生物情報工学 BioInformatics

4 遺伝子解析のためのツール

遺伝子解析のためのツール

各種データベースの活用 (2015年度版)

第2回目(10/14) 文献データベースと特許データベース

第3回目(10/21)<u>遺伝子データベース</u>

第4回目(10/28)遺伝子解析のためのツール

第5回目 (11/4) <u>ゲノムデータベース</u>

リンク集

データベース検索:

- 1. PubMed: 論文検索
- 2. <u>NCBI databases</u>:総合データベース
- 3. <u>Google Scholar</u>: 文献データベース
- 4. 特許情報プラットフォーム:特許データベース

ホモロジー検索:

- 1. BLAST [GenomeNET]
- 2. FASTA [GenomeNET]

配列解析:

- 1. <u>DNA → AA</u> : DNA配列をアミノ酸配列に変換
- 2. <u>GENSCAN</u>:スプライシングの予測(新)

今日のメニュー

- 制限酵素切断部位の検索
- ・塩基配列をアミノ酸配列に変換する
- ・Open reading frameの検索
- ・スプライシングの予測
- ・転写因子結合部の予測

演習:制限酵素切断部位の検索と マップ作成

- ・リンク集:制限酵素マップのNEB Cutterを使う。
- ・データはプラスミドpUC18を使おう。

まずは、先週テキスト保存したpUC18の情報を 開く

```
1- 229 1069-1297
                                        Lac-Operon
               230-286
                         1- 57
                                        polvlinker of M13mp18
               289-447 1303-1461
                                        Lac-Operon
               448-547 2351-2252 (c) pBR322
               548-684 2210-2074 (c) pBR322
                685-2686 4355-2354 (c) pBR322
              Conflict (cfl) and Mutations (mut):
                    pUC18 source
              mut 1128 T C 3912 (c) pBR322
              mut 1429 A G 3611 (c) pBR322
           FEATURE
               952-1740 1-789 Ap-R; b-lactamase
           POLYLINKER ECORI-SacI-KpnI-SmaI-BamHI-XbaI-SalI-PstI-SphI-HindIII
           SELECTION
              #resistance Ap
              #indicator beta-galactosidase
                             #length 2686
                                           #checksum 5464.
           SUMMARY pUC18
FEATURES
                    Location/Oualifiers
                    1..2686
     source
                     /organism="synthetic construct"
                     /mol type="genomic DNA"
                    /db xref="taxon:32630"
ORIGIN
       1 gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca
      61 cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagttagct
     121 cactcattag gcaccccagg ctttacactt tatgcttccg gctcgtatgt tgtgtggaat
     181 tqtqaqcqqa taacaatttc acacaqqaaa caqctatqac catqattacq aattcqaqct
     241 cggtacccgg ggatcctcta gagtcgacct gcaggcatgc aagcttggca ctggccgtcg
      301 ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca acttaatcgc cttgcagcac
      361 atcccccttt cgccagctgg cgtaatagcg aagaggcccg caccgatcgc ccttcccaac
      421 agttgcgcag cctgaatggc gaatggcgcc tgatgcggta ttttctcctt acgcatctgt
     481 gcggtatttc acaccgcata tggtgcactc tcagtacaat ctgctctgat gccgcatagt
      541 taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc
      601 cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt
      661 caccgtcatc accgaaacgc gcgagacgaa agggcctcgt gatacgccta tttttatagg
      721 ttaatgtcat gataataatg gtttcttaga cgtcaggtgg cacttttcgg ggaaatgtgc
      781 gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac
      841 aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt
      901 tccgtgtcgc ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag
```

配列部分をコピーしておく

```
448-547 2351-2252 (c) pBR322
               548-684 2210-2074 (c) pBR322
               685-2686 4355-2354 (c) pBR322
              Conflict (cfl) and Mutations (mut):
                   pUC18 source
              mut 1128 T C 3912 (c) pBR322
              mut 1429 A G 3611 (c) pBR322
           FEATURE
               952-1740 1-789 Ap-R; b-lactamase
           POLYLINKER EcoRI-SacI-KpnI-SmaI-BamHI-XbaI-SalI-PstI-SphI-HindIII
           SELECTION
              #resistance Ap
              #indicator beta-galactosidase
           SUMMARY pUC18
                             #length 2686 #checksum 5464.
FEATURES
                    Location/Oualifiers
                    1..2686
     source
                    /organism="synthetic construct"
                     /mol type="genomic DNA"
                    /db xref="taxon:32630"
ORIGIN
       1 gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca
       61 cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaatg tgagttagct
     121 cactcattag gcaccccagg ctttacactt tatgcttccg gctcgtatgt tgtgtggaat
     181 tgtgagcgga taacaatttc acacaggaaa cagctatgac catgattacg aattcgagct
     241 cggtacccgg ggatcctcta gagtcgacct gcaggcatgc aagcttggca ctggccgtcg
      301 ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca acttaatcgc cttgcagcac
     361 atcccccttt cgccagctgg cgtaatagcg aagaggcccg caccgatcgc ccttcccaac
     421 agttgcgcag cctgaatggc gaatggcgcc tgatgcggta ttttctcctt acgcatctgt
     481 gcggtatttc acaccgcata tggtgcactc tcagtacaat ctgctctgat gccgcatagt
      541 taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc
      601 cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt
      661 caccgtcatc accgaaacgc gcgagacgaa agggcctcgt gatacgccta tttttatagg
     721 ttaatgtcat gataataatg gtttcttaga cgtcaggtgg cacttttcgg ggaaatgtgc
     781 gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac
      841 aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt
     901 tccgtgtcgc ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag
     961 aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg
     1021 aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa cgttttccaa
     1081 tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt gacgccgggc
```


NEBcutter V2.0

This tool will take a DNA sequence and find the large, non-overlapping open reading frames using the E.coli genetic code and the sites for all Type II and commercially available Type III restriction enzymes that cut the sequence just once. By default, only enzymes available from NEB are used, but other sets may be chosen. Just enter your sequence and "submit". Further options will appear with the output. **The maximum size of the input file is 1 MByte, and the maximum sequence length is 300 KBases.** <u>What's new in V2.0</u> <u>Citing NEBcutter</u>

BioLabs^m

INEB homepage

GenBank number: [Browse GenBank] # Plasmid vectors <u>or</u> paste in your DNA sequence: (plain or FASTA format) # Viral + phage 1 gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca # Viral + phage # Viral + phage 1 gcgcccaata cgcaacccg gcgttggccg attcattaat gcagctggca 61 cgacaggtt cccgadgga aagcgggcag tgagcgcaac gcaattaatg tgagttagct # Viral + phage # Viral + phage 181 tgtgagcgga taacaattte acacaggaaa cagctatgac catgattacg ccaagcttgc 241 atgcctgcag gtgactcg gggtaccg gggtagcca ggagagccca gggtaccgac acgaattac ttggccgac # Submit 361 atccccttt cgccaqctg cgtataacqt gqagagcccc gcaccgatcgc If the cgccaqctg cgtataacqc gagagagccc cttcccaac If the cgccaqctgg gtataacaattag agagaggccg agagaggccac gcaccgatcga cttgcaac
or paste in your DNA sequence: (plain or FASTA format) 1 gcgcccaata cgcaaaccgc ctctccccg cggttggccg attcattaat gcagctggca # Viral + phage 1 gcgcccaata cgcaaaccgc ctctccccg cggttggccg attcattaat gcagctggca Image: Comparison of the phage 1 gcgcccaata cgcaaaccgc ctctccccg cggttggccg attcattaat gcagctggca Image: Comparison of the phage 1 gcgcccaata cgcaaccgg ctttacactt tatgcttccg gctcgtagt tggtggaat Image: Comparison of the phage 1 gcgccgaata cgcaacgg cttacactt tatgcttcg gctcgtagt tggtggaat Image: Comparison of the phage 1 gtgccgga gtggcgag ggggaccg gggggccg ggggaccg ggggggccg attcattat gcggcggggag Image: Comparison of the phage 1 gtgccgaag gtggactgg ggggaccg gggggggggg
1 gcgcccaata cgcaaaccgc ctctccccg gcgttggccg attcattaat gcagctggca 61 cgacaggtt cccgactgga aagcgggcag tgagcgcaa cgcaattaat gtgagttagct 121 cactcattag gcaccccagg ctttacactt tatgcttccg gctcgtatgt tgtgtggaat 181 tgtgagcgga tacacattte acacaggaaa cagctatgac catgattacg ccaagcttgc 241 atgcctgcag gtcgactca gaggacccc gggtaccgag ctcgaatte ctggccgtcg 301 ttttacaacg tgtggatgg gaaaaccctg gcgttaccca acttaatggc cattgatggca 361 atccccttt cgccaqctg cgtgataatagc aagagagccgc caccgatcg ccttcccaac
421 agttgcgcag cctgaatggc gaatggggc tgatgcggfa ttttctcctt acgcatctgt
 Linear The sequence is: Linear Circular More options All commercially available specificities All specificities All + defined oligonucleotide sequences Only defined oligonucleotide sequences Interval of the oligon of the
Name of sequence: (optional)
Earlier projects:
<u>no name</u>
<u>pUC19</u>
pucis
Note: Your earlier projects will be deleted 2 days after they were last accessed. You need to have cookies enabled in your browser for this feature to work. Disable NEBcutter cookies

結果(1)

結果(2)

🔺 | piùnc enu cuc Display: - NEB single cutter restriction enzymes Has other supplier **X** I 5' extension Not commercially available - Main non-overlapping, min. 100 aa ORFs *: cleavage affected by CpG meth. ℤ | 3′ extension #: cleavage affected by other meth. GC=51%, AT=49% Cuts 1 strand (enz.name): ambiguous site BspHI Asel -BstAPI ⊢BtsIMutI _TfiI Earl 1 📩 133 aa 🏅 286 aa 1 | 2686 111 BsaXI LSspI Scal BamHI -BstAPI AhdI BseYI BspQI NdeI *AatII ^L≭BcgI -BsaI -A1wNI SapI *SmaI -*ZraI LXmnI *PluTI -PciI KpnI -BpmI *SfoI Eco0109I *BsrFI AF1III \$ac1 -*NarI ApoI NmeAIII └≭KasI HindIII SphI BFuAI BspMI -PstI SbfI *HincII *AccI *SalI XbaI -*TspMI *XmaI *AvaI BsoBI *Acc65I BanII *Eco53kI L*EcoRI Main options Availability Display Zoom List New DNA All commercial 2 cutters Zoom in 0 cutters Custom digest All 3 cutters 1 cutters More... View sequence Circular All sites **ORF** summary Save all sites Minimum ORF length to display: 100 OK aa. Save project Flanking enzymes Print

結果(3)

Single cutters

[Back to main display]

unnamed sequence

OK

Number of cuts $= \ddagger 1$

Sort order: Alphabetical \$

Save as text file

	#	Enzyme	Specificity	Sites & flanks	Cut positions (blunt - 5' ext 3' ext.)
	1	AatII	G_ACGT*C	list	*753/749
	2	Acc65I	G'GTAC_C	list	*242/246
	3	AccI	GT*MK_AC	list	*264/266
	4	AfIIII	A [*] CRYG _T	list	2560/2564
	5	AhdI	GACNNNNNGTC	list	1672/1671
	6	AlwNI	CAG_NNN [*] CTG	list	2151/2148
	7	ApoI	RTAATTY	list	230/234
	8	AvaI	C [*] YCGR _G	list	*246/250
	9	BamHI	G [*] GATC _C	list	251/255
10		BanII	G_RGCY*C	list	240/236
	11	BcgI	$_{NN^{(N)}_{10}CGA(N)_{6}TGC(N)_{10}NN^{(N)}}$	list	*1134/1132+1168/1166
	12	BfuAI	ACCTGCNNNNINNN	list	276/280
	13	BpmI	CTGGAG(N) ₁₄ NN [*]	list	1603/1601
	14	BsaI	GGTCTCN NNNN	list	1606/1610
	15	BsaXI	_NNN [*] (N) ₉ AC(N) ₅ CTCC(N) ₇ NNN [*]	list	6/3+36/33
	16	BseYI	C*CCAG_C	list	2256/2260
	17	BsoBI	C [*] YCGR _G	list	246/250
	18	BspMI	ACCTGCNNNNTNNNN	list	276/280
	19	BspQI	GCTCTTCN NNN	list	2677/2680
	20	BsrFI	R*CCGG_Y	list	*1587/1591
_					

結果(4)

BamHI

Help Comments

突出末端 (protruding end) または 粘着末端(sticky end)

Available from NEB, Catalog # R0136

View product page

6 5 minute Time-Saver

REBASE enzyme page Methylation Sensitivity

Buffer name: NEBuffer 3.1 Salt: 100 mM NaCl Main: 50 mM Tris-HCl pH: 7.9 Mg: 10 mM MgCl2 BSA: 100

Overlapping methylation:

NOT ANALYZED

Reaction temperature: 37 °C

Neoschizomers:

Isoschizomers:

結果(5)

平滑末端 (blunt end)

Available from NEB, Catalog # R0141

View product page

6 5 minute Time-Saver

 REBASE enzyme page
 Methylation Sensitivity

Buffer name: CutSmart Buffer

Salt: 50 mM KOAc Main: 20 mM Tris-OAc pH: 7.9 Mg: 10 mM MgOAc BSA: 100

Overlapping methylation:

NOT ANALYZED

Reaction temperature: 25 °C

Neoschizomers:

Isoschizomers:

5'... C^{*}C C G G G ... 3'

パターンが違う場合はリンク集からコピーする GCGCCCで始まる配列

🔪 118 aa 🏅 🛛 👗 286 aa 🔷 👗 📑	133 aa 🔨
1	<u></u> 2686
1 Letter	BseYI AlwNI AflIII AflIII

画像ファイルをダウンロードする(1)

Display: - NEB single cutter restriction enzymes - Main non-overlapping, min. 100 aa ORFs

GC=51%, AT=49%

🔺 | piùnc enu cuc Has other supplier 5' extension Not commercially available *: cleavage affected by CpG meth. ℤ | 3′ extension #: cleavage affected by other meth. ▼ | cuts 1 strand

X I

(enz.name): ambiguous site

画像ファイルをダウンロードする(2)

Use your browser's back button to return to the previous page.

画像ファイルをダウンロードする(3)

http://133.6.16.204/~bioint	fo/kat NEBcutter	+
BioLabs. Nebcuiter		Print unnamed sequence
Display mode:	Format:	
Full pageMap only	 PDF GIF image in 75 DPI resolution EPS with PICT (mac) preview 	Create Image
Hint on file formats:		
 PDF is best for l GIF is suitable f EPS can be used open the EPS fill 	high quality printing on all platforms or on-line display or publishing purposes, deper d to insert the map into other documents. Select le but it needs some advanced skills to add the r	ding on the selected resolution a WMF preview for Windows, PICT for Macintosh or ASCII for UNIX. Adobe Photoshop can also be used to equired fill layer.
	[Click here to view/download the GIF file]
Use your browser's <u>ba</u>	<u>ck</u> button to return to the previous page.	

結果(4)

17

課題

- pUC19の情報を取得し、制限酵素地図のイメージ(linear)を作成、画像ファイルを保存する。
- pUC18とpUC19の制限酵素地図をパワーポイントのスライドに並べてに貼り付け、スライドを作成して下さい。
- PDFファイルに変換し、メールに添付する。
- 件名は「講義4課題1」とする。
- pUC18とpUC19の違いに気がついた人は、メールの本文に記載して下さい。

まずは、pUC19の情報をINSDICから取得して 塩基配列をコピーする

- ・リンク集の"ゲノムネットWWWサーバー"へ
- •DBGET searchへ
- ・検索対象のデータベースを"INSDIC"に設定
- ・pUC19を検索(必要に応じてテキストを追加 (例:cloning vectorなど)
- ・検索結果からpUC19の完全長配列を含むものとを選抜
- ・配列部分(GCGCCCで始まる配列)をコピー。

演習:塩基配列をアミノ酸配列に変換する

リンク集のDNA→AAを使う

- EMBL-EBI EMBOSS Transeq

使用するのはβガラクトシダーゼ遺伝子

EMBOSS

Tools > EMBOSS Programs

Selected EMBOSS tools for sequence analysis

Pairwise Sequence Alignment

Needle @

Create an optimal global alignment of two sequences using the

Sequence Translation

Transeq @

Translate nucleic acid sequences to the corresponding peptide sequences

🔌 Launch Transeq

Sequence Statistics

Pepinfo @

Create a variety of plots that display different amino acid

< Share

Feedback

Newcpgreport @

Identify CpG islands in nucleotide sequence(s)

🛰 Launch Newcpgreport

Isochore @

Plot isochores in DNA sequences

a Laurah Tasahawa

EMBL-EBI EMBOSS Transeq

EMBOSS Transeq						
Input form Web services Help & Documentation				<	Share 🤊	Feedback
Tools > Sequence Translation > EMBOSS Transeq						
EMBOSS Transeq EMBOSS Transeq translates nucleic acid sequences to t output multiple frame translations at once.	heir corresponding pept	ide sequences. It can t	anslate to the three	e forward and three re	everse fram	nes, and
STEP 1 - Enter your input sequence	oported format:					
Or, upload a file: ファイルを選択 ファイル未選択						/
STEP 2 - Select Parameters						
FRAME	CODON TABLE Standard Code					\$
The default settings will fulfill the needs of most users and, for More options (Click here, if you want to view or change to	n that reason, are not visibl the default settings.)	e.				
STEP 3 - Submit your job Be notified by email <i>(Tick this box if you want to be notified</i> Submit	d by email when the results	are available)				

βガラクトシダーゼ遺伝子のテキストファイルを開く

▲ ► +	▲ ▶] (+ ♥ http://133.6.16.204/~bioinfo/kato/b-gal.txt C Qr Google						
💭 🎹 Goo	gle マップ Yahoo! JAPAN アップル Amazon.co.jp Wikipedia .Mac ニュース (8225)▼ YouTube アップル (8)▼ お役立ち▼						
http://133.	6.16.204/~bioinfo/kat NEBcutter V2.0 +						
LOCUS DEFINITION	V00296 3078 bp DNA linear BCT 18-APR-2005 E. coli gene lacZ coding for beta-galactosidase (EC 3.2.1.23).						
ACCESSION VERSION KEYWORDS	V00296.1 GI:41901 galactosidase.						
SOURCE	Escherichia coli						
ORGANISM	Escherichia coli Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;						
DEFEDENCE	Enterobacteriaceae; Escherichia.						
AUTHORS	Kalnins, A., Otto, K., Ruther, U. and Muller-Hill, B.						
TITLE	Sequence of the lacZ gene of Escherichia coli EMBO J. 2 (4), 593-597 (1983)						
PUBMED	6313347						
AUTHORS	2 Zell,R. and Fritz,H.J.						
TITLE	DNA mismatch-repair in Escherichia coli counteracting the						
JOURNAL	EMBO J. 6 (6), 1809-1815 (1987)						
PUBMED	3038536 Data kindly reviewed (18-MAY-1983) by U. Buether						
FEATURES	Location/Qualifiers						
source	13078 /organism="Escherichia coli"						
	/mol_type="genomic DNA"						
CDS	/db_xref="taxoh:562" <13072						
	/note="unnamed protein product; galactosidase"						
	/transl_table=11						
	/protein_id="CAA23573.1" /db_xref="GI:1197203"						
	/db_xref="GOA:P00722"						
	/db_xref="InterPro:IPR004199" /db_xref="InterPro:IPR006101"						
	/db_xref="InterPro:IPR006102" /db_xref="InterPro:IPR006102"						
	/db_xref="InterPro:IPR006104"						
	/db_xref="InterPro:IPR008979" /db_xref="InterPro:IPR011013"						
	/db_xref="PDB:1BGL"						
	/db_xref="PDB:1BGM" /db_xref="PDB:1DP0"						
	/db_xref="PDB:1F49" /db_xref="PDB:1F40"						
	/db_xref="PDB:1F4H"						
	/db_xref="PDB:1GHO"						

ボックスの中に配列をペーストする

EMBOSS Transeq

Input form Web services Help & Documentation

Share 🗪 Feedback

Tools > Sequence Translation > EMBOSS Transeq

EMBOSS Transeq

EMBOSS Transeq translates nucleic acid sequences to their corresponding peptide sequences. It can translate to the three forward and three reverse frames, and output multiple frame translations at once.

STEP 1 - Enter your input sequence

Enter or paste a set of DNA/RNA + sequences in any supported format:

2701 gggccgcaag aaaactatcc cgaccgcctt actgccgcct gttttgaccg ctgggatctg

2761 ccattgtcag acatgtatac cccgtacgtc ttcccgagcg aaaacggtct gcgctgcggg 2821 acgcgcgaat tgaattatgg cccacaccag tggcgcggcg acttccagtt caacatcagc

2881 cqctacaqtc aacaqcaact qatqqaaacc aqccatcqcc atctqctqca cqcqqaaqaa

2941 ggcacatggc tgaatatcga cggtttccat atggggattg gtggcgacga ctcctggagc

3001 ccgtcagtat cggcggaatt ccagctgagc gccggtcgct accattacca gttggtctgg

3061 tgtcaaaaat aataataa

Or, upload a file: ファイルを選択 ファイル未選択

STEP 2 - Select Parameters

	CODO

CODON TABLE

The default settings will fulfill the needs of most users and, for that reason, are not visible.

More options... (C)

FRAME

1

ns... (Click here, if you want to view or change the default settings.)

STEP 3 - Submit your job

\$

結果

EIVIBUSS Transeq

Input form Web services Help & Documentation

Share Reedback

Tools > Sequence Translation > EMBOSS Transeq

Results for job emboss_transeq-I20131022-094451-0222-62149969-oy

Tool Output Submission Details

Download Show Colors

>EMBOSS_001_1

TMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQLRSLNGEWRF AWFPAPEAVPESWLECDLPEADTVVVPSNWQMHGYDAPIYTNVTYPITVNPPFVPTENPT GCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRAG ENRLAVMVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTTOISDFHVATRFNDDFSRAVL EAEVOMCGELRDYLRVTVSLWOGETOVASGTAPFGGEIIDERGGYADRVTLRLNVENPKL WSAEIPNLYRAVVELHTADGTLIEAEACDVGFREVRIENGLLLLNGKPLLIRGVNRHEHH PLHGOVMDEOTMVODILLMKONNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHGM VPMNRLTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGNESGHGANHDALYRWIKSVDP SRPVQYEGGGADTTATDIICPMYARVDEDQPFPAVPKWSIKKWLSLPGETRPLILCEYAH AMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENGNPWSAYGGDFGDTPNDRQ FCMNGLVFADRTPHPALTEAKHQQQFFQFRLSGQTIEVTSEYLFRHSDNELLHWMVALDG KPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAWQQW RLAENLSVTLPAASHAIPHLTTSEMDFCIELGNKRWOFNROSGFLSOMWIGDKKOLLTPL RDQFTRAPLDNDIGVSEATRIDPNAWVERWKAAGHYQAEAALLQCTADTLADAVLITTAH AWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASDTPHPARIGLNCQLAQVAERVNWLGL **GPQENYPDRLTAACFDRWDLPLSDMYTPYVFPSENGLRCGTRELNYGPHQWRGDFQFNIS** RYSQQQLMETSHRHLLHAEEGTWLNIDGFHMGIGGDDSWSPSVSAEFQLSAGRYHYQLVW COK***

演習

- フレームをFに変えてやってみる。読み枠以
 外の配列も出てくる。3通りの読み枠で出力
 する。はじめと終わりが分からないときに便利。
- フレームを6にしてみる。反対鎖もふくめ全ての読み枠を調べる方法。
- 結果を表示しているページの「ダウンロード」
 をクリックしてみよう。

ファスタ形式で出力される

\varTheta 🔿 🔿 http://www.ebi.ac.uk/Tools/es/cgi-bin/jobresults.cgi/transeq-20101025-1330044118.output								
+ Shttp://www.ebi.ac.uk/Tools/es/cgi-bin/jobresults.cgi/transeq-20101025-1330044118.output Qr Google								
〇〇 🇰 Google マップ Yahoo! JAPAN	□□ 🏭 Google マップ Yahoo! JAPAN アップル Amazon.co.jp Wikipedia .Mac ニュース (8225) ▼ YouTube アップル (8) ▼ お役立ち ▼							
http://www.ebi.ac.uk/Tools/es/c	NEBcutter	NEBcutter V2.0	http://133.6.16.204/~bioinfo/kat	+				
>EMBOSS_001_1 TMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQLRSLNGEWRF AWFPAPEAVPESWLECDLPEADTVVVPSNWQMHGYDAPIYTNVTYPITVNPPFVPTENPT								

GCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRAG ENRLAVMVLRWSDGSYLEDODMWRMSGIFRDVSLLHKPTTQISDFHVATRFNDDFSRAVL EAEVOMCGELRDYLRVTVSLWQGETQVASGTAPFGGEIIDERGGYADRVTLRLNVENPKL WSAEIPNLYRAVVELHTADGTLIEAEACDVGFREVRIENGLLLLNGKPLLIRGVNRHEHH PLHGQVMDEQTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHGM VPMNRLTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGNESGHGANHDALYRWIKSVDP SRPVQYEGGGADTTATDIICPMYARVDEDQPFPAVPKWSIKKWLSLPGETRPLILCEYAH AMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENGNPWSAYGGDFGDTPNDRQ FCMNGLVFADRTPHPALTEAKHQQQFFQFRLSGQTIEVTSEYLFRHSDNELLHWMVALDG KPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAWQQW RLAENLSVTLPAASHAIPHLTTSEMDFCIELGNKRWOFNROSGFLSOMWIGDKKOLLTPL RDOFTRAPLDNDIGVSEATRIDPNAWVERWKAAGHYOAEAALLOCTADTLADAVLITTAH AWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASDTPHPARIGLNCQLAQVAERVNWLGL GPQENYPDRLTAACFDRWDLPLSDMYTPYVFPSENGLRCGTRELNYGPHQWRGDFQFNIS RYSOOOLMETSHRHLLHAEEGTWLNIDGFHMGIGGDDSWSPSVSAEFOLSAGRYHYOLVW COK***

課題

- ・未知mRNA X(解析用配列にリンクがある)の コードするアミノ酸配列をファスタ形式で提出
 ・講義4課題2
 - 塩基配列をボックスにペースト
 - フレームを F に設定してRUN
 - M(メチオニン)から始まり*(終始コドン)で終わる配 列のうち、最も長いものを探す
 - 書式を整える(Seqretをつかう:次ページ)
 - メールの本分に貼り付けて、提出

配列情報(塩基配列・アミノ酸配列)のフォーマット変換

EMBOSS Seqret にアクセス (http://www.ebi.ac.uk/Tools/sfc/emboss_seqret)

・ボックスに貼り付ける

•PROTEIN/DNA/RNAを選択

•OUTPUT FORMATをPlain Textに設定

・Submitボタンで開始

Open Reading Frame の検索

- DNA配列から蛋白質をコードしている部分 (CDS)を探す。
- 長いORF (open reading frame)がCDSの有 力な候補。
- ・リンク集のORF Finder (NCBI)を使う。

ORF Finderにアクセスする

	ORF Finder (Open Reading Frame Finder)							
PubMed	Entrez BLAST OMIM Taxonomy Structure							
NCBI Tools for data mining GenBank sequence submission support and software FTP site download data and software	The ORF Finder (Open Reading Frame Finder) is a graphical analysis tool which finds all open reading frames of a selectable minimum size in a user's sequence or in a sequence already in the database. This tool identifies all open reading frames using the standard or alternative genetic codes. The deduced amino acid sequence can be saved in various formats and searched against the sequence database using the WWW BLAST server. The ORF Finder should be helpful in preparing complete and accurate sequence submissions. It is also packaged with the sequin sequence submission software. Enter GI or ACCESSION or frind Clear or sequence in FASTA format ^{Wayyaat} 1081 (gggadata gcattacgac accttgacgt tctgtcccc catgcaget gcatgataca trigcagtcc 101 acaccggcta cacagagtct atggactagt gcattacga accttgacgt tggactgataca gctttggcct 1261 cgagatgcgg tgagagcagg ctacgtgcag tgtacaagaa gtactcgaga ^{wayyaata}							
	FROM: TO: Genetic codes 1 Standard Genetic codes 1 Standard Comments and suggestions to: info@ncbi.nlm.nih.gov Credits to: Tatiana Tatusov and Roman Tatusov genetic code/tstandardで							

結果の表示(1)

100 base以上のORFを表示している

結果の表示(2)

結果の表示(3)

S NCBI ORF Finder (Open Reading Frame Finder)						
bMed Entrez BLAST OM	IM Taxonomy	Structure				
nymous						
m (blastp +) Database (nr +) ELAST -	with parameters Cogni	tor				
ew 1 GenBank + Redraw 50 + SixFrames	Frame from to I +3 601397 -3 8311094 -3 1260 -2 10241191 +1 565687	ength 1338 264 260 168 123				
	+1 • 271 393 -3 • 468 587 -1 • 15531645	123 120 93				
Length: 445 aa	+2	84 81				
60 stggagsagsgggagsasagtacatgasasgtagatgatcat M A T R A N V P I Q V R 6 A P 5 atagtagstgattagsasasasasggatgatgasg L V D 6 L K I Q N K N 6 A V K 50 sgtaggagtgacataggasatatggasatatgatta 3 R R A L 6 D I 6 N L V 3 V P	-2 ■15851659 +2 ■ 9771042 -1 ■ 731 784	66 54				
y5 ggagttasiggasaggasaggtasacattasicgacatt G V Q G G K A Q P P I N R P I 0 actogasgttacgtgacagtattaggasigacasactagaa T R 3 F R A Q L L A N A Q L F 						
ob agabagecbatebatgabgecbacbaggtteebgetettggteeb R K P I N G D N K V P A L G P 30 bagbgeebaettggtgebgbabeecbabbgggg K R Q P L A R R N P I A Q R A						
75 gttcagaagaagaatctagtggttaagcaacagacgaagcctgtt V Q K K H L V V K Q Q T K P V 20 gaagtgatcgaagacgaaggaggtgactaaaaaggaagtagtag E V I E T K K E V m K K F V a						
05 atgtaacataagaataagaaagtgacgtactcgtatgtacttagt M S P K N K K V T Y S S V L S 10 geteggagcaaagetgettgtggtatagtcaacaaaccaaagatt						
A R S K A A C G I V H K P K I 5 ategatattgatgaatetgacaaagataaccatttggetgeggtg I D I D E S D K D H H L A A V						
D gagtatgttgatgatatgtactcgttctataaagaagttgagaag E Y V D D M Y S F Y K E V I K 5 gagagtcagcotagaatgtacatgcacattcagactgaaatgaat						
E S Q P R M Y M H I Q T E M N O gagaagatgagaggatettgattgattggttaetagaagteae E K M R A I L I D W L L I V H						
 accaagettgageteaacettgaaactetgtaceteaecgteaac I K F E L N L F T L Y L T V N accastgategstecetetetgtgaaagetgtecetaaagagag T P P T T V V V V V V V V V V V V V V V						
I I J K F L 3 V K A V P K R F						

大腸菌ラクトースオペロンの構造

図 25・4 大腸菌 lac オペロン この DNA はラクトース代謝に 関与するタンパクをコードする遺伝子と、その発現を制御する遺 伝子部位を含む.Z遺伝子はβ-ガラクトシダーゼ、Y遺伝子はガ ラクトシドパーミアーゼ、A遺伝子はチオガラクトシドアセチル トランスフェラーゼをコードする.すぐ近くにあるI遺伝子は lac オペロンには属さないが lac オペロンの転写を抑制するリプレッ サーをコードする調節遺伝子である.

- lactose operonの配列全部(7kb以上)選択し、コピーする。ボックスにペーストし、ORFを検索。
- 4つのORFを探し出し、塩基の番号(最初と終わり)および、それぞれがコードするタンパク 質の名称を示せ。
- 講義4課題3

ORF Finder NEBCUTTER	NE	Bcutter V2.0	nttp://133.6.16.204/~biointo/kat	+
ORF Finder (Open R Finder)	eading Fra	me		
PubMed Entrez BLAST OMIM	Taxonomy	Structure		
Anonymous				
	Frame from to I	ength		
View 1 GenBank \$ Redraw 100 \$	+3 12844358	3075		
	+3 44105663	1254		
	+1 2021161	960		
	+3 57336338	606		
	-3 64416878	438		
	+3 🛛 12 329	318		
	-3	315		
	-1	312		
	+2 42324516	285		
	+3 9181181	264		U
	-1 9441195	252		
	-1 09/4/222 -3 3582 3818	249		
	-3 1 4484 4717	234		
	+1 2665 2886	222		
	-2 41624377	216		
	-3 40534256	204		
	+1 72767476	201		
	-2	195		
	+3 65256713	189		
	+2 🛛 464 634	171		
	-3 59886155	168		- -
	-3 29703128	159		//

演習

・出てきたアミノ酸配列と、DNAデーターベース 中に書いてある情報と比べてみよう。

- ・リンク集のGENESCANを使う。
- 配列はovalbuminを使う。

The GENSCAN Web Server at MIT

Identification of complete gene structures in genomic DNA

?

For information about Genscan, click here

Server update, November, 2009: We've been recently upgrading the GENSCAN webserver hardware, which resulted in some problems in the output of GENSCAN. We apologize for the inconvenience. These output errors were resolved.

イントロンとエキソンを塩基配列から推定する ・エキソン/イントロン境界部位の塩基配列 ・エキソンにはタンパク質をコードする読み枠がある

ovalbumin遺伝子の配列をボックスにペースト

This server provides access to the program Genscan for predicting the locations and exon-intron structures of genes in genomic sequences from a variety of organisms.						
This server can accept sequences up to 1 million base pairs (1 Mbp) in length. If you have trouble with the web server or if you have a large number of sequences to process, request a local copy of the program (see instructions at the bottom of this page).						
Organism: Vertebrate 🗧 Suboptimal exon cutoff (optional): 1.00 🗧						
Sequence name (optional):						
Print options: Predicted peptides only						
Upload your DNA sequence file (upper or lower case, spaces/numbers ignored): ファイルを選択 ファイルがていません						
Or paste your DNA sequence here (upper or lower case, spaces/numbers ignored):						
6901 gatgtgtttc cccttaaaaa gaagaaagct gaaaaactct gtcccttcca acaagaccca 6961 gagcactgta gtatcagggg taaaatgaaa agtatgttat ctgctgcatc cagacttcat 7021 aaaagctgga gcttaatcta gaaaaaaat cagaaagaaa ttacactgtg agaacaggtg 7081 caattcactt ttcctttaca cagagtaata ctggtaactc atggatgaag gcttaaggga						
7141 atgaaattgg actcacagta ctgagtcatc acactgaaaa atgcaacctg atacatcagc 7201 agaaggttta tgggggaaaa atgcagcctt ccaattaagc cagatatctg tatgaccaag 7261 ctoctocaga attagtcact cagattaagt tatgaccta cagatatctg tatgaccaag						
7321 tcctatgctg acaaggcaat tgcttgttct ctgtgttcct gatactacaa ggctcttcct 7381 gacttcctaa agatgcatta taaaaatctt ataattcaca tttctcccta aactttgact						
7441 caatcatggt atgttggcaa atatggtata ttactattca aattgttttc cttgtaccca 7501 tatgtaatgg gtcttgtgaa tgtgctcttt tgttccttta atcataataa aaacatgttt 7561 aagc						

結果の表示(1)

---- ---- ----

Predicted genes/exons:

Gn.Ex Type S .Begin ... End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr..

1.01	Intr	+	1637	1821	185	0	2	81	105	164	0.576	15.99
1.02	Intr	+	2073	2123	51	2	0	83	92	91	0.993	7.19
1.03	Intr	+	2705	2833	129	1	0	70	100	80	0.991	7.37
1.04	Intr	+	3234	3351	118	2	1	80	91	102	0.975	8.82
1.05	Intr	+	4310	4452	143	0	2	78	61	157	0.998	11.15
1.06	Intr	+	4784	4939	156	1	0	92	80	121	0.998	10.99
1.07	Term	+	6522	6917	396	2	0	69	42	244	0.974	11.99
1.08	PlyA	+	7546	7551	6							1.05

結果の表示(2)

Predicted peptide sequence(s):

>/tmp/10_26_10-00:33:54.fasta|GENSCAN_predicted_peptide_1|392_aa XNSEFTMGSIGAASMEFCFDVFKELKVHHANENIFYCPIAIMSALAMVYLGAKDSTRTQI NKVVRFDKLPGFGDSIEAQCGTSVNVHSSLRDILNQITKPNDVYSFSLASRLYAEERYPI LPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNGIIRNVLQPSSVDSQTAMV LVNAIVFKGLWEKAFKDEDTQAMPFRVTEQESKPVQMMYQIGLFRVASMASEKMKILELP FASGTMSMLVLLPDEVSGLEQLESIINFEKLTEWTSSNVMEERKIKVYLPRMKMEEKYNL TSVLMAMGITDVFSSSANLSGISSAESLKISQAVHAAHAEINEAGREVVGSAEAGVDAAS VSEEFRADHPFLFCIKHIATNAVLFFGRCVSP

Back to GENSCAN

演習

- ・解析結果を見てみよ。
- ・実際のイントロン、エキソンと比べ考察せよ。

- DNAデータの中に記述がある。

FEATURES	Location/Qualifiers
source	17564
	/organism="Gallus gallus"
	/mol_type="genomic DNA"
	/db_xref="taxon:9031"
exon	147
	/number=1
intron	481636
	/number=1
exon	16371821
	/number=2
CDS	join(16541821,20732123,27052833,32343351,
	43104452,47844939,65226917)
	/codon_start=1
	/product="ovalbumin"
	/protein_id="CAA23716.1"
	/db_xref="GI:808974"
	/db_xref="GOA:P01012"
	/db_xref="PDB:1JTI"
	/db_xref="PDB:10VA"
	/db_xref="PDB:1P1Z"
	/db_xref="PDB:1UHG"
	/db_xref="PDB:1VAC"
	/db_xref="UniProtKB/Swiss-Prot:P01012"
	/translation="MGSIGAASMEFCFDVFKELKVHHANENIFYCPIAIMSALAMVYL
	GAKDSTRTQINKVVRFDKLPGFGDSIEAQCGTSVNVHSSLRDILNQITKPNDVYSFSL
	ASRLYAEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNGIIRN
	VLQPSSVDSQTAMVLVNAIVFKGLWEKAFKDEDTQAMPFRVTEQESKPVQMMYQIGLF

転写因子結合部位の予測

- PLACEを使って、プロモーターのシス配列を探そう。
- シス配列:シス配列:プロモーター中で発現に影響を与える 短い塩基配列

PLACEにアクセスする

(A Database of Plant Cis-acting Regulatory DNA Elements) http://www.dna.affrc.go.jp/PLACE/

New PLACE A Database of Plant Cis-acting Regulatory DNA Elements

PLACE is a database of motifs found in plant cis-acting regulatory DNA elements, all from previously published reports. It covers vascular plants only (But since April 2006, we changed the policy. See the release note for PLACE 26.0). In addition to the motifs originally reported, their variations in other genes or in other plant species reported later are also compiled. The PLACE database also contains a brief description of each motif and relevant literature with PubMed ID numbers. DDBJ/EMBL/GenBank nucleotide sequence databases accession numbers will be also included. See 'sample record'. List of entries can be found in 'place.dat'.

Paste a FASTA format sequence, please.

Data file of Plant Cis-acting Regulatory DNA Elements: place.dat place.seq (30.0, 469 entries, Jan.8, 2007, © Kenichi Higo)

If you use this data file in published research, please cite: Higo, K., Y. Ugawa, M. Iwamoto and T. Korenaga (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27 (1): 297-300.

©2011-2015 National Institute of Agrobiological Sciences 234600

演習:使い方

- Wheat histone H4 geneのプロモーターを調べる
- DNAデータよりプロモーター部分を選択する。
- Featuresをみると、mRNAが669からとなっている。 \rightarrow 1-668をプロモーターとする。
- 1から668の配列をコピーする。
- DNA配列をボックスにペーストする。
- submitボタンで検索開始。

遺伝子の構造 転写を制御するプロモーター領域

コムギのヒストンH4遺伝子のプロモーター領域の配列をコピー

mRNA

CDS

[

<pre>/mol_type="genomic DNA" /db_xref="taxon:4565"</pre>
669>1200
/product= messenger RNA"
7361047
/note="unnamed protein product; histone H4"
/codon_start=1
/protein_id="CAA24924.1"
/db_xref="GI:21795"
/db_xref="GOA:P62785"
/db_xref="InterPro:IPR001951"
/db_xref="InterPro:IPR007125"
/db_xref="InterPro:IPR009072"
/db_xref="InterPro:IPR019809"
/db_xref="UniProtKB/Swiss-Prot:P62785"
/translation="MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGV
KRISGLIYEETRGVLKIFLENVIRDAVTYTEHARRKTVTAMDVVYALKRQGRTLYGFG
G"

ORIGIN

1	aagcttgaaa	tcggtattct	ggttggttgc	ctctgataag	cacgagatgg	gctcggggat	
61	gtcaataagc	tcgttcagtt	acacaaacag	tactgtacat	cagtgctgga	agtgctcgtt	
121	cagttaagtt	tctagcacca	attacctgac	cgccaagcta	ttacatgtaa	ttattgtaac	
181	gtgttatctg	aatgcttgaa	tcctaaaaaa	gtgaactcca	gtaagcgatg	aaaaatgagt	
241	atagcagtca	ctgcattcga	gcaagtttcc	tgtagattat	cttcagatct	ccagaacagt	
301	taggatgaag	gaataataat	cagtcattgg	aggacatgca	acagcaatgg	agcaagtata	
361	tccaattaac	ttaatattct	cccacataaa	aaatctcacc	aaccatttaa	aaaaaaaaaa	
421	aaaaaaaaat	cccaaaaata	caacaccaaa	cccacaccca	саасссаааа	atttcaaact	
481	accaccacaa	ctctaaccca	acccaccaaa	ccaccaatcc	aatctctcaa	ccacatcacc	
541	aatccacaac	atctctcccc	coontcocco	tctcaaccat	ccactccatc	cacatecoac	
601	0000000000	cacctcctcc	aacctctcaa	cccctttaaa	acaccettea	ccccacccaa	
001	ggeugeeueu		uucccccgu	ceceecuug	ucyceeeeg	ceccucecuy	
661	caaatcacag	caccagacgc	cacccaccac	cgttcctccc	atcccacact	cgctcgcagc	
721	tcgagatcgt	cggccatgtc	cgggcgcggc	aagggaggca	agggcctagg	caagggcggc	
781	gccaagcgcc	accggaaggt	cctccgcgat	aacatccagg	gcatcaccaa	gccggcgatc	
841	cggcggctgg	cgcggcgggg	cggcgtgaag	cgcatctcgg	ggctcatcta	cgaggagacc	
901	cacaacatac	tcaagatctt	cctcgagaac	atcatccaca	atgccgtcac	ctacaccgag	
961	cacacccacc	acaaaaccat	caccaccata	aacatcatct	acacactcaa	acaccaaaac	
1021	cacaccctct	acaacttcaa	caactaaaaa	ccaaccaacc	aacaaaaatc	actettate	
1001		act to coo coo			at the atter		
1001	yccycctgca	guttttagaa	geeegaegaa	geeegactt	gtttugttcg	CLULLECETE	
1141	tgtagtttga	actcaatcgt	ggaacaaagt	tattcgcata	tattgttgga	aatgaagctt	

Search boxにペースト

)GO [New regist]

Cross Search

[ja][en]

New PLACE A Database of Plant Cis-acting Regulatory DNA Elements

login

PLACE is a database of motifs found in plant cis-acting regulatory DNA elements, all from previously published reports. It covers vascular plants only (But since April 2006, we changed the policy. See the release note for PLACE 26.0). In addition to the motifs originally reported, their variations in other genes or in other plant species reported later are also compiled. The PLACE database also contains a brief description of each motif and relevant literature with PubMed ID numbers. DDBJ/EMBL/GenBank nucleotide sequence databases accession numbers will be also included. See 'sample record'. List of entries can be found in 'place.dat'.

Paste a FASTA format sequence, please.

Data file of Plant Cis-acting Regulatory DNA Elements: place.dat place.seg (30.0, 469 entries, Jan.8, 2007, © Kenichi Higo)

If you use this data file in published research, please cite: Higo, K., Y. Ugawa, M. Iwamoto and T. Korenaga (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res. 27 (1): 297-300.

©2011-2015 National Institute of Agrobiological Sciences 234603

結果の表示(1)

668 base pairs

```
(+) = Current Strand
 (-) = Opposite Strand
1
       AAGCTTGAAAATCGGTATTCTGGTTGGTTGCCTCTGATAAGCACGAGATGG
               (-) ARR1AT S000454 9 NGATT
                     (+) -10PEHVPSBD <u>S000392</u> 15 TATTCT
                           (-) MYBPLANT S000167 21 MACCWAMC
                           (-) MYBPZM S000179 21 CCWACC
                           (-) BOXLCOREDCPAL S000492 21 ACCWWCC
                             (-) REALPHALGLHCB21 S000362 23 AACCAA
                                          (+) GATABOX S000039 35 GATA
                                          (+) IBOX S000124 35 GATAAG
                                          (+) IBOXCORE S000199 35 GATAA
                                               (+) RHERPATEXPA7 S000512 40 KCACGW
                                                       (+) SITEIIATCYTC S000474 48 TGGGCY
51
       GCTCGGGGATGTCAATAAGCTCGTTCAGTTACACAAACAGTACTGTACAT
                (+) BIHD1OS S000498 60 TGTCA
                 (-) WBOXATNPR1 S000390 61 TTGAC
                 (-) WRKY710S S000447 61 TGAC
                   (+) CAATBOX1 S000028 63 CAAT
                                (-) MYB2AT S000177 76 TAACTG
                                (-) MYB2CONSENSUSAT S000409 76 YAACKG
                                (+) MYBCORE S000176 76 CNGTTR
                                              (-) CACTFTPPCA1 S000449 89 YACT
                                               (-) CURECORECR S000493 90 GTAC
                                               (+) CURECORECR S000493 90 GTAC
                                                (+) CACTFTPPCA1 S000449 91 YACT
                                                    (-) CURECORECR S000493 95 GTAC
                                                    (+) CURECORECR S000493 95 GTAC
101
       CAGTGCTGGAAGTGCTCGTTCAGTTAAGTTTCTAGCACCAATTACCTGAC
        (-) CACTFTPPCA1 S000449 102 YACT
                 (-) CACTFTPPCA1 S000449 111 YACT
                           (-) MYB2AT S000177 121 TAACTG
                           (-) MYB2CONSENSUSAT S000409 121 YAACKG
                           (+) MYBCORE S000176 121 CNGTTR
                                    (-) POLLENILELAT52 S000245 129 AGAAA
                                             (+) CCAATBOX1 S000030 138 CCAAT
                                              (+) CAATBOX1 S000028 139 CAAT
                                                (-) GT1CONSENSUS <u>S000198</u> 141 GRWAAW
                                                     (+) WBOXNTCHN48 S000508 146 CTGACY
                                                      (+) WRKY710S S000447 147 TGAC
                                                      (+) WBOXNTERF3 S000457 147 TGACY
```

151 CGCCAAGCTATTACATGTAATTATTGTAACGTGTTATCTGAATGCTTGAA

結果の表示(2)

Factor or Site Name	Loc.(Str.) Si	.gnal Sequence SITE #
ARRIAT	9 (-) NGATT	S000454
-10PEHVPSBD	15 (+) TATTCT	<u>\$000392</u>
MYBPLANT	21 (-) MACCWAMC	<u>S000167</u>
MYBPZM	21 (-) CCWACC	<u>S000179</u>
BOXLCOREDCPAL	21 (-) ACCWWCC	<u>S000492</u>
REALPHALGLHCB21	23 (-) AACCAA	<u>S000362</u>
GATABOX	35 (+) GATA	<u>\$000039</u>
IBOX	35 (+) GATAAG	<u>S000124</u>
IBOXCORE	35 (+) GATAA	<u>S000199</u>
RHERPATEXPA7	40 (+) KCACGW	<u>S000512</u>
SITEIIATCYTC	48 (+) TGGGCY	<u>S000474</u>
BIHDIOS	60 (+) TGTCA	<u>S000498</u>
WBOXATNPR1	61 (-) TTGAC	<u>\$000390</u>
WRKY710S	61 (-) TGAC	<u>S000447</u>
CAATBOX1	63 (+) CAAT	<u>\$000028</u>
MYB2AT	76 (-) TAACTG	<u>S000177</u>
MYB2CONSENSUSAT	76 (-) YAACKG	<u>S000409</u>
MYBCORE	76 (+) CNGTTR	<u>S000176</u>
CACTFTPPCA1	89 (-) YACT	<u>S000449</u>
CURECORECR	90 (-) GTAC	<u>S000493</u>
CURECORECR	90 (+) GTAC	<u>S000493</u>
CACTFTPPCA1	91 (+) YACT	<u>S000449</u>
CURECORECR	95 (-) GTAC	<u>S000493</u>
CURECORECR	95 (+) GTAC	<u>S000493</u>
CACTFTPPCA1	102 (-) YACT	<u>S000449</u>
CACTFTPPCA1	111 (-) YACT	<u>S000449</u>
MYB2AT	121 (-) TAACTG	<u>S000177</u>
MYB2CONSENSUSAT	121 (-) YAACKG	<u>S000409</u>
MYBCORE	121 (+) CNGTTR	<u>S000176</u>
POLLEN1LELAT52	129 (-) AGAAA	<u>S000245</u>
CCAATBOX1	138 (+) CCAAT	<u>\$000030</u>
CAATBOX1	139 (+) CAAT	<u>S000028</u>
GT1CONSENSUS	141 (-) GRWAAW	<u>S000198</u>
WBOXNTCHN48	146 (+) CTGACY	<u>\$000508</u>
WDKY710C	147 (+) 0000	0000447

結果の表示(3)

[ja][en]

国際塩基配列データベースで使用する核酸コード

シンボル	意味	説明
а	а	adenine
С	С	cytosine
g	g	guanine
t	t	thymine in DNA; uracil in RNA
m	a or c	amino
r	a or g	purine
w	a or t	
S	c or g	
У	c or t	pyrimidine
k	g or t	keto
v	a or c or g	not t
h	a or c or t	not g
d	a or g or t	not c
b	c or g or t	not a
n	a or c or g or t	any

53

- シロイヌナズナ(Arabidopsis thaliana)のACT2遺伝 子のプロモーター配列を調べてみる。
 (配列はリンク集にあります。)
- 推定されるTATA boxのうち、転写開始点に最も近いものの配列とポジション、ストランド(+/-)についてメールの本文にまとめて提出。
- 講義4課題4