Chapter 4

Kg-group for an arbitrary
C*-algebra

In this chapter, we extend the construction of the Ky-group for a non-unital C*-algebra,
and show that this definition is coherent with the previous one when the algebra has a
unit.

4.1 Definition and functoriality of K

Definition 4.1.1. Let C be a non-unital C*-algebra, and consider the associated split
exact sequence
0—C—sC —— C—0.
A

One defines Ko(C) as the kernel of the homomorphism Ko(m) : Ko(C) — Ko(C).

Clearly, Ky(C) is an Abelian group, being a subgroup of the Abelian group Ky(C).
In addition, consider p € Py (C) and the equivalence class [p]y € Ky(C). Since by (3.3)
one has

Ko(m)([plo) = [7(p)]o = 0,
it follows that [p]o belongs to Ky(C). In this way, we obtain a map [-]o : Peo(C) — Ko(C).
Now, for any C*-algebra, unital or not, we have a short exact sequence

0 — Ko(C) — Ko(C) N Ko(C) — 0. (4.1)

Note that the map Ko(C) — Ko(C) corresponds to Ky(:) when C is unital while it
simply corresponds to the inclusion map when C is not unital. Note also that in the
unital case, it has been proved in Lemma 3.3.5 that (4.1) is indeed a short exact sequence
while for the non-unital case, this follows from the definition of Ky(C).

When C is unital, Ko(C) is isomorphic to its image in Ko(C) through the map Ko (2),
and Ky(¢) maps [plo € Ko(C) to [plo € Ko(C) for any p € Po(C). Since the image of
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36 CHAPTER 4. K,-GROUP FOR AN ARBITRARY C*-ALGEBRA

Ko(1) is equal to the kernel of Ky(), the identity
Ko(C) = Ker (K()(TF))

holds, for both unital and non-unital C*-algebras (with a slight abuse of notation).

Let us now consider a x-homomorphism ¢ : C — Q between C*-algebras, and
let ¢ : C — Q be the corresponding *-homomorphism introduced right after Exercise
1.1.10. The commutative diagram

c—< .c—"™ .C

Q Q C.

to TQ

induces by functoriality of K for unital C*-algebras the following commutative diagram:

ot Ko(ﬂ'c)

Ko(C) —— Ko(C) —— Ko(C)

Ko(p) Ko(p) idk,(c)

Ko(Q) — Ko(Q) Ko(C)

Ko(mg)

where Ky(¢) corresponds to the restriction to Ky(C) of the group homomorphism
Ko(@) : Ko(C) — Ko(Q). Note that if C and Q are unital, then the above group
homomorphism Ky(p) corresponds to the one already introduced in Section 3.3. Note

also that the equality

Ko(@)(Iplo) = [e(P)lo VP € Pw(C)

holds, no matter if C is unital or not.

We can now state in a greater generality the functorial properties of K which have
already been discussed in Proposition 3.3.1 for unital C*-algebras only. The proof of
this statement consists in minor modifications of the one already presented in the unital
case.

Proposition 4.1.2 (Functoriality of Ky (general case)). Let J, C and Q be C*-algebras.
Then

(i) Ko(ide) = idk,(c),
(i) If o : T — C and ¢ : C — Q are x-homomorphisms, then

Ko(1 o) = Ko(¢) o Ko(o),
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(iii) Ko({0}) = {0},
(v) Ko(Oc—0) = Oxo(c)—Ko(0)-

Let us now mention that the homotopy invariance of Ky, as already presented in
Proposition 3.3.2 for the unital case, also extends to the present more general setting:

Proposition 4.1.3 (Homotopy invariance of K, (general case)). Let C and Q be C*-
algebras.

(i) If v, : C — Q are homotopic x-homomorphisms, then Ky(¢) = Ko(¢),

(i1) If C and Q are homotopy equivalent, then Ky(C) is isomorphic to Ko(Q). More
specifically, if (3.4) is a homotopy between C and Q, then Ky(p) : Ko(C) — Ko(Q)
and Ko(v) : Ko(Q) — Ko(C) are isomorphisms, with Ko(¢)™' = Ko(v).

Let us end this section with a construction which will play an important role in the
sequel. For any C*-algebra C one defines the cone C(C) and the suspension S(C) by

0(€) = {f € C(0,1:C) | £(0) =0}, (4.2
S(C) = {f € C([0,1];C) | f(0) = f(1) = 0}. (4.3)

We have then a short exact sequence
0— S(C)— C(C) = ¢ —0, (4.4)

where ¢ is the inclusion mapping, and 7(f) = f(1) for any f € C(C).
Note that the cone C(C) is homotopy equivalent to the C*-algebra {0}. Indeed, for
any t € [0, 1] let us define the *-homomorphism ¢(t) : C(C) — C(C) by

e (N](s) = f(st)  [feC(C), s€0,1].

Clearly, the map [0,1] 2t — (¢(¢))(f) € C(C) is continuous, and therefore one has

Oce)y—coie) = ©(0) ~n (1) = ide(e).

It then easily follows that the C*-algebra C'(C) is homotopy equivalent to {0}, and then
from Proposition 4.1.3.(ii) and Proposition 4.1.2.(iii) that Ko(C(C)) = {0}.

4.2 The standard picture of the group K|

In Proposition 3.2.4, an explicit formulation of the Ky-group for a unital C*-algebra
was provided. In this section, we present a similar picture for general C*-algebras. This
formulation is very convenient whenever explicit computations involving Ky-groups are
performed.
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Consider an arbitrary C*-algebra C and the corresponding split exact sequence

0—>C<$>CN<?>(C—>O.

One then defines the scalar mapping s by
si=Xorm:C—C, ,

i.e. s(a+ al) = al for any a € C and with 1 the unit of C. Note that 7(s(a)) = w(a)
for any a € C, and that a — s(a) € C. As usual, we keep the notation s for the induced

«-homomorphism M, (C) — M, (C). Its image is the subset M, (C) of M, (C) consisting
of all matrices with scalar entries. For short, any element a € M,,(C) or a € M,(C) will
be called a scalar element if a = s(a). On the other hand, note that a — s(a) belongs
to M,(C) for any a € M,(C).

The scalar mapping is natural in the sense that if C and Q are C*-algebras, and if
v : C — Q is a x-homomorphism, we then get the commutative diagram:

~ s ~

C C

Q Q.

The following proposition contains the standard picture of Kgy(C):

Proposition 4.2.1. For any C*-algebra C one has

Ko(C) = {[plo — [s()lo | p € P(C)}. (4.6)

Moreover, one has

(1) For any pair of projections p,q € Px(C) the following conditions are equivalent:

(a) [plo — [s(p)]o = lalo — [s(@)]o.
(b) There exist natural numbers k and € such that p & 1y ~o ¢ B 1y in Py (5),

(c) There exist scalar projections vy and o such that p ® 1 ~¢ q D ry.

(ii) If p € Pso(C) satisfies [plo—[s(p)lo = 0, then there exists a natural number m with
p@ 1m ~ S(p) D 1m'

(111) If ¢ : C — Q is a x-homomorphism, then

Ko(¢) ([Pl = [s(p))o) = [¢(p)], = [s(2(p))],

for any p € Px(C).
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Proof. To prove that equation (4.6) holds, observe first that for any p € P (C) it follows
from the equality m = 7 o s that

Ko(m)([plo — [s(p)]o) = [7(p)]o — [(7 0 5)(p)]o = 0.

From it, one infers that [p]o — [s(p)]o belongs to Ky(C) for any p € P (C). N
Conversely, let g be an arbitrary element of Ky(C), and let n € N* and p/, ¢’ € P,(C)
be such that g = [p']o — [¢]o, see (3.2). Then set

(Y 0 (0 0
pi= (0 ln—q’) and ¢q:= (0 1n).

Then one has p, q € P, (C) and
Plo — [a)o = [P']o + [1n — o — [Ln)o = [P0 — [d]o = 9,

where we have used that [1,, — ¢']o + [¢/]o = [Ln]o- Since g = s(q) and Ky(7)(g) = 0 we
deduce that

[5(P)]o — [alo = [5(p)]o — [s(a)]o = Ko(s)(g) = (Ko(A) o Ko())(g) = 0.

This shows that g = [plo — [¢]o = [plo — [s(p)]o-

i) Let p,q € Px(C) be given, and suppose that [plo — [s(p)]lo = [glo — [s(¢)]o- Then
[p ® s(¢9)lo = [¢® s(p)lo, and hence p @ s(q) ~s ¢ @ s(p) in Po(C), by Proposition
3.2.4.(v). By the observations made after Definition 3.2.3, there exists n € N such that
p®s(q) B, ~¢ ¢ds(p)®1,. This shows that (a) implies (¢). To see that (¢) implies (b)
note that if r; and ry are scalar projections in P, (5) of dimension k£ and ¢, respectively,
then 7 ~g 15 and 15 ~g 1, (see Exercise 3.1.4), and hence p & 1j ~¢ ¢ © 1y.

To see that (b) implies (a) note first that

[p® 1i]o — [s(p ® 1k)]o = [Plo + [1klo — [s(P)]o — [1x]o = [Plo — [s(P)]o-

Therefore, it is sufficient to show that [plo — [s(p)lo = [¢lo — [s(q)]o when p ~q g.
Suppose accordingly that p = v*v and ¢ = vv* for some partial isometry v € an(CN)
Let s(v) € M,,,,(C), viewed as a subset of M,, ,(C), be the matrix obtained by applying
s to each entry of v. Then s(v)*s(v) = s(p) and s(v)s(v)* = s(q), and so s(p) ~o s(q).
As a consequence, [plo = [q]o and [s(p)]o = [s(¢)]o, and this proves that (a) holds.

ii) If [plo — [s(p)]o = 0, then p ~, s(p) by Proposition 3.2.4.(v), and there exists
m € N such that p®1,, ~ s(p)®1,,, see the observations made juste before Proposition
3.2.4. Note that p ® 1,, ~ s(p) ® 1,, is equivalent to p ® 1,, ~o s(p) & 1,, since p and
s(p) belong to the same matrix algebra over C.

iii) By definition one has

Ko(0) ([Plo — [s(P)]o) = Ko(®)([plo — [s(p)]
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The following slightly technical statement will be used in the next section. If proof
is provided in [RLLO00, Lem. 4.2.3].

Lemma 4.2.2. Let C, Q be C*-algebras, and ¢ : C — Q a x-homomorphism. Let also
g be an element of Ky(C) which belongs to the kernel of Ko(p). Then:

(i) There exist n € N*, p € P,(C) and a unitary element v € M,(Q) such that
9= [plo — [s(0)]o and ug(p)u* = s(2(p)).

(11) If p is surjective, one can choose u =1 in the point ().

4.3 Half and split exactness and stability of K

Let us start this section with an easy lemma which described what happens when a
unit is added to a short exact sequence. The proof of this lemma is left as an exercise.

Lemma 4.3.1. Consider the short exact sequence of C*-algebras

0—J %5090,

and let n € N*. Then

(1) The map @ : M, (TJ) — M,(C) is injective,
(ii) An element a € M,(C) belongs to Ran(@) if and only if ¢¥(a) = s(zZ(a)), with
S é — é the scalar mapping.

Proposition 4.3.2 (Half exactness of Ky). Every short exact sequence of C*-algebras

0—J 5090,

induces an exact sequence of Abelian groups

Ko(y) Ko ()
Ko(J) — Ko(C) —— Ko(Q),

that is Ran (Ko(¢)) = Ker (Ko(v)).
Proof. By functoriality of K, one already knows that

Ko(9) o Ko(p) = Ko(¢ 0 ¢) = Ko(0g70) = O(9)+K0()5
which implies that Ran (Ko()) C Ker (Ko(v)).
Conversely, assume that g € Ker (Ko(¢)). According to Lemma 4.2.2.(i4) there exist
n € N* and p € P,(C) such that g = [plo — [s(p)]o and ¥ (p) = 8(1;(]?)) Then by Lemma

4.3.1.(7i) there exists e € M, (J) such that @(e) = p. Since by Lemma 4.3.1.(7) the map
¢ is injective, one infers that e € Pn(j ). Therefore,
g=[8(e)]o — [5(2(e))], = (o — [s(P)]o) = Kole)([elo — [s(e)lo) ~ (4.7)

which thus belongs to Ran (Ko(¢)). Note that the standard picture of Ko(7) has been
used in the last equality of (4.7). These two inclusions lead to the statement. ]
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Proposition 4.3.3 (Split exactness of Ky). Fvery split exact sequence of C*-algebras

P
0—J 5C—=0Q0—0
A

induces a split exact sequence of Abelian groups

Ko(p) Ko)
Ko(N)

Proof. 1t follows from Proposition 4.3.2 that the equality Ran (Ko(p)) = Ker (Ko(t))
holds. In addition, from the functoriality of K, one infers that

idg,(0) = Ko(idg) = Ko(¢)) o Ko()

which implies that K((1)) is surjective and the splitness of the sequence. As a conse-
quence, it only remains to show that Ky(y) is injective.

For the injectivity, let us consider g € Ker (Ko(go)). By Lemma 4.2.2.(7), there exist
n e N, p e Pu(J) and a unitary element u € M,(C) such that ¢ = [plo — [s(p)]o
and u@(p)u* = 5(@( ). Set v := (X oY) (u*)u, and observe that v is a unitary element
of M,(C) and ¥(v) = 1. By Lemma 4.3.1.(ii) there exists an element w € M, (J)
with @(w) = v. In addition, since ¢ is injective, w must be unitary. Then, from the
computation (use Lemma 4.3.1.(4¢) in the second last equality)

@(wpw*)zv?() = (Aou)(u)s(8(p)) (Ao ¥)(u)

= (Ao ) (w's(a(p)u) = Ao t)(2(p) = s(2(p) = &(s(p))

and by the injectivity of ¢ we conclude that wpw* = s(p). This shows that p ~, s(p)
in M,,(J), and hence that g = 0. O

Let us study the behavior of K with respect to direct sum of C*-algebras.

Proposition 4.3.4. For any C*-algebras C; and Cy the Ky-groups Ko(Cy & Co) and
Ky(C1) & Ko(Cy) are isomorphic.

Proof. For i € {1,2}, recall that +; : C; — C; @ Cy denotes the canonical inclusion
«-homomorphism (already introduced in Section 1.1) and let us set m; : C; & Cy — C;
for the projection *-homomorphism. The sequence

2
0—C -5 C®C ——=C, —0,
L2
is a split exact short exact sequence of C*-algebras, and therefore by Proposition 4.3.3
one directly infers that
Ko(u1) Ko(mz)

0— Ko(cl) e K()(Cl @Cg) :) KQ(CQ) — 0
Ko(e2)
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is a split exact short exact sequence. It then follows by a standard argument (five
lemma) that Ky(C1) ® Ko(Cs) is isomorphic to Ky(C; @ Cy), with the isomorphism given
by

Ko(C1) ® Ko(C2) 2 (g, h) = Ko(u1)(g) + Ko(e2)(h) € Ko(Cr & Ca).

]

We shall now see on two examples that the functor Ky is not exact. Note that it
would be the case if any short exact sequence of C*-algebras would be transformed in
a short exact sequence at the level of the Ky-groups.

Example 4.3.5. Consider the exact sequence
0 —s Co((0,1)) == C([0,1]) » Ca C — 0.

One deduces from Proposition 4.3.4 and from Example 3.4.1 that Ko(C® C) = Z2, and
from Example 3.4.3 that K, (C’([O, 1])) = 7. Therefore Ko(v) can not be surjective.

Example 4.3.6. Let H be an infinite dimensional separable Hilbert space, and consider
the C*-algebra B(H). The C*-subalgebra IC(H) of compact operators on H is an ideal
of B(H), and the quotient algebra Q(H) := B(H)/K(H) is called the Calkin algebra.
Thus we have a short exact sequence

0 — K(H) == B(H) -5 Q(H) — 0.

From Ezample 3.4.2 one knows that K (B(’H)) = {0}. It will be shown later on that
Ko(K(H)) = Z which means that Ko(i) can not be injective.

We finally state an important result for the computation of the Ky-groups for C*-
algebras, but refer to [RLLO0O, Prop. 4.3.8 & 6.4.1] for its proof.

Proposition 4.3.7 (Stability of Ky). Let C be a C*-algebra and let n € N*. Then
Ko(C) is isomorphic to Ko(M,(C)). In addition, for any separable Hilbert space H the
following equality holds

Ko(C® K(H)) = Ko(C).

Extension 4.3.8. Work on the notion of ordered Abelian Ky-group, as presented for
example in [RLLOO, Sec. 5.1].

Extension 4.3.9. Work on the irrational rotation C*-algebra, as introduced in Exercise
5.8 of [RLLO0]. This algebra has played an important role in operator algebra, and the
literature on the subject is very rich.

Extension 4.3.10. Work on the notion of inductive limit of C*-algebras, as presented
in Chapter 6 of [RLLOO0], and more precisely in Section 6.2 of this reference.



