CHAPTER 10 (TORQUE, 2ND LAW FOR ROTATION) CHAPTER 11 (TORQUE, ANGULAR MOMENTUM)

Torque and Angular Momentum

1. Torque
a. Definition
b. Work, Power, W-K Theorem
2. Angular Momentum \vec{L}
a. Newton's $2^{\text {nd }}$ Law in angular form
b. Systems
c. Conservation of \vec{L}

PRODUCING ROTATION ABOUT AN AXIS USING A FORCE

Opening a door

F_{1} and F_{2} will not produce rotation

Top view

Producing rotation around an axis is much easier when:

- the force is greater \rightarrow magnitude of \vec{F}
- the force is applied farther from the axis \rightarrow distance r from axis
- the direction of \vec{F} is closer to 90° with respect to the arm

ROTATION CAUSED BY TANGENTIAL COMPONENT OF F

\vec{F} causes rotation around the axis

But actually only the tangential component F_{t} of the force causes rotation

TORQUE

we must define a new quantity that describes the effectiveness
of an interaction at producing rotation about a specific axis.

This quantity is called torque τ and is a vector whose:

- magnitude is Distance from axis $X\left|\overrightarrow{F_{\text {tangential }}}\right|$ or (Moment arm* of $\overrightarrow{\boldsymbol{F}}$) X $|\overrightarrow{\boldsymbol{F}}|$
- direction is related to the direction of rotation (remember $\vec{\omega}$).
*Also called "lever arm"

MAGNITUDE OF THE TORQUE

$$
\tau=r F_{t}=r F \sin \varphi
$$

2 WAYS TO EXPRESS THE TORQUE MAGNITUDE

Line of action of \vec{F}

$\tau=r F_{t}=r(F \sin \varphi)$
$\tau=(r \sin \varphi) F=r_{\perp} F$

TORQUE AS A VECTOR

$$
\tau=r F \sin \varphi
$$

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

To get the cross-product right, use a xyz reference obeying the righthand rule:

$$
\vec{z}=\vec{x} \times \vec{y}
$$

Direction of $\overrightarrow{\boldsymbol{\tau}}$:

(2) Screw rule

Rotation direction that $\overrightarrow{\boldsymbol{F}}$ tends to induce

SIGN OF A TORQUE

$$
\begin{aligned}
& \vec{\tau}=\vec{r} \times \vec{F} \quad \text { Sign of } \tau \text { given by direction along } \mathrm{z} \text { axis } \\
& \tau=r F \sin \varphi \quad \text { Sign of } \tau \text { is in } \sin \varphi \\
& \varphi \text { is taken from } \vec{r} \text { to } \vec{F}, \text { negative when going clockwise }
\end{aligned}
$$

WORK DONE BY A TORQUE (PURE ROTATION)

$$
\begin{aligned}
& \begin{array}{ll}
\overrightarrow{\Delta s}_{\theta \uparrow} & \vec{F} \quad \\
\underbrace{\Delta W}=\vec{F} \cdot \overrightarrow{\Delta s}=F \Delta s \cos \theta \\
& \Delta s=R \Delta \theta
\end{array} \\
& \Rightarrow \Delta W=R \cos \theta F \Delta \theta=r_{\perp} F \Delta \theta=\tau \Delta \theta \\
& d W=\lim _{\Delta \theta \rightarrow 0} \Delta W=\tau d \theta \\
& r_{\perp}=R \cos \theta \\
& W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta \\
& \text { If } \tau \text { is constant, } \quad W=\tau\left(\theta_{f}-\theta_{i}\right) \\
& P=\frac{d W}{d t}=\tau \frac{d \theta}{d t}=\tau \omega
\end{aligned}
$$

WORK-KINETIC ENERGY THEOREM (PURE ROTATION)

$$
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W_{i \rightarrow f}\left(\overline{\tau_{n e t}}\right)
$$

When using conservation of energy in general, rotational kinetic energy should also be considered.

NEWTON'S SECOND LAW FOR PURE ROTATION

$$
\begin{gathered}
F_{t}=m a_{t} \\
\downarrow \\
\tau_{O}=F_{t} r=m a_{t} r \\
\downarrow \\
\tau_{O}=m(r \alpha) r=\left(m r^{2}\right) \alpha \\
\Downarrow \\
\tau_{O}=I_{0} \alpha
\end{gathered}
$$

For more than one force, we can generalize:

$$
\left.\tau_{0, n e t}=I_{0} \alpha \quad \text { (radian measure }\right)
$$

TRANSLATIONAL AND ROTATIONAL MOTION

Pure Translation (Fixed Direction)	Pure Rotation (Fixed Axis)		
Position	x	Angular position	θ
Velocity	$v=d x / d t$	Angular velocity	$\omega=d \theta / d t$
Acceleration	$a=d v / d t$	Angular acceleration	$\alpha=d \omega / d t$
Mass	m	Rotational inertia	I
Newton's second law	$F_{\text {net }}=m a$	Newton's second law	$\tau_{\text {net }}=I \alpha$
Work	$W=\int F d x$	Work	$W=\int \tau d \theta$
Kinetic energy	$K=\frac{1}{2} m v^{2}$	Kinetic energy	$K=\frac{1}{2} I \omega^{2}$
Power (constant force)	$P=F v$	Power (constant torque)	$P=\tau \omega$
Work-kinetic energy theorem	$W=\Delta K$	Work-kinetic energy theorem	$W=\Delta K$

ANGULAR MOMENTUM (SINGLE PARTICLE)

$$
\begin{array}{ll}
\text { Linear } & \text { Angular } \\
\vec{F} \\
\vec{p}=m \vec{v} \longrightarrow \vec{\tau} \longrightarrow \vec{r} \times \vec{F} \\
\vec{l}=\vec{r} \times \vec{p}
\end{array}
$$

Angular momentum defined: $\quad \overrightarrow{l_{O}}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v})$
In general, \vec{l} of the particle of mass m is defined about a point (O origin of \vec{r})

MAGNITUDE OF ANGULAR MOMENTUM

$$
\vec{l}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v}) \quad \vec{l} \text { of particle } A \text { about point } O
$$

$$
\ell=r m v \sin \phi=r p_{\perp}=r m v_{\perp}=r_{\perp} p=r_{\perp} m v
$$

PURE ROTATION - SINGLE PARTICLE

Single particle in pure rotation about axis Oz (oriented out of page)

$$
\overrightarrow{l_{O}}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v})=m r v \overrightarrow{u_{z}}
$$

$$
v=r \omega \quad \Rightarrow \overrightarrow{l_{O}}=m r^{2} \vec{\omega} \quad \begin{aligned}
& \text { unit vector } \\
& \text { along } Z
\end{aligned}
$$

$$
I_{O}=m r^{2} \Rightarrow \overrightarrow{l_{O}}=I_{O} \vec{\omega}
$$

Another way to write \vec{l} in this case:

$$
\overrightarrow{l_{O}}=I_{O} \vec{\omega}
$$

$\odot \overrightarrow{u_{z}}$

NEWTON'S SECOND LAW IN ANGULAR FORM FOR A SINGLE PARTICLE

$$
\begin{gathered}
\vec{l}=m(\vec{r} \times \vec{v}) \quad \rightarrow \quad \frac{d \vec{l}}{d t}=m\left(\vec{r} \times \frac{d \vec{v}}{d t}+\frac{d \vec{r}}{d t} \times \vec{v}\right) \\
\Rightarrow \frac{d \vec{l}}{d t}=m(\vec{r} \times \vec{a}+\vec{v} \times \vec{v}) \quad \rightarrow \frac{d \vec{l}}{d t}=m(\vec{r} \times \vec{a})=(\vec{r} \times m \vec{a}) \\
\rightarrow \frac{d \vec{l}}{d t}=\vec{r} \times \overrightarrow{F_{n e t}}=\sum(\vec{r} \times \vec{F})
\end{gathered}
$$

The (vector) sum of all the torques acting on a particle is equal to the time rate of change of the angular momentum of that particle. All taken with respect to point O.

ANGULAR MOMENTUM OF A SYSTEM OF PARTICLES

The total angular momentum $\overrightarrow{\boldsymbol{L}}$ of the system is the (vector) sum of the angular momenta $\overrightarrow{\boldsymbol{l}}$ of the individual particles (here with label i):

$$
\vec{L}=\overrightarrow{l_{1}}+\overrightarrow{l_{2}}+\overrightarrow{l_{3}}+\cdots+\overrightarrow{l_{n}}=\sum_{i=1}^{n} \overrightarrow{l_{i}}
$$

With time, the angular momenta of individual particles may change because of interactions between the particles or with the outside.

$$
\frac{d \vec{L}}{d t}=\sum_{i=1}^{n} \frac{d \overrightarrow{l_{i}}}{d t}=\sum_{i=1}^{n} \overrightarrow{\tau_{n e t, i}}
$$

Therefore, the net external torque acting on a system of particles is equal to the time rate of change of the system's total angular momentum $\overrightarrow{\boldsymbol{L}}$.

$$
\overrightarrow{\tau_{O, n e t}}=\frac{d \overrightarrow{L_{O}}}{d t} \quad \begin{aligned}
& \text { Newton's } 2^{\text {nd }} \text { law in angular } \\
& \text { form for a system of particles }
\end{aligned}
$$

Analogy with Newton's 2 ${ }^{\text {nd }}$ law in linear form: $\mathrm{F}=\mathrm{dp} / \mathrm{dt}$

CONSERVATION OF ANGULAR MOMENTUM

If total net torque is zero

If the net external torque acting on a system is zero, the angular momentum $\overrightarrow{\boldsymbol{L}}$ of the system is constant, no matter what changes take place

$$
\overrightarrow{\tau_{n e t}}=\frac{d \vec{L}}{d t}=0
$$ within the system.

$$
\vec{L}=a \text { constant } \quad \overrightarrow{L_{i}}=\overrightarrow{L_{f}}(\text { isolated system })
$$

If net torque along axis z is zero

If the net external torque acting on a system is zero along a given axis z, the angular momentum \boldsymbol{L}_{z} of the system is constant.

$$
\tau_{z, n e t}=\frac{d L_{z}}{d t}=0 \quad \Rightarrow L_{z}=a \text { constant }
$$

FORMULA SUMMARY

Torque: $\quad \vec{\tau}=\vec{r} \times \vec{F}$

$\begin{array}{c}\text { Work } \\ \text { (pure rotation): }\end{array} W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta$	$\begin{array}{l}\text { If } \tau \text { is constant: } W=\tau\left(\theta_{f}-\theta_{i}\right) \\ \text { Power: } P=\frac{d W}{d t}=\tau \frac{d \theta}{d t}=\tau \omega\end{array}$

$$
\begin{aligned}
& \begin{array}{l}
\text { W-K Theorem for } \\
\text { pure rotation: }
\end{array} \Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W_{i \rightarrow f}\left(\overline{\tau_{\text {net }}}\right)
\end{aligned}
$$

Angular momentum: $\vec{l}=\vec{r} \times \vec{p}$
Newton's 2nd law: $\quad \overrightarrow{\tau_{n e t}}=\frac{d \vec{L}}{d t} \quad$ Pure rotation: $\tau_{\text {net }}=I \frac{d \omega}{d t}=I \alpha$

