
Chapter 7

Higher K-functors, Bott periodicity

In this chapter, we first show that K1(C) is isomorphic to K0

(
S(C)

)
, where S(C) is

the suspension of a C∗-algebra C defined in (4.3). Higher K-groups are then defined
iteratively, and various exact sequences are considered. The Bott map is constructed
and Bott periodicity is stated. However, its full proof is not provided.

7.1 The isomorphism between K1(C) and K0

(
S(C)

)
Let us first recall that the suspension of an arbitrary C∗-algebra C is defined by

S(C) :=
{
f ∈ C([0, 1]; C) | f(0) = f(1) = 0

}
and observe that this C∗-algebra is equal to C0

(
(0, 1); C

)
. Clearly, the norm on S(C)

is defined by ∥f∥ := supt∈[0,1] ∥f(t)∥C, and f ∗(t) := f(t)∗. With any ∗-homomorphism
φ : C → Q between two C∗-algebras C and Q one can associate a ∗-homomorphism
S(φ) : S(C)→ S(Q) by [S(φ)(f)](t) := φ

(
f(t)

)
for any f ∈ S(C) and t ∈ [0, 1]. In this

way, S defines a functor from the category of C∗-algebras to itself, with S({0}) = {0}
and S(0C→Q) = 0S(C)→S(Q).

The following lemma is a classical statement about density. Its proof is left to the
reader, see also [RLL00, Lemma 10.1.1].

Lemma 7.1.1. Let Ω be a locally compact Hausdorff space and let C be a C∗-algebra.
For any f ∈ C0(Ω) and any a ∈ C one writes fa for the element of C0(Ω; C) defined by
[fa](x) = f(x)a for any x ∈ Ω. Then the set

span{fa | f ∈ C0(Ω), a ∈ C}

is dense in C0(Ω; C).

We can now show the main result about the functor S:

Lemma 7.1.2 (Exactness of S). The functor S is exact.
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Proof. Given the short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

one has to show that

0 −→ S(J ) S(φ)−→ S(C) S(ψ)−→ S(Q) −→ 0

is also a short exact sequence. In fact, the only non-trivial part is to show that S(ψ) is
surjective. However, this easily follows from the density of span{fb | f ∈ C0(Ω), b ∈ Q}
in S(Q) and from the fact that any element of this dense set belongs to the range of
S(C) by S(ψ), since S(ψ)(fa) = fψ(a) for any a ∈ C and any f ∈ C0

(
(0, 1)

)
.

Theorem 7.1.3. For any C∗-algebra C there exists an isomorphism

θC : K1(C)→ K0

(
S(C)

)
satisfying the following property: If φ is a ∗-homomorphism between two C∗-algebras C
and Q then the following diagram is commutative:

K1(C)
K1(φ) - K1(Q)

K0

(
S(C)

)
θC

?
K0(S(φ))- K0

(
S(Q)

)
.

θQ

?

(7.1)

Proof. Let us first consider the short exact sequence

0 −→ S(C) ι
↪−→ C(C) π−→ C −→ 0, (7.2)

where C(C) denotes the cone of C. Since C(C) is homotopy equivalent to {0}, as shown
at the end of Section 4.1, it follows that K0

(
C(C)

)
= K1

(
C(C)

)
= {0}. By applying

then the exact sequence of Abelian groups obtained in Proposition 6.3.3 to the above
short exact sequence of C∗-algebras one infers that the map δ1 : K1(C)→ K0

(
S(C)

)
is

an isomorphism. One can thus set θC = δ1.
Observe now that every ∗-homomorphism φ : C → Q induces a commutative dia-

gram
0 - S(C) - C(C) - C - 0

0 - S(Q)

S(φ)

?
- C(Q)

C(φ)

?
- Q

φ

?
- 0

where [C(φ)(f)](t) := φ
(
f(t)

)
for any f ∈ C(C) and t ∈ [0, 1]. By applying then the

naturality of the index map, see Proposition 6.1.5, one directly gets the commutative
diagram (7.1).
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For later use, let us provide a more concrete description of the isomorphism θC.
For that purpose, let u ∈ Un(C̃) with s(u) = 1n be given. Let v ∈ C

(
[0, 1];U2n(C̃)

)
be

such that v(0) = 12n, v(1) = diag(u, u∗), and s
(
v(t)

)
= 12n for any t ∈ [0, 1], and set

p := vdiag(1n, 0)v
∗. Then p ∈ P2n

(
S̃(C)

)
, s(p) = diag(1n, 0) and

θC([u]1) := [p]0 − [s(p)]0 .

For the justification of this formula observe first that any g ∈ K1(C) can be repre-

sented by an element u ∈ Un(C̃) with s(u) = 1n. Indeed, for any g ∈ K1(C) there exists
n ∈ N and w ∈ Un(C̃) such that g = [w]1. Then one can set u := ws(w)∗ and check
that s(u) = 1n and g = [u]1. Note that the latter equality holds since s(w)∗ ∼h 1n, and
this follows from Corollary 2.1.3 about the property that the unitary group in Mn(C)
is connected.

Now, for each u ∈ Un(C̃) such that s(u) = 1n we can find v ∈ C
(
[0, 1];U2n(C̃)

)
with v(0) = 12n, v(1) = diag(u, u∗) and s

(
v(t)

)
= 12n for every t ∈ [0, 1]. Indeed, by

Whitehead’s Lemma (Lemma 2.1.4) one can find z ∈ C
(
[0, 1];U2n(C̃)

)
with z(0) = 12n

and z(1) = diag(u, u∗). The element v is then defined by v(t) := s
(
z(t)

)∗
z(t) and has

the desired properties.

Let us finally observe that an element f ∈ C
(
[0, 1];M2n(C̃)

)
belongs to M2n

(
C̃(C)

)
if and only if s

(
f(t)

)
= f(0) for each t ∈ [0, 1], while f belongs to M2n

(
S̃(C)

)
if and

only if s
(
f(t)

)
= f(0) = f(1) for each t ∈ [0, 1]. Note also that if π is defined as in

(7.2), then π̃(f) = f(1) for any f ∈ M2n

(
C̃(C)

)
. With these identifications, it follows

that v ∈ U2n
(
C̃(C)

)
, and

π̃(v) =

(
u 0
0 u∗

)
, p = v

(
1n 0
0 0

)
v ∈ P2n

(
S̃(C)

)
.

By the definition of the index map, one infers that

θC([u]1) = δ1([u]1) = [p]0 − [s(p)]0,

as already mentioned.

7.2 The long exact sequence in K-theory

In this section we define the higher functor Kn for every integer n ≥ 2. Part of the
construction should be considered as a preliminary step for the six-term exact sequence
which will be obtained later on.

Definition 7.2.1. For each integer n ≥ 2 one defines iteratively the functor Kn from
the category of C∗-algebras to the category of Abelian groups by

Kn := Kn−1 ◦ S

where the suspension S is seen as a functor from the category of C∗-algebras into itself.
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More specifically, for any n ≥ 2 and for any C∗-algebra C one sets

Kn(C) := Kn−1

(
S(C)

)
and for each ∗-homomorphism φ : C → Q between C∗-algebras one also sets

Kn(φ) := Kn−1

(
S(φ)

)
.

Now, let us denote by Sn(C) the n-th iterated suspension of the C∗-algebra C. It is
inductively defined by Sn(C) := S

(
Sn−1(C)

)
. Similarly, if Q is another C∗-algebra

and if φ : C → Q is a ∗-homomorphism, then one gets a ∗-homomorphism Sn(φ) :
Sn(C)→ Sn(Q). This ∗-homomorphism is defined by induction by the relation Sn(φ) =
S
(
Sn−1(φ)

)
. The higher K-groups are then given by

Kn(C) = K1

(
Sn−1(C)

) ∼= K0

(
Sn(C)

)
, (7.3)

and
Kn(φ) = K1

(
Sn−1(φ)

)
. (7.4)

We shall also apply the convention that S0(C) = C and S0(φ) = φ.

Proposition 7.2.2. For each integer n ≥ 2, Kn is a half exact functor from the category
of C∗-algebras to the category of Abelian groups.

Proof. As already mentioned, the suspension S is an exact functor from the category of
C∗-algebras to itself, see Lemma 7.1.2. On the other hand, K1 is a half exact functor,
as shown in Proposition 5.2.3. Since the composition of two functors is again a functor,
we obtain by formulas (7.3) and (7.4) that Kn is a functor for each n ≥ 2. The half
exactness of Kn easily follows from the mentioned properties of S and of K1.

For the short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

let us now define the higher index maps. For that purpose and for n ≥ 1 one defined
inductively the index maps δn+1 : Kn+1(Q) → Kn(J ) as follows. By the exactness of
S, the sequence

0 −→ Sn(J ) S
n(φ)−→ Sn(C) S

n(ψ)−→ Sn(Q) −→ 0 (7.5)

is exact, and by Theorem 7.1.3 we have an isomorphism

θSn−1(J ) : Kn(J ) = K1

(
Sn−1(J )

)
→ K0

(
Sn(J )

)
.

As a consequence, there exists one and only one group homomorphism δn+1 making the
diagram

Kn+1(Q)
δn+1 - Kn(J )

K1

(
Sn(Q)

)
id

?
δ̄1- K0

(
Sn(J )

)
θ−1

Sn−1(J )

6

(7.6)
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commutative, where δ̄1 is the index map associated with the short exact sequence (7.5).
Note that the index maps δ1, δ2, . . . are natural in the following sense: Given a

commutative diagram of C∗-algebras

0 - J φ - C ψ - Q - 0

0 - J ′

γ

?
φ′

- C ′

α

?
ψ′

- Q′

β

?
- 0

(7.7)

with ∗-homomorphisms α, β, γ, then the diagram

Kn+1(Q)
δn+1- Kn(J )

Kn+1(Q′)

Kn+1(β)

?
δ′n+1- Kn(J ′) .

Kn(γ)

?

(7.8)

is commutative. To see this, let us apply the exact functor Sn to the diagram (7.7), let
δ̄1 and δ̄′1 be the index maps of the two resulting short exact sequences, and consider
the diagram

Kn+1(Q)
id- K1

(
Sn(Q)

) δ̄1- K0

(
Sn(J )

) θ−1

Sn−1(J )- Kn(J )

Kn+1(Q′)

Kn+1(β)

?
id- K1

(
Sn(Q′)

)
K1(Sn(β))

?
δ̄′1- K0

(
Sn(J ′)

)
K0(Sn(γ))

? θ−1

Sn−1(J )- Kn(J ′) .

Kn(γ)

?

(7.9)

The center square of this diagram commutes by naturality of the index map δ1, see
Proposition 6.1.5, and the right-hand square commutes by naturality of θ, as obtained
in Theorem 7.1.3. Hence, (7.9) is a commutative diagram. Since δn+1 corresponds to
the composition of the three horizontal homomorphisms, this implies that (7.8) is com-
mutative.

Proposition 7.2.3 (The long exact sequence in K-theory). Every short exact sequence
of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

induces an exact sequence of K-groups:

· · · Kn+1(ψ)−→ Kn+1(Q)
δn+1−→ Kn(J )

Kn(φ)−→ Kn(C)
Kn(ψ)−→ Kn(Q)

δn−→ Kn−1(J )
Kn−1(φ)−→ . . .

· · · δ1−→ K0(J )
K0(φ)−→ K0(C)

K0(ψ)−→ K0(Q),

where δ1 is the index map and δn its higher analogues for n ≥ 2.
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Proof. Let {δ̄n}∞n=1 be the index maps associated with the short exact sequence

0 −→ S(J ) S(φ)−→ S(C) S(ψ)−→ S(Q) −→ 0.

It follows directly from the definition of the index maps and Theorem 7.1.3 that the
diagrams

K2(J ) - K2(C) - K2(Q)
δ2 - K1(J ) - K1(C) - K1(Q)

K1

(
S(J )

)
id

?
- K1

(
S(C)

)
id

?
- K1

(
S(Q)

)
id

?

δ̄1

- K0

(
S(J )

)
θJ

?
- K0

(
S(C)

)
θC

?
- K0

(
S(Q)

)
θQ

?

and, for n ≥ 3

Kn(J ) - Kn(C) - Kn(Q)
δn- Kn−1(J ) - Kn−1(C) - Kn−1(Q)

Kn−1(S(J ))

id

?
- Kn−1(S(C))

id

?
- Kn−1(S(Q))

id

?
δ̄n−1

- Kn−2(S(J ))

id

?
- Kn−2(S(C))

id

?
- Kn−2(S(Q))

id

?

are commutative. The lower row in the first diagram is exact by Proposition 6.3.3, and
for both diagrams the exactness of the lower row implies the exactness of the upper
row. Exactness of the long exact sequence is then established by induction.

Example 7.2.4. The suspension S(C) = C0

(
(0, 1); C

)
of a C∗-algebra C is isomorphic

to C0(R; C) since R is homeomorphic to (0, 1). Note also that C0

(
X;C0(Y )

)
is isomor-

phic to C0(X × Y ) for any pair of locally compact Hausdorff spaces X and Y . As a
consequence, Sn(C) is isomorphic to C0(Rn), from which one infers that

Kn(C) ∼= K0

(
C0(Rn)

)
, Kn+1(C) ∼= K1

(
C0(Rn)

)
for any n ≥ 1.

7.3 The Bott map

From now on, the following picture for S(C) will be used:

S(C) :=
{
f ∈ C(T; C) | f(1) = 0

}
with T := {z ∈ C | |z| = 1}. Although this definition does not corresponds to the
previous one, the two algebras are clearly isomorphic.

Let us first consider a unital C∗-algebra C. For any n ∈ N∗ and p ∈ Pn(C) one
defines the projection loop fp : T→ Un(C) by

fp(z) := zp+ (1n − p), ∀z ∈ T.
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By identifying Mn

(
S̃(C)

)
with the set of elements f of C(T;Mn(C)) such that f(1)

belongs to Mn(C1C), by considering f − f(1) which belongs to Mn

(
S(C)

)
, we obtain

that fp belongs to Un
(
S̃(C)

)
. In addition, observe that the maps p 7→ fp and fp 7→ p

are continuous because of the equalities

∥fp − fq∥ = sup
z∈T
∥fp(z)− fq(z)∥ = 2∥p− q∥.

One then easily infers that the following properties hold:

(i) fp⊕q = fp ⊕ fq for any projections p, q ∈ P∞(C),

(ii) f0 = 1,

(iii) If p ∼h q in Pn(C) for some n ∈ N∗, then fp ∼h fq in Un
(
S̃(C)

)
.

Thus, from the universal property of K0, one gets a unique group homomorphism

βC : K0(C)→ K1

(
S(C)

)
such that βC([p]0) = [fp]1 for any p ∈ P∞(C). The map βC is called the Bott map.

If φ : C → Q is a unital ∗-homomorphism between unital C∗-algebras, then for any
z ∈ T one has

[S̃(φ)(fp)](z) = φ
(
fp(z)

)
= fφ(p)(z)

since [S̃(φ)(f)](z) = φ
(
f(z)

)
for any f ∈Mn

(
S̃(C)

)
. This implies that the diagram

K0(C)
K0(φ) - K0(Q)

K1

(
S(C)

)
βC

?
K1(S(φ))- K1

(
S(Q)

)
βQ

?

(7.10)

is commutative. This fact is referred to by saying that the Bott map is natural.
Suppose now that C is a non-unital C∗-algebra. Then we have the following diagram:

0 - K0(C) - K0(C̃) −−−−−→←−−−−− K0(C) - 0

0 - K1

(
S(C)

)
βC

?

...............
- K1

(
S(C̃)

)
βC̃

?
−−−−−→←−−−−−K1

(
S(C)

)
βC

?
- 0 .

(7.11)

The right square is commutative because of the commutativity of (7.10). It then follows
that there is a unique group homomorphism βC : K0(C) → K1

(
S(C)

)
making the left

square commutative. In addition, a direct computation leads to

βC
(
[p]0 − [s(p)]0

)
= [fpf

∗
s(p)]1 p ∈ P∞(C̃). (7.12)
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It then follows from (7.12) that (7.10) holds also in the non-unital case.
The main result of this section then reads:

Theorem 7.3.1 (Bott periodicity). The Bott map βC : K0(C) → K1

(
S(C)

)
is an

isomorphism for any C∗-algebra C.

Note that if C is non-unital, a diagram chase in (7.11) (or the five lemma) shows
that βC is an isomorphism if βC̃ and βC are isomorphisms. Hence it is sufficient to prove
the above theorem for unital C∗-algebras. The proof is rather long and technical and
will not be reported here. In fact, we shall only state a rather technical lemma from
which the main result will be deduced. For more details, we refer to [RLL00, Sec. 11.2]
or to [W-O93, Sec. 9.2].

In the following statements, the notation zk means the map T ∋ z 7→ zk ∈ T for
any natural number k.

Lemma 7.3.2 (Lemma 11.2.13 of [RLL00]). Let n be a natural number.

(i) For any u ∈ Un
(
S̃(C)

)
there are natural numbers m ≥ n and k and an element

p ∈ Pm(C) such that (zku)⊕ 1m−n ∼h fp in Um
(
S̃(C)

)
,

(ii) If p, q belong to Pn(C) with fp ∼h fq in Un
(
S̃(C)

)
, then there exist a natural

number m ≥ n and r ∈ Pm−n(C) such that p⊕ r ∼h q ⊕ r in Pm(C).

Proof of Theorem 7.3.1. We prove that the Bott map is both surjective and injective.

(i) For a given g ∈ K1

(
S(C)

)
, let n ∈ N and u ∈ Un

(
S̃(C)

)
such that g = [u]1.

By Lemma 7.3.2.(i), there exist two natural numbers m ≥ n and k and an element

p ∈ Pm(C) such that (zku)⊕1m−n ∼h fp in Um
(
S̃(C)

)
. By Whitehead’s Lemma (Lemma

2.1.4) one also infers that

f1nk
= z1nk ∼h zk1n ⊕ 1nk−1 in Unk

(
S̃(C)

)
.

As a consequence, one deduces that

βC
(
[p]0 − [1nk]0

)
= [fp]1 − [f1nk

]1 = [zku]1 − [zk1n]1

= [u]1 + [zk1n]1 − [zk1n]1 = [u]1 = g,

from which one infers the surjectivity of βC.
(ii) Let us now consider g ∈ K0(C) such that βC(g) = 0. Let n ∈ N∗ and p, q ∈ Pn(C)

such that g = [p]0− [q]0, see Proposition 3.2.4. One then infers that [fp]1 = [fq]1, which

implies that fp ⊕ 1m−n ∼h f1 ⊕ 1m−n in Um
(
S̃(C)

)
for some m ≥ n. Let us then set

p1 :=

(
p 0
0 0

)
∈ Pm(C), q1 :=

(
q 0
0 0

)
∈ Pm(C).
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Then fp1 = fp ⊕ 1m−n and fq1 = fq ⊕ 1m−n, and consequently fp1 ∼h fq1 in Um
(
S̃(C)

)
.

It follows then from Lemma 7.3.2.(ii) that there exist a natural number k ≥ m and
r ∈ Pk−m(C) such that p1 ⊕ r ∼h q1 ⊕ r in Pk(C). We then conclude that

g = [p]0 − [q]0 = [p1 ⊕ r]0 − [q1 ⊕ r]0 = 0,

from which one infers the injectivity of βC.

7.4 Applications of Bott periodicity

Bott periodicity makes it possible to compute the K-groups of several algebras. First
of all, let us state one of its corollary.

Corollary 7.4.1. For any C∗-algebras C and any integer n one has

Kn+2(C) ∼= Kn(C).

Proof. The case n = 0 corresponds precisely to the content of Theorem 7.3.1. The
general case follows then by induction on n because

Kn+2(C) = Kn+1

(
S(C)

) ∼= Kn−1

(
S(C)

)
= Kn(C)

for any n ≥ 1.

Example 7.4.2. We deduce from the previous corollary together with the content of
Example 7.2.4 that for any natural number n

K0

(
C0(Rn)

) ∼= Kn(C) ∼=
{
K0(C) ∼= Z n even
K1(C) = {0} n odd.

Similarly we have

K1

(
C0(Rn)

) ∼= {
{0} n even
Z n odd.

Example 7.4.3. For any integer n ≥ 0 consider the n-sphere defined by

Sn := {(x1, . . . , xn+1) ∈ Rn+1 | x21 + x22 + · · ·+ x2n+1 = 1}.

Clearly, the one-point compactification of Rn is homeomorphic to Sn for any n ≥ 1,

and therefore we have an isomorphism C̃0(Rn) ∼= C(Sn). In addition, observe from the
split exactness of K0, see Proposition 4.3.3, together with the equality K0(C) ∼= Z, see
(3.12), that for any C∗-algebra Q one has

K0(Q̃) ∼= K0(Q)⊕ Z.

It then follows that

K0

(
C(Sn)

) ∼= {
Z⊕ Z n even

Z n odd
K1

(
C(Sn)

) ∼= {
{0} n even
Z n odd.

Note that the equality K1(C) ∼= K1(C̃) of (5.2) has been used for the computation of the
K1-group.
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