Course I

Lesson 2 Algebraic Equations and Functions

2A

- Algebraic Equations
- First Order Equations
- Second Order Equations

Algebraic Equation

Q. The weight of a box containing 8 apples is 1500g. The weight of the box is 300g. Assuming every apple has the same weight. What is the weight of one apple ?

A. Let the weight of one apple be x. Then we have 8x + 300 = 1500. Therefore x = 150 g. First order equation

Equation

Statement of equality between two expressions consisting of variand/or numbers is called an equation.

$$f(x) = g(x)$$

Algebraic Equation (Polynomial Equation)

$$a_0 x^n + a_1 x^{n-1} + a_{n-2} x^2 + \dots + a_{n-1} x + a_n = 0$$

First Order Equations

Linear Equation

$$ax + b = 0$$
 $(a \neq 0)$
 $\therefore ax = -b$ $\therefore x = -\frac{b}{a}$: the ro

the root of this equation.

Simultaneous Linear Equations

Simultaneous equations are a set of equations containing multiple variables.

Example 1. Solve the following equations 2x + y = 8x + y = 6

Ans. [Substitution method] From the second eq. y = -x + 6Substituting this to the first eq.

$$2x + (-x + 6) = 8$$
 $\therefore x = 2$

[*Elimination method*] Subtracting the second eq. from the first eq. x = 2Substituting this to the first eq. 4 + y = 8 $\therefore y = 4$ ³

Quadratic Equation (Second Order Polynomial Equation)

Quadratic Equation $ax^2 + bx + c = 0$ $(a \neq 0)$

(1) Solve by factoring

If we can factor it in the following form a(x-p)(x-q) = 0, the roots are x = p, x = q. Example 2. Solve the following equations (1) $x^2 + 8x + 12 = 0$ (2) $6x^2 - x - 15 = 0$

(1)
$$(x+2)(x+6) = 0$$
 $\therefore x+2 = 0$ or $x+6 = 0$
Therefore, $x = -2$ or $x = -6$
The roots are $x = -2, -6$
(2) $(2x+3)(3x-5) = 0$ $\therefore 2x+3 = 0$ $3x-5 = 0$ $\therefore x = -\frac{3}{2}$ $x = \frac{5}{3}$
The roots are $x = -\frac{3}{2}$, $x = \frac{5}{3}$

Quadratic Formula

(2) Solve by the Quadratic Formula

We cannot factor the following equation by observation.

Ex.
$$x^2 + 5x + 3 = 0$$

Quadratic formula

 $ax^2 + bx + c = 0 \quad (a \neq 0)$

If $b^2 - 4ac > 0$, there exist two distinct roots $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$

If $b^2 - 4ac = 0$, there exists one root (double root)

If $b^2 - 4ac < 0$, there is no real root. (*Refer to the next slide about the proof.*)

2a

 $x = -\frac{b}{-}$

Derivation of the Quadratic Formula

The quadratic formula is derived as follows.

$$ax^{2} + bx + c = 0$$

$$\therefore x^{2} + \frac{b}{a}x = -\frac{c}{a}$$

By completing the square, we have

That was too easy!

$$\left(x + \frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2} = \frac{b^2 - 4ac}{4a^2}$$
$$\therefore \quad x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$\therefore \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$\therefore \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$\therefore \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Exercise

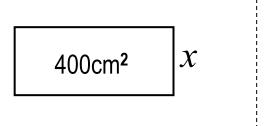
Exercise 1. There is a string of length 100cm. We want to make a rectangle with area 400cm² by this string. What are the lengths of the sides of this rectangle ?

400cm²	

Pause the video and solve the problem.

Answer to the Exercise

Exercise 1. There is a string of length 100cm. We want to make a rectangle with area 400cm² by this strong. What are the lengths of two sides of this rectangle ?



Ans.

Let the length of one side be χ .

Then, we have x(50 - x) = 400

$$\therefore \quad x^2 - 50x + 400 = 0$$

$$\therefore \quad x = \frac{50 \pm \sqrt{50^2 - 4 \times 1 \times 400}}{2 \times 1} = 40, \ 10^{-10}$$

The side lengths are 40 cm and 10 cm

[Note] When your got the answer, confirm that the solutions satisfy the physical meanings. In this problem, χ must be between 0cm and 50cm.

Course I

Lesson 2 Algebraic Equation and Functions

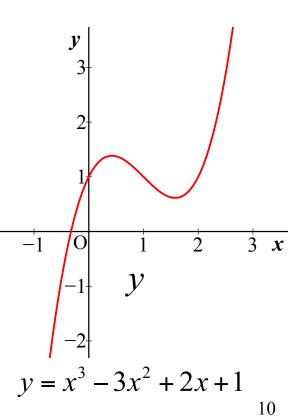
2B

- What is a Function ?
- Linear Functions.
- Quadratic Functions.

What is a Function ?

Function

- When a quantity \mathcal{Y} depends on or is determined by another quantity χ or quantities x_1, x_2, \dots, x_n , we say that \mathcal{Y} is a function of χ or x_1, x_2, \dots, x_n .
- This relationship is expressed by y = f(x) or $y = f(x_1, x_2, \dots, x_n)$
- Here, y is called the dependent variable and χ is the independent variable.



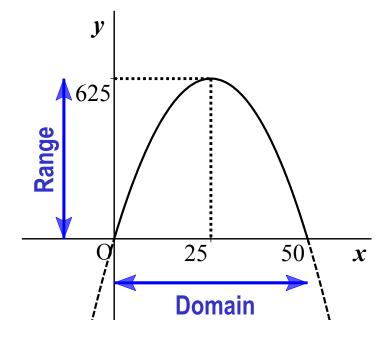
Example 3. Suppose that a rectangle is made by a string with length 100cm. Represent the area y by the length x of one side.

Ans.
$$y = (50 - x)x = -x^2 + 50x$$
 (50 > x > 0)

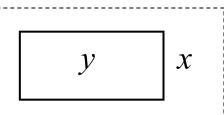
In this example, the area \mathcal{Y} is a function of the side length \mathcal{X} .

Domain : The complete set of *possible values* of the independent variable.

Range : The complete set of all possible *resulting values* of the dependent variable.



11



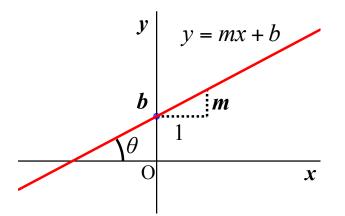
Example

Linear Function

- Linear Function (First-Degree Polynomial Function of One Variable)
 - 1. Slope-intercept form

$$y = mx + b \quad (m \neq 0)$$

m : slope
b : y-intercept point



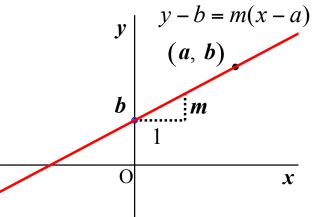
2. Point-slope form

$$y - b = m(x - a) \quad (m \neq 0)$$

The line passes the point (a, b)

3. General form

$$ax + by + c = 0$$



Strictly speaking

The third form ax + by + c = 0 is a linear equation but not a linear function.

Definition of a function:

• Function defined by y = f(x) has a meaning of projection (mapping) from x to y.

• Functions are mathematical ideas that take one or more variables and produce a variable.

Quadratic Function

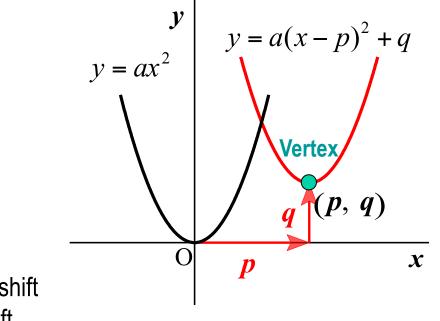
Quadratic Function (Second-Degree Polynomial Function)

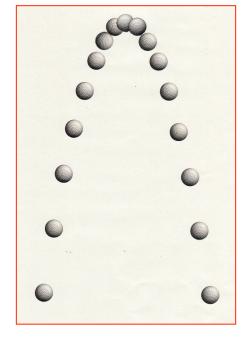
1. General form

$$y = ax^2 + bx + c \qquad (a \neq 0)$$

2. Standard Form

$$y = a(x - p)^2 + q$$
 $(a \neq 0)$





Trajectory of a thrown ball is a parabola represented by a quadratic function

•p = horizontal shift•q = vertical shift

Derivation of the Standard Form

Example 4. Derive the standard form of a quadratic equation from its general form.

Ans.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left\{x^{2} + 2\frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right\} + c$$

$$= a\left\{\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right\} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}$$

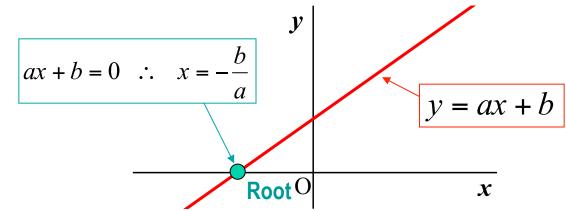
$$\therefore \quad p = -\frac{b}{2a}, \quad q = -\frac{b^{2} - 4ac}{4a^{2}}$$

15

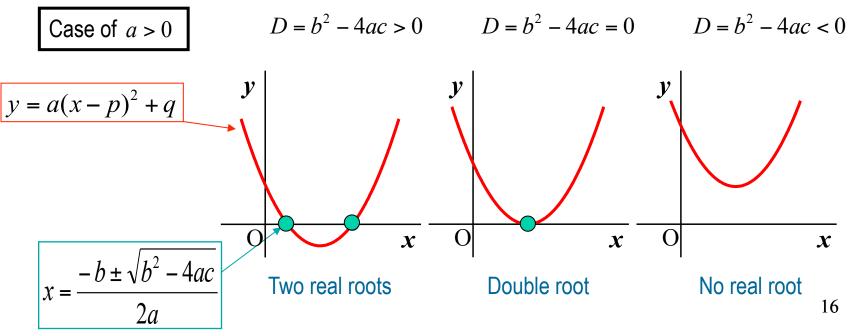
Equations and Graphs of Functions

Linear Equation and Linear Function

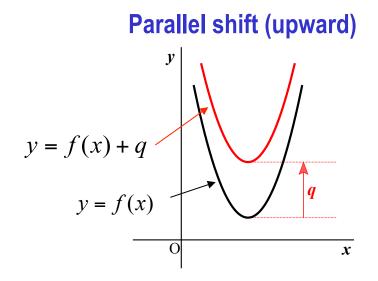
r

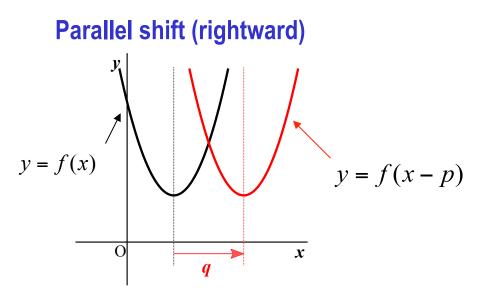


Quadratic Equation and Quadratic Function

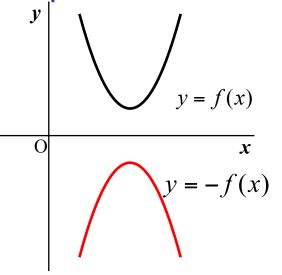


Shifting of a Graph





Symmetrical shift with respect to the x-axis

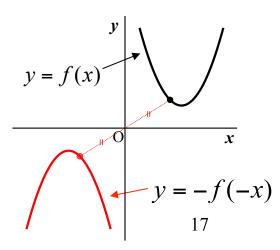


Symmetrical shift with respect to the y-axis

y = f(x)

y = f(-x)

Symmetrical shift with respect to the origin



Maximum and Minimum Values of a Function

Example 5. Find the maximum and minimum values of the following function. $y = x^2 - 4x + 9 \qquad (0 \le x \le 3)$

Ans.

$$y = x^{2} - 4x + 9 = (x^{2} - 4x + 4) + 5 = (x - 2)^{2} + 5$$

We can illustrate the graph of this function as shown in the right side Considering the domain, we have the coordinates of the following three points.

The left boundary : (0, 9) The vertex: (2, 5)

The right boundary: (3, 6)

Therefore, the maximum value is 9 and the minimum value is 5.

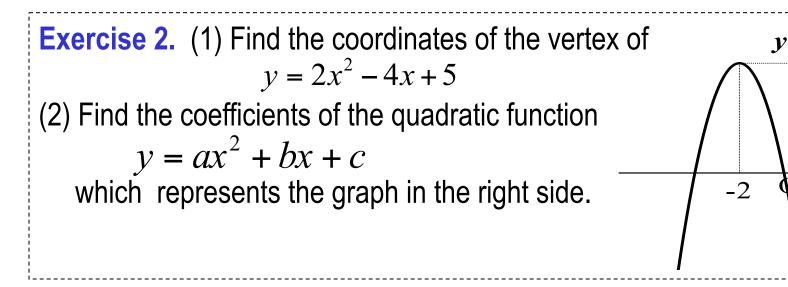
X

6

5

2.3

Exercise

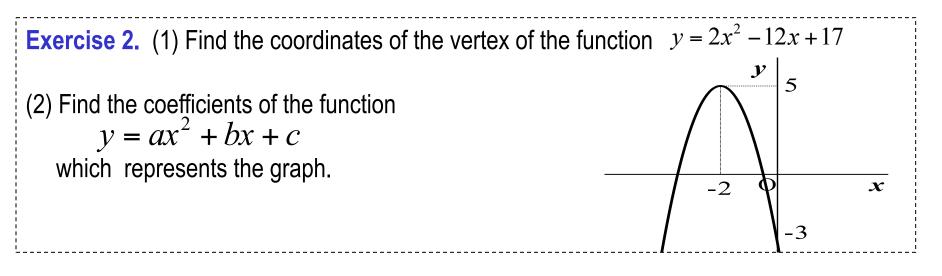


5

-3

x

Exercise



(1)
$$2x^2 - 12x + 17 = 2(x^2 - 6x) + 17 = 2\{(x - 3)^2 - 3^2\} + 17 = 2(x - 3)^2 - 1$$

Therefore, the coordinate of the vertex is (3, -1)

(2) From the coordinate of the vertex, the function is represented by $y = a(x+2)^2 + 5$

Substituting the coordinate of the \mathcal{Y} -intercept (0, -3) into this function, we have

$$-3 = a(0+2)^2 + 5$$
 : $a = -2$

Therefore,

$$y = -2(x+2)^2 + 5$$
 \therefore $y = -2x^2 - 8x - 3$

20