∞⟨f,Bng − B∞g⟩ = 0. In these cases, one writes
respectively u− limn→∞Bn = B∞, s− limn→∞Bn = B∞ and w − limn→∞Bn = B∞.

Clearly, uniform convergence implies strong convergence, and strong convergence
implies weak convergence. The reverse statements are not true. Note that if {Bn}n∈N ⊂
B(H) is weakly convergent, then the sequence {B∗

n}n∈N of its adjoint operators is also
weakly convergent. However, the same statement does not hold for a strongly convergent
sequence. Finally, we shall not prove but often use that B(H) is also weakly and strongly
closed. In other words, any weakly (or strongly) Cauchy sequence in B(H) converges
in B(H).

Exercise 1.3.6. Let {An}n∈N ⊂ B(H) and {Bn}n∈N ⊂ B(H) be two strongly conver-
gent sequence in B(H), with limits A∞ and B∞ respectively. Show that the sequence
{AnBn}n∈N is strongly convergent to the element A∞B∞.

Let us close this section with some information about the inverse of a bounded
operator. Additional information on the inverse in relation with unbounded operators
will be provided in the sequel.

Definition 1.3.7. An operator B ∈ B(H) is invertible if the equation Bf = 0 only
admits the solution f = 0. In such a case, there exists a linear map B−1 : Ran(B) → H
which satisfies B−1Bf = f for any f ∈ H, and BB−1g = g for any g ∈ Ran(B). If B is
invertible and Ran(B) = H, then B−1 ∈ B(H) and B is said to be invertible in B(H)
(or boundedly invertible).

Note that the two conditions B invertible and Ran(B) = H imply B−1 ∈ B(H) is
a consequence of the Closed graph Theorem. In the sequel, we shall use the notation
1 ∈ B(H) for the operator defined on any f ∈ H by 1f = f , and 0 ∈ B(H) for the
operator defined by 0f = 0.

The next statement is very useful in applications, and holds in a much more general
context. Its proof is classical and can be found in every textbook.
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Lemma 1.3.8 (Neumann series). If B ∈ B(H) and ∥B∥ < 1, then the operator (1−B)
is invertible in B(H), with

(1−B)−1 =
∞∑
n=0

Bn,

and with
∥∥(1 − B)−1

∥∥ ≤ (1 − ∥B∥)−1. The series converges in the uniform norm of
B(H).

Note that we have used the identity B0 = 1.

1.4 Special classes of bounded linear operators

In this section we provide some information on some subsets of B(H). We start with
some operators which will play an important role in the sequel.

Definition 1.4.1. An operator B ∈ B(H) is called self-adjoint if B∗ = B, or equiva-
lently if for any f, g ∈ H one has

⟨f,Bg⟩ = ⟨Bf, g⟩. (1.13)

For these operators the computation of their norm can be simplified (see also Ex-
ercise 1.3.2) :

Exercise 1.4.2. If B ∈ B(H) is self-adjoint and if M is a dense linear manifold in
H, show that

∥B∥ = sup
f∈M, ∥f∥=1

|⟨f,Bf⟩|. (1.14)

A special set of self-adjoint operators is provided by the set of orthogonal projec-
tions:

Definition 1.4.3. An element P ∈ B(H) is an orthogonal projection if P = P 2 = P ∗.

It not difficult to check that there is a one-to-one correspondence between the set
of subspaces of H and the set of orthogonal projections in B(H). Indeed, any orthog-
onal projection P defines a subspace M := PH. Conversely by taking the projection
Theorem (Proposition 1.1.13) into account one infers that for any subspace M one can
define an orthogonal projection P with PH = M.

In the sequel, we might simply say projection instead of orthogonal projection.
However, let us stress that in other contexts a projection is often an operator P satisfying
only the relation P 2 = P .

We gather in the next exercise some easy relations between orthogonal projections
and the underlying subspaces. For that purpose we use the notation PM, PN for the
orthogonal projections on the subspaces M and N of H.

Exercise 1.4.4. Show the following relations:
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(i) If PMPN = PNPM, then PMPN is a projection and the associated subspace is
M∩N ,

(ii) If M ⊂ N , then PMPN = PNPM = PM,

(iii) If M⊥N , then PMPN = PNPM = 0, and PM⊕N = PM + PN ,

(iv) If PMPN = 0, then M⊥N .

Let us now consider unitary operators, and then more general isometries and partial
isometries. For that purpose, we recall that 1 denotes the identify operator in B(H).

Definition 1.4.5. An element U ∈ B(H) is a unitary operator if UU∗ = 1 and if
U∗U = 1.

Note that if U is unitary, then U is invertible in B(H) with U−1 = U∗. Indeed,
observe first that Uf = 0 implies f = U∗(Uf) = U∗0 = 0. Secondly, for any g ∈ H, one
has g = U(U∗g), and thus Ran(U) = H. Finally, the equality U−1 = U∗ follows from
the unicity of the inverse.

More generally, an element V ∈ B(H) is called an isometry if the equality

V ∗V = 1 (1.15)

holds. Clearly, a unitary operator is an instance of an isometry. For isometries the
following properties can easily be obtained.

Proposition 1.4.6. a) Let V ∈ B(H) be an isometry. Then

(i) V preserves the scalar product, namely ⟨V f, V g⟩ = ⟨f, g⟩ for any f, g ∈ H,

(ii) V preserves the norm, namely ∥V f∥ = ∥f∥ for any f ∈ H,

(iii) If H ̸= {0} then ∥V ∥ = 1,

(iv) V V ∗ is the projection on Ran(V ),

(v) V is invertible (in the sense of Definition 1.3.7),

(vi) The adjoint V ∗ satisfies V ∗f = V −1f if f ∈ Ran(V ), and V ∗g = 0 if g⊥Ran(V ).

b) An element W ∈ B(H) is an isometry if and only if ∥Wf∥ = ∥f∥ for all f ∈ H.

Exercise 1.4.7. Provide a proof for the previous proposition (as well as the proof of
the next proposition).

More generally one defines a partial isometry as an element W ∈ B(H) such that

W ∗W = P (1.16)

with P an orthogonal projection. Again, unitary operators or isometries are special
examples of partial isometries.

As before the following properties of partial isometries can be easily proved.
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Proposition 1.4.8. Let W ∈ B(H) be a partial isometry as defined in (1.16). Then

(i) one has WP =W and ⟨Wf,Wg⟩ = ⟨Pf, Pg⟩ for any f, g ∈ H,

(ii) If P ̸= 0 then ∥W∥ = 1,

(iii) WW ∗ is the projection on Ran(W ).

For a partial isometry W one usually calls initial set projection the projection
defined by W ∗W and by final set projection the projection defined by WW ∗.

Let us now introduce a last subset of bounded operators, namely the ideal of compact
operators. For that purpose, consider first any family {gj, hj}Nj=1 ⊂ H and for any f ∈ H
one sets

Af :=
N∑
j=1

⟨gj, f⟩hj. (1.17)

Then A ∈ B(H), and Ran(A) ⊂ Vect(h1, . . . , hN). Such an operator A is called a finite
rank operator. In fact, any operator B ∈ B(H) with dim

(
Ran(B)

)
<∞ is a finite rank

operator.

Exercise 1.4.9. For the operator A defined in (1.17), give an upper estimate for ∥A∥
and compute A∗.

Definition 1.4.10. An element B ∈ B(H) is a compact operator if there exists a
family {An}n∈N of finite rank operators such that limn→∞ ∥B −An∥ = 0. The set of all
compact operators is denoted by K (H).

The following proposition contains sone basic properties of K (H). Its proof can be
obtained by playing with families of finite rank operators.

Proposition 1.4.11. The following properties hold:

(i) B ∈ K (H) ⇐⇒ B∗ ∈ K (H),

(ii) K (H) is a ∗-algebra, complete for the norm ∥ · ∥,

(iii) If B ∈ K (H) and A ∈ B(H), then AB and BA belong to K (H).

As a consequence, K (H) is a C∗-algebra and an ideal of B(H). In fact, compact
operators have the nice property of improving some convergences, as shown in the next
statement.

Proposition 1.4.12. Let K ∈ K (H)).

(i) If {fn}n∈N ⊂ H is a weakly convergent sequence with limit f∞ ∈ H, then the
sequence {Kfn}n∈N strongly converges to Kf∞,
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(ii) If the sequence {Bn}n∈N ⊂ B(H) strongly converges to B∞ ∈ B(H), then the
sequences {BnK}n∈N and {KB∗

n}n∈N converge in norm to B∞K and KB∗
∞, re-

spectively.

Proof. a) Let us first set φn := fn − f∞ and observe that w− limn→∞ φn = 0. By an
application of the uniform boundedness principle, see Theorem 1.1.8, it follows that
{∥φn∥}n∈N is bounded, i.e. there exists M > 0 such that ∥φn∥ ≤ M for any n ∈ N.
Since K is compact, for any ε > 0 there exists a finite rank operator A of the form
given in (1.17) such that ∥K − A∥ ≤ ε

2M
. Then one has

∥Kφn∥ ≤ ∥(K − A)φn∥+ ∥Aφn∥ ≤ ε

2
+

N∑
j=1

|⟨gj, φn⟩|∥hj∥.

Since w− limn→∞ φn = 0 there exists n0 ∈ N such that ⟨gj, φn⟩| ∥hj∥ ≤ ε
2N

for any
j ∈ {1, . . . , N} and all n ≥ n0. As a consequence, one infers that ∥Kφn∥ ≤ ε for all
n ≥ n0, or in other words s− limn→∞Kφn = 0.

b) Let us set Cn := Bn − B∞ such that s− limn→∞Cn = 0. As before, there exists
M > 0 such that ∥Cn∥ ≤ M for any n ∈ N. For any ε > 0 consider a finite rank
operator A of the form (1.17) such that ∥K − A∥ ≤ ε

2M
. Then observe that for any

f ∈ H

∥CnKf∥ ≤M∥(K − A)f∥+ ∥CnAf∥

≤M∥K − A∥∥f∥+
N∑
j=1

|⟨gj, f⟩|∥Cnhj∥

≤
{
M∥K − A∥ +

N∑
j=1

∥gj∥∥Cnhj∥
}
∥f∥.

Since Cn strongly converges to 0 one can then choose n0 ∈ N such that ∥gj∥∥Cnhj∥ ≤ ε
2N

for any j ∈ {1, . . . N} and all n ≥ n0. One then infers that ∥CnK∥ ≤ ε for any n ≥ n0,
which means that the sequence {CnK}n∈N uniformly converges to 0. The statement
about {KB∗

n}n∈N can be proved analogously by taking the equality ∥KB∗
n −KB∗

∞∥ =
∥BnK

∗ −B∞K
∗∥ into account and by remembering that K∗ is compact as well.

Exercise 1.4.13. Check that a projection P is a compact operator if and only if PH
is of finite dimension.

Extension 1.4.14. There are various subalgebras of K (H), for example the algebra of
Hilbert-Schmidt operators, the algebra of trace class operators, and more generally the
Schatten classes. Note that these algebras are not closed with respect to the norm ∥ · ∥
but with respect to some stronger norms |||·|||. These algebras are ideals in B(H).
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1.5 Operator-valued maps

In analogy with Section 1.2 it is natural to consider function with values in B(H). More
precisely, let J be an open interval on R, and let us consider a map F : J → B(H).
The notion of continuity can be considered with several topologies on B(H), but as in
Definition 1.3.5 we shall consider only three of them.

Definition 1.5.1. The map F is continuous in norm on J if for all t ∈ J

lim
ε→0

∥∥F (t+ ε)− F (t)
∥∥ = 0.

The map F is strongly continuous on J if for any f ∈ H and all t ∈ J

lim
ε→0

∥∥F (t+ ε)f − F (t)f
∥∥ = 0.

The map F is weakly continuous on J if for any f, g ∈ H and all t ∈ J

lim
ε→0

⟨
g,
(
F (t+ ε)− F (t)

)
f
⟩
= 0.

One writes respectively u − limε→0 F (t + ε) = F (t), s − limε→0 F (t + ε) = F (t) and
w − limε→0 F (t+ ε) = F (t).

The same type of definition holds for the differentiability:

Definition 1.5.2. The map F is differentiable in norm on J if there exists a map
F ′ : J → B(H) such that

lim
ε→0

∥∥∥1
ε

(
F (t+ ε)− F (t)

)
− F ′(t)

∥∥∥ = 0.

The definitions for strongly differentiable and weakly differentiable are similar.

If J is an open interval of R and if F : J → B(H), one defines
∫
J
F (t) dt as a

Riemann integral (limit of finite sums over a partition of J) if this limiting procedure
exists and is independent of the partitions of J . Note that these integrals can be defined
in the weak topology, in the strong topology or in the norm topology (and in other
topologies). For example, if F : J → B(H) is strongly continuous and if

∫
J
∥F (t)∥dt <

∞, then the integral
∫
J
F (t)dt exists in the strong topology.

Proposition 1.5.3. Let J be an open interval of R and F : J → B(H) such that∫
J
F (t)dt exists (in an appropriate topology). Then,

(i) For any B ∈ B(H) one has

B

∫
J

F (t)dt =

∫
J

BF (t)dt and
(∫

J

F (t)dt
)
B =

∫
J

F (t)Bdt,
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(ii) One has
∥∥∥ ∫J F (t)dt∥∥∥ ≤

∫
J
∥F (t)∥dt,

(iii) If C ⊂ B(H) is a subalgebra of B(H), closed with respect to a norm |||·|||, and
if the map F : J → C is continuous with respect to this norm and satisfies∫
J
|||F (t)|||dt <∞, then

∫
J
F (t)dt exists, belongs to C and satisfies∣∣∣∣∣∣∣∣∣∣∣∣∫

J

F (t)dt

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∫
J

|||F (t)|||dt.

Note that the last statement is very useful, for example when C = K (H) or for
any Schatten class.


