Chapter 5

The functor K

In this chapter, we define the Kj-group of a C*-algebra C as the set of homotopy
equivalent classes of unitary elements in the matrix algebras over C. It will also be
shown that the functor K; is half exact and homotopy invariant. Since we shall prove
in the sequel that Ki(C) is naturally isomorphic to Kj (S (C)), some of the properties
of K will directly be inferred from equivalent properties of K. For that reason, their
proofs will be provided only once this isomorphism has been exhibited.

5.1 Definition of the Ki-group

Let us first recall that the set of unitary elements of a unital C*-algebra C is denoted
by U(C). For any n € N* one sets

U, (C) ==U(M,(C)) and  U(C) = | U.(C).

neN*

We define a binary operation @ on U (C): for u € U,(C) and v € U,,(C) one sets

u 0
UBv:i= (0 v) € Up1m(C).

In addition, a relation ~; on U (C) is defined as follows: for u € U,,(C) and v € U,,(C)
one writes u ~1 v if there exists a natural number & > max{m, n} such that u®1;_,, ~
v @ 1g_y, in Uk(C). With these definitions at hand one can show:

Lemma 5.1.1. Let C be a unital C*-algebra. Then:
(1) ~1 is an equivalence relation on Us(C),
(1i) ur~qy ud 1, for any u € U (C) and n € N,
(117) u® v ~1 v @ u for any u,v € Us(C),

() If u,v,u',v" € U (C), u~q u' and v ~1 V' then u @ v ~1 v &V,
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(v) If u,v € U,(C), then uv ~q vu ~1 ud v,
(vi) (uBv)Dw=ud (vdw) for any u,v,w € U(C).

Proof. The proofs of (i), (i7) and (vi) are trivial, and (v) follows from Lemma 2.1.4. For
the proof of (¢ii), let us consider u € U,,(C) and v € U,,(C), and set

z= (1(]” 16”) € Upim(C).
Then by taking (v) into account, one gets
v@u=z(udv)z ~ 2" 2(udv) =udo.
For the proof of (iv) it is sufficient to show that
(1) (ud 1) ® (v® 1) ~ udo for any u,v € U, (C) and any k, ¢ € N,

(IT) w ~p v and v ~p, v imply that u & v ~, v & v for all u,v’ € U,(C) and
v,v" € Uy (C).

Now, statement (I) follows from (i), (i7i) and (vi). To see that (IT) holds, let t — wu(t)
and t — v(t) be continuous paths of unitary elements with u = u(0), v’ = u(1), v = v(0)
and v = v(1). Then t — u(t) ®v(t) is a continuous path of unitary elements from u @ v
tou' @ . O

Definition 5.1.2. For any C*-algebra C one defines

K1(C) = Us(C)/ ~1 -

The equivalent class in K1(C) containing u € Us(C) is denoted by [u] 1. A binary oper-
ation on K;(C) is defined by [u]y + [v]1 := [u @ v}y for any u,v € Ux(C).

It follows from Lemma 5.1.1 that + is well-defined, commutative, associative, has
zero element [1]; = [1,,]; for any n € N*, and that

0= [ = [wu')y = [u]s + [y

for any u € U, (C). All this shows that (Kl(C),+) is an Abelian group, and that
—[u]y = [u*]; for any u € U (C).

We now collect these information and provide the standard picture of K. The
statements follow either directly from the definitions or from Lemma 5.1.1.

Proposition 5.1.3. Let C be a C*-algebra. Then

K1(C) = {[uls | v € U (C)},

and the map [-]; : Uso(C) — K;1(C) has the following properties:
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(1) [u@v]y = [uly + [v]1 for any u,v € U (C)
(i) (1) =0,

(111) If u,v € U,(C) and u ~p, v, then [u]; = [v]i,

(i) If u,v € U,(C), then [uv]; = [vuly = [u|; + [v]1,

(v) Foru,v € Ux(C), [u]y = [v]1 if and only if u ~; v.

We provide some additional information on the K;-group. The first one corresponds
to the universal property of K7, which is the analogue of Proposition 3.2.5 for Kj.

Proposition 5.1.4 (Universal property of K;). Let C be a C*-algebra and let H be an
Abelian group. Suppose that there exists v : U, (C) — H satisfying the three conditions:

(1) v(u@v) =v(u)+v(v) for any u,v € U(C),
(i) v(1) =0,
(iii) If u,v € U,(C) for some n € N* and if u ~y, v € Uy (C), then v(u) = v(v).

Then there exists a unique group homomorphism o : K1(C) — H such that the diagram

U (C) (5.1)

] N

«

15 commutative.

Proof. We first show that if u € U,(C) and v € U,,(C) satisfies u ~; v, then v(u) = v(v).
For that purpose, let k € N with & > max{m,n} such that u® 1;_, ~, v ® 14_,, in
Uy(C). By taking (i) and (ii) into accounts, one infers that v(1,) = 0 for any r € N*.
As a consequence, (i) and (iii) imply that

v(u) =v(ud lg,) =vw®d L) = v(v).

It follows from this equality that there exists a map « : K7(A) — H making the diagram
(5.1) commutative. Then, the computation

affuli +[vh) = a(fu@ vh) = v(u®v) = v(u) + v(v) = a([uls) + a([v])

shows that « is a group morphism. The uniqueness of « follows from the surjectivity of
the map [];. O
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If C is a unital algebra, it would be natural to define directly the Kj-group of C
by Ux(C)/ ~1 without using the algebra C. This is indeed possible, as shown in the
following statement. For that purpose, recall from the proof of Lemma 2.2.4 that if 1
denotes the unit of C and if 1 denotes the unit of C, then 1 := 1 — 1 is a projection in
C. In addition, C = C + Cl1, with al = 1a = 0 for any a € C. One also defines the x*-
homomorphism p : C — C by p(a+al) := a and extends it to a unital x-homomorphism
M, (C) = M,(C) for any n € N*. In this way one obtains a map Uso(C) — Uso(C).
Proposition 5.1.5. Let C be a unital C*-algebra. Then there exists an isomorphism
p: Ki(C) = Ux(C)/ ~1 making the following diagram commutative:

Us(C) —"— Us(C)
[

K1(C) — Un(C)) ~1
Proof. Observe first that the map g1 : Uso (C) — Use(C) is surjective. Then, it is sufficient
to show that

(I) p(u) ~1 p(v) if and only if u ~q v for any u, v € U, (C),

(A1) p(u @ v) = p(u) ® p(v) for any u, v € Us(C).
Clearly, (II) is a direct consequence of the definition of the map p. For (I) it is sufficient
to show that

(") p(u) ~p p(v) in U,(C) if and only if u ~, v in U,(C), for any u,v € U,(C) and
any n € N*.

For that purpose, observe that if u,v € U, (C) are such that u ~p, v, then u(u) ~p, u(v).
For the converse implication, assume that u, v € U, (C) and that p(u) ~, () in U, (C).
By the definition of p one can find uy and vy in U, (C1) such that v = u(u) + uy and
v = u(v) + vo. By Corollary 2.1.3 one infers that uy ~p, vy in M, (C1), which easily
proves that u ~j, v in M,(C). Indeed, one can consider the continuous path ¢ — a(t)
and t +— b(t) of unitary elements in M, (C) and M, (C1), respectively, with u(u) = a(0),
p(v) = a(l), ug = b(0) and uy = b(1). Then ¢ — a(t) + b(t) is a continuous path in
U, (C) with u = a(0) 4 b(0) and v = a(1) + b(1). O

When C is unital, we shall often identify K;(C) with U (C)/ ~1 through the iso-
morphism p of the previous proposition. If u is a unitary element of U,.(C), then [u];
will denote the element of K;(C) it represents under this identification. As a immediate
consequence of the previous proposition, one also obtains that for any C*-algebra:

K1(C) = K, (C). (5.2)

Let us finally conclude this section with the explicit computation of a K;-group.
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Lemma 5.1.6. One has K1(C) = K;(M,(C)) = {0} for any n € N*. More generally
one has Ki(B(H)) = {0} for any separable Hilbert space H.

Proof. 1t has been proved in Corollary 2.1.3 that the unitary group of M, (Mn((C)) =
M;,,(C) is connected for every n and k in N*. This implies that Us, (M, (C))/ ~1 is the
trivial group with only one element. From the description of K; for a unital C*-algebra
provided by Proposition 5.1.5 one infers that K;(M,(C)) = {0}.

Let us now consider any separable Hilbert space ‘H and first show that u ~j 1,, for
any unitary element u € M, (B(H)). Indeed, let us define ¢ : T — [0, 27) by

w(e?) =0, 0<6<2r.

Then ¢ is a bounded Borel measurable map, and z = €% for any z € T. As a
consequence, for any u € U, (B(H)) = U(B(H™)), one infers that ¢(u) = ¢(u)* in
B(H™), and that u = ™. By Lemma 2.1.2.(7) it follows that u ~y, 1,,. Consequently,
one deduces that u ~; 1, and then that U (B(H))/ ~1= {0}. In other words, one
concludes that K;(B(H)) = {0} as above. O

5.2 Functoriality of K;

This section is partially analogue to Section 3.3. Let us first consider two C*-algebras
C and Q, and let ¢ B C — Q be a x-homomorphism. Then ¢ induces a unital *-
homomorphism ¢ : C — Q which itself extends to a unital *-homomorphism ¢ :
M,(C) — M,(Q) for any n € N*. This gives rise to a map ¢ : U(C) — U(Q),
and one can set v : Us(C) = K1(Q) by v(u) = [@(u)]; for any u € U (C). It is
straightforward to check that v satisfies the three conditions of Proposition 5.1.4, and
hence there exists precisely one group homomorphism Ki(p) : K1(C) — K1(Q) with
the property

K (@) ([ulr) = [p(w)h (5.3)

for any u € U (C).

Note that if C and Q are unital C*-algebras, and if ¢ : C — Q is a unital *-
homomorphism, then K;(¢)([u]1) = [¢(u)]; for any u € U, (C).

The following proposition shows that K; is a homotopy invariant functor which
preserves the zero objects.

Proposition 5.2.1 (Functoriality and homotopy invariance of Ky). Let J, C and Q
be C*-algebras. Then

(Z) Kl(ldC) = id]ﬁ(C);
(i) If o : T — C and ¢ : C — Q are x-homomorphisms, then

Ki(op) = Ki(¢) o Ki(y),
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(iii) K1({0}) = {0},
() Ki(Ocwo) = O (o) k1(2)s
(v) If p,¢ : C — Q are homotopic x-homomorphisms, then Ki(p) = K (),

(vi) If C and Q are homotopy equivalent, then K,(C) is isomorphic to K1(Q). More
specifically, if (3.4) is a homotopy between C and Q, then Ki(p) : K1(C) — K1(Q)
and K1(v) : K1(Q) — K1(C) are isomorphisms, with Ki(¢)™' = K1(v).

Proof. The proof of (i) and (i) can directly be inferred from (5.3) together with the

—_~——

equalities ide = idz and (¢ 0 ) = ¥ 0 .

As already mentioned in (5.2), the equality K;(C) = K;(C) holds for any C*-algebra.
In particular, K;({0}) is isomorphic to K;(C), which is equal to {0} by Lemma 5.1.6.
This implies (7i7).

The zero homomorphism 0¢_, o can be seen as the composition of the maps C — {0}
and {0} — Q. Hence, (iv) follows from (iii) and (7).

(v) Let us now consider a path t — ¢(t) of *-homomorphisms from C to Q, with
©(0) = ¢ and (1) = v, and such that the map [0,1] 5t — ¢(t)(a) € Q is continuous,
for any a € C. The induced *-homomorphism @ : M,(C) — M,(Q) is unital, for any
n € N*, and the map [0,1] 3 ¢ — ¢(t)(a) € M,(Q) is continuous, for any a € M,(C).

Hence for any u € U,(C) one has in U,,(Q):
B(u) = @(0)(u) ~p G(1)(u) = P(u).
As a consequence, one infers that
Er(@)([uh) = [p(u)]y = ()]s = K (v)([u]y),
which proves (v).
Finally, statement (vi) is a consequence of (7), (i7) and (v). O
Let us also prove a short lemma which will be useful in the next proposition.

Lemma 5.2.2. Let C and Q be C*-algebras, let v : C — Q be a x-homomorphism, and
let g € Ker (K1(y)). Then

(i) There exists an element u € Uss(C) such that g = [u]y and G(u) ~y 1,

(ii) If @ is surjective, then there exists u € Uso(C) such that g = [u]y and G(u) = 1.

Proof. (i) Choose v € Uy, (C) such that g = [v];. Then [@(v)]; = 0 = [1,,]1, and hence
there exists an integer n > m such that

@(U) @ ]-nfm ~h ]-m @ 1n7m == ]_n

Set u =0 & 1,_p, and then [u]; = [v]; = g and $(u) = G(v) B 1m ~n 1.
(i) Use (i) to find v € Uy (C) with g = [v]; and @(v) ~; 1. By Lemma 2.1.7.(ii)

and (7), there exists w € U,,(C) such that ¢(w) = p(v) and w ~p, 1. Then v := w*v has
the desired properties. O
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Proposition 5.2.3 (Half exactness of K7). Every short exact sequence of C*-algebras

0—J 5090,

induces an exact sequence of Abelian groups

Ki(y) K1(¥)
Ki(J) —— Ki(C) —— Ki1(9Q),

that is Ran (Ki(y)) = Ker (K1 (¢)).

Proof. By functoriality of K; one already knows that

Ki(¢) o Ki(p) = Ki(Y o) = Ki(0g50) = Ok, (1)~ K1(Q)

which implies that Ran (K1(y)) C Ker (K1(¢)).

Conversely, assume that g € Ker (K;(¢)). According to Lemma 5.2.2.(ii) there
exist n € N* and u € U,(C) such that ¢ = [u]; and ¥ (u) = 1. Then, by Lemma
4.3.1.(ii) there exists v € M,(J) such that ¢(v) = w. Finally, [v]; belongs to K(7),
and K3 () ([v]) = [(0)] = [uls = g. O

Let us now mention that the functor K; is split exact and preserves direct sums
of C*-algebras. These statements can be proved in the same way as for the functor
Ky in Propositions 4.3.3 and 4.3.4. These statements also follow from the isomorphism
K1(C) = Ko(S(C)) which will be established later on. For this reason, we state these
results without providing a proof.

Proposition 5.2.4 (Split exactness of K;). Every split ezact sequence of C*-algebras

P
0—TJ SC——Q—0
>\

induces a split exact sequence of Abelian groups

Ki(p) K1)
Ki(A

Proposition 5.2.5. For any C*-algebras C; and Cy the Ky-groups K1(C; @ Cs) and
K1 (C)® K1 (Co) are isomorphic. More precisely, if 1; : C; — C1®Cy denotes the canonical
inclusion x-homomorphism, then the group morphism is provided by the map

Ki(C1) ® K1(C2) 2 (9, h) = Ki(1)(g) + Ki(2)(h) € K1(C1 @ Ca).

We close this section with an important result for the computation of Kj-groups,
which is the analogue for K of the content of Proposition 4.3.7 on the stability of K.
Note that the proof of the following statement can be proved from its analogue for K
by taking the isomorphism K(C) = Ky(S(C)) into account.
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Proposition 5.2.6 (Stability of K;). Let C be a C*-algebra and let n € N*. Then
K;(C) is isomorphic to K, (Mn(C)) In addition, for any separable Hilbert space H the
following equality holds

Ki(C®K(H)) = Ki(C). (5.4)
Corollary 5.2.7. For any separable Hilbert space H one has K;(K(H)) = {0}.

Proof. From equation (5.4) one infers that K (K(#)) = K;(C), but K1(C) = {0} by
Lemma 5.1.6. [l

Extension 5.2.8. Work on the relations between Ky-group and determinant for unital
Abelian C*-algebras, as presented in [RLL0O0, Sec. 8.3].



