
Chapter 4

K0-group for an arbitrary
C∗-algebra

In this chapter, we extend the construction of the K0-group for a non-unital C∗-algebra,
and show that this definition is coherent with the previous one when the algebra has a
unit.

4.1 Definition and functoriality of K0

Definition 4.1.1. Let C be a non-unital C∗-algebra, and consider the associated split
exact sequence

0 −→ C ι
↪−→ C̃

π−−−−−→←−−−−−
λ

C −→ 0.

One defines K0(C) as the kernel of the homomorphism K0(π) : K0(C̃)→ K0(C).

Clearly, K0(C) is an Abelian group, being a subgroup of the Abelian group K0(C̃).
In addition, consider p ∈ P∞(C) and the equivalence class [p]0 ∈ K0(C̃). Since by (3.3)
one has

K0(π)([p]0) = [π(p)]0 = 0,

it follows that [p]0 belongs to K0(C). In this way, we obtain a map [·]0 : P∞(C)→ K0(C).
Now, for any C∗-algebra, unital or not, we have a short exact sequence

0 −→ K0(C) −→ K0(C̃)
K0(π)

−−−−−→ K0(C) −→ 0. (4.1)

Note that the map K0(C) −→ K0(C̃) corresponds to K0(ι) when C is unital while it
simply corresponds to the inclusion map when C is not unital. Note also that in the
unital case, it has been proved in Lemma 3.3.5 that (4.1) is indeed a short exact sequence
while for the non-unital case, this follows from the definition of K0(C).

When C is unital, K0(C) is isomorphic to its image in K0(C̃) through the map K0(ι),

and K0(ι) maps [p]0 ∈ K0(C) to [p]0 ∈ K0(C̃) for any p ∈ P∞(C). Since the image of
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36 CHAPTER 4. K0-GROUP FOR AN ARBITRARY C∗-ALGEBRA

K0(ι) is equal to the kernel of K0(π), the identity

K0(C) = Ker
(
K0(π)

)
holds, for both unital and non-unital C∗-algebras (with a slight abuse of notation).

Let us now consider a ∗-homomorphism φ : C → Q between C∗-algebras, and
let φ̃ : C̃ → Q̃ be the corresponding ∗-homomorphism introduced right after Exercise
1.1.10. The commutative diagram

C ιC - C̃ πC - C

Q

φ

?

ιQ
- Q̃

φ̃

?

πQ
- C.

id

?

induces by functoriality ofK0 for unital C
∗-algebras the following commutative diagram:

K0(C) - K0(C̃)
K0(πC)- K0(C)

K0(Q)

K0(φ)

?
- K0(Q̃)

K0(φ̃)

?

K0(πQ)
- K0(C)

idK0(C)

?

where K0(φ) corresponds to the restriction to K0(C) of the group homomorphism

K0(φ̃) : K0(C̃) → K0(Q̃). Note that if C and Q are unital, then the above group
homomorphism K0(φ) corresponds to the one already introduced in Section 3.3. Note
also that the equality

K0(φ)([p]0) = [φ(p)]0 ∀p ∈ P∞(C)

holds, no matter if C is unital or not.
We can now state in a greater generality the functorial properties of K0 which have

already been discussed in Proposition 3.3.1 for unital C∗-algebras only. The proof of
this statement consists in minor modifications of the one already presented in the unital
case.

Proposition 4.1.2 (Functoriality ofK0 (general case)). Let J , C and Q be C∗-algebras.
Then

(i) K0(idC) = idK0(C),

(ii) If φ : J → C and ψ : C → Q are ∗-homomorphisms, then

K0(ψ ◦ φ) = K0(ψ) ◦K0(φ),
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(iii) K0({0}) = {0},

(iv) K0(0C→Q) = 0K0(C)→K0(Q).

Let us now mention that the homotopy invariance of K0, as already presented in
Proposition 3.3.2 for the unital case, also extends to the present more general setting:

Proposition 4.1.3 (Homotopy invariance of K0 (general case)). Let C and Q be C∗-
algebras.

(i) If φ, ψ : C → Q are homotopic ∗-homomorphisms, then K0(φ) = K0(ψ),

(ii) If C and Q are homotopy equivalent, then K0(C) is isomorphic to K0(Q). More
specifically, if (3.4) is a homotopy between C and Q, then K0(φ) : K0(C)→ K0(Q)
and K0(ψ) : K0(Q)→ K0(C) are isomorphisms, with K0(φ)

−1 = K0(ψ).

Let us end this section with a construction which will play an important role in the
sequel. For any C∗-algebra C one defines the cone C(C) and the suspension S(C) by

C(C) :=
{
f ∈ C([0, 1]; C) | f(0) = 0

}
, (4.2)

S(C) :=
{
f ∈ C([0, 1]; C) | f(0) = f(1) = 0

}
. (4.3)

We have then a short exact sequence

0 −→ S(C) ι
↪−→ C(C) π−→ C −→ 0, (4.4)

where ι is the inclusion mapping, and π(f) = f(1) for any f ∈ C(C).
Note that the cone C(C) is homotopy equivalent to the C∗-algebra {0}. Indeed, for

any t ∈ [0, 1] let us define the ∗-homomorphism φ(t) : C(C)→ C(C) by[
φ(t)(f)

]
(s) := f(st) f ∈ C(C), s ∈ [0, 1].

Clearly, the map [0, 1] ∋ t 7→
(
φ(t)

)
(f) ∈ C(C) is continuous, and therefore one has

0C(C)→C(C) = φ(0) ∼h φ(1) = idC(C).

It then easily follows that the C∗-algebra C(C) is homotopy equivalent to {0}, and then
from Proposition 4.1.3.(ii) and Proposition 4.1.2.(iii) that K0

(
C(C)

)
= {0}.

4.2 The standard picture of the group K0

In Proposition 3.2.4, an explicit formulation of the K0-group for a unital C∗-algebra
was provided. In this section, we present a similar picture for general C∗-algebras. This
formulation is very convenient whenever explicit computations involving K0-groups are
performed.
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Consider an arbitrary C∗-algebra C and the corresponding split exact sequence

0 −→ C ι
↪−→ C̃

π−−−−−→←−−−−−
λ

C −→ 0.

One then defines the scalar mapping s by

s := λ ◦ π : C̃ → C̃,

i.e. s(a+ α1) = α1 for any α ∈ C and with 1 the unit of C̃. Note that π
(
s(a)

)
= π(a)

for any a ∈ C̃, and that a− s(a) ∈ C. As usual, we keep the notation s for the induced

∗-homomorphism Mn(C̃)→Mn(C̃). Its image is the subset Mn(C) of Mn(C̃) consisting
of all matrices with scalar entries. For short, any element a ∈Mn(C) or a ∈Mn(C̃) will
be called a scalar element if a = s(a). On the other hand, note that a − s(a) belongs
to Mn(C) for any a ∈Mn(C̃).

The scalar mapping is natural in the sense that if C and Q are C∗-algebras, and if
φ : C → Q is a ∗-homomorphism, we then get the commutative diagram:

C̃ s - C̃

Q̃

φ̃

?

s
- Q̃.

φ̃

?

(4.5)

The following proposition contains the standard picture of K0(C):

Proposition 4.2.1. For any C∗-algebra C one has

K0(C) =
{
[p]0 − [s(p)]0 | p ∈ P∞(C̃)

}
. (4.6)

Moreover, one has

(i) For any pair of projections p, q ∈ P∞(C̃) the following conditions are equivalent:

(a) [p]0 − [s(p)]0 = [q]0 − [s(q)]0,

(b) There exist natural numbers k and ℓ such that p⊕ 1k ∼0 q ⊕ 1ℓ in P∞(C̃),
(c) There exist scalar projections r1 and r2 such that p⊕ r1 ∼0 q ⊕ r2.

(ii) If p ∈ P∞(C̃) satisfies [p]0− [s(p)]0 = 0, then there exists a natural number m with
p⊕ 1m ∼ s(p)⊕ 1m.

(iii) If φ : C → Q is a ∗-homomorphism, then

K0(φ)
(
[p]0 − [s(p)]0

)
=

[
φ̃(p)

]
0
−

[
s
(
φ̃(p)

)]
0

for any p ∈ P∞(C̃).
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Proof. To prove that equation (4.6) holds, observe first that for any p ∈ P∞(C̃) it follows
from the equality π = π ◦ s that

K0(π)
(
[p]0 − [s(p)]0

)
= [π(p)]0 − [(π ◦ s)(p)]0 = 0.

From it, one infers that [p]0 − [s(p)]0 belongs to K0(C) for any p ∈ P∞(C̃).
Conversely, let g be an arbitrary element of K0(C), and let n ∈ N∗ and p′, q′ ∈ Pn(C̃)

be such that g = [p′]0 − [q′]0, see (3.2). Then set

p :=

(
p′ 0
0 1n − q′

)
and q :=

(
0 0
0 1n

)
.

Then one has p, q ∈ P2n(C̃) and

[p]0 − [q]0 = [p′]0 + [1n − q′]0 − [1n]0 = [p′]0 − [q′]0 = g,

where we have used that [1n − q′]0 + [q′]0 = [1n]0. Since q = s(q) and K0(π)(g) = 0 we
deduce that

[s(p)]0 − [q]0 = [s(p)]0 − [s(q)]0 = K0(s)(g) =
(
K0(λ) ◦K0(π)

)
(g) = 0.

This shows that g = [p]0 − [q]0 = [p]0 − [s(p)]0.

i) Let p, q ∈ P∞(C̃) be given, and suppose that [p]0 − [s(p)]0 = [q]0 − [s(q)]0. Then

[p ⊕ s(q)]0 = [q ⊕ s(p)]0, and hence p ⊕ s(q) ∼s q ⊕ s(p) in P∞(C̃), by Proposition
3.2.4.(v). By the observations made after Definition 3.2.3, there exists n ∈ N such that
p⊕s(q)⊕1n ∼0 q⊕s(p)⊕1n. This shows that (a) implies (c). To see that (c) implies (b)

note that if r1 and r2 are scalar projections in P∞(C̃) of dimension k and ℓ, respectively,
then r1 ∼0 1k and r2 ∼0 1ℓ (see Exercise 3.1.4), and hence p⊕ 1k ∼0 q ⊕ 1ℓ.

To see that (b) implies (a) note first that

[p⊕ 1k]0 − [s(p⊕ 1k)]0 = [p]0 + [1k]0 − [s(p)]0 − [1k]0 = [p]0 − [s(p)]0.

Therefore, it is sufficient to show that [p]0 − [s(p)]0 = [q]0 − [s(q)]0 when p ∼0 q.

Suppose accordingly that p = v∗v and q = vv∗ for some partial isometry v ∈ Mm,n(C̃).
Let s(v) ∈Mm,n(C), viewed as a subset ofMm,n(C̃), be the matrix obtained by applying
s to each entry of v. Then s(v)∗s(v) = s(p) and s(v)s(v)∗ = s(q), and so s(p) ∼0 s(q).
As a consequence, [p]0 = [q]0 and [s(p)]0 = [s(q)]0, and this proves that (a) holds.

ii) If [p]0 − [s(p)]0 = 0, then p ∼s s(p) by Proposition 3.2.4.(v), and there exists
m ∈ N such that p⊕1m ∼ s(p)⊕1m, see the observations made juste before Proposition
3.2.4. Note that p⊕ 1m ∼ s(p)⊕ 1m is equivalent to p⊕ 1m ∼0 s(p)⊕ 1m since p and

s(p) belong to the same matrix algebra over C̃.
iii) By definition one has

K0(φ)
(
[p]0 − [s(p)]0

)
= K0(φ̃)

(
[p]0 − [s(p)]0

)
=

[
φ̃(p)

]
0
−
[
φ̃
(
s(p)

)]
0
=

[
φ̃(p)

]
0
−

[
s
(
φ̃(p)

)]
0
.
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The following slightly technical statement will be used in the next section. If proof
is provided in [RLL00, Lem. 4.2.3].

Lemma 4.2.2. Let C, Q be C∗-algebras, and φ : C → Q a ∗-homomorphism. Let also
g be an element of K0(C) which belongs to the kernel of K0(φ). Then:

(i) There exist n ∈ N∗, p ∈ Pn(C̃) and a unitary element u ∈ Mn(Q̃) such that
g = [p]0 − [s(p)]0 and uφ̃(p)u∗ = s

(
φ̃(p)

)
.

(ii) If φ is surjective, one can choose u = 1 in the point (i).

4.3 Half and split exactness and stability of K0

Let us start this section with an easy lemma which described what happens when a
unit is added to a short exact sequence. The proof of this lemma is left as an exercise.

Lemma 4.3.1. Consider the short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0,

and let n ∈ N∗. Then

(i) The map φ̃ :Mn(J̃ )→Mn(C̃) is injective,

(ii) An element a ∈ Mn(C̃) belongs to Ran(φ̃) if and only if ψ̃(a) = s
(
ψ̃(a)

)
, with

s : Q̃ → Q̃ the scalar mapping.

Proposition 4.3.2 (Half exactness of K0). Every short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0,

induces an exact sequence of Abelian groups

K0(J )
K0(φ)

−−−−−→ K0(C)
K0(ψ)

−−−−−→ K0(Q),

that is Ran
(
K0(φ)

)
= Ker

(
K0(ψ)

)
.

Proof. By functoriality of K0 one already knows that

K0(ψ) ◦K0(φ) = K0(ψ ◦ φ) = K0(0J→Q) = 0K0(J )→K0(Q),

which implies that Ran
(
K0(φ)

)
⊂ Ker

(
K0(ψ)

)
.

Conversely, assume that g ∈ Ker
(
K0(ψ)

)
. According to Lemma 4.2.2.(ii) there exist

n ∈ N∗ and p ∈ Pn(C̃) such that g = [p]0− [s(p)]0 and ψ̃(p) = s
(
ψ̃(p)

)
. Then by Lemma

4.3.1.(ii) there exists e ∈Mn(J̃ ) such that φ̃(e) = p. Since by Lemma 4.3.1.(i) the map

φ̃ is injective, one infers that e ∈ Pn(J̃ ). Therefore,

g = [φ̃(e)]0 −
[
s
(
φ̃(e)

)]
0
= φ̃

(
[p]0 − [s(p)]0

)
= K0(φ)

(
[e]0 − [s(e)]0

)
(4.7)

which thus belongs to Ran
(
K0(φ)

)
. Note that the standard picture of K0(J ) has been

used in the last equality of (4.7). These two inclusions lead to the statement.
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Proposition 4.3.3 (Split exactness of K0). Every split exact sequence of C∗-algebras

0 −→ J φ−→ C
ψ

−−−−−→←−−−−−
λ

Q −→ 0

induces a split exact sequence of Abelian groups

0 −→ K0(J )
K0(φ)−→ K0(C)

K0(ψ)

−−−−−→←−−−−−
K0(λ)

K0(Q) −→ 0.

Proof. It follows from Proposition 4.3.2 that the equality Ran
(
K0(φ)

)
= Ker

(
K0(ψ)

)
holds. In addition, from the functoriality of K0 one infers that

idK0(Q) = K0(idQ) = K0(ψ) ◦K0(λ)

which implies that K0(ψ) is surjective and the splitness of the sequence. As a conse-
quence, it only remains to show that K0(φ) is injective.

For the injectivity, let us consider g ∈ Ker
(
K0(φ)

)
. By Lemma 4.2.2.(i), there exist

n ∈ N∗, p ∈ Pn(J̃ ) and a unitary element u ∈ Mn(C̃) such that g = [p]0 − [s(p)]0
and uφ̃(p)u∗ = s

(
φ̃(p)

)
. Set v := (λ̃ ◦ ψ̃)(u∗)u, and observe that v is a unitary element

of Mn(C̃) and ψ̃(v) = 1. By Lemma 4.3.1.(ii) there exists an element w ∈ Mn(J̃ )
with φ̃(w) = v. In addition, since φ̃ is injective, w must be unitary. Then, from the
computation (use Lemma 4.3.1.(ii) in the second last equality)

φ̃(wpw∗) = vφ̃(p)v∗ = (λ̃ ◦ ψ̃)(u∗)s
(
φ̃(p)

)
(λ̃ ◦ ψ̃)(u)

= (λ̃ ◦ ψ̃)
(
u∗s

(
φ̃(p)

)
u
)
) = (λ̃ ◦ ψ̃)

(
φ̃(p)

)
= s

(
φ̃(p)

)
= φ̃

(
s(p)

)
and by the injectivity of φ̃ we conclude that wpw∗ = s(p). This shows that p ∼u s(p)
in Mn(J̃ ), and hence that g = 0.

Let us study the behavior of K0 with respect to direct sum of C∗-algebras.

Proposition 4.3.4. For any C∗-algebras C1 and C2 the K0-groups K0(C1 ⊕ C2) and
K0(C1)⊕K0(C2) are isomorphic.

Proof. For i ∈ {1, 2}, recall that ιi : Ci → C1 ⊕ C2 denotes the canonical inclusion
∗-homomorphism (already introduced in Section 1.1) and let us set πi : C1 ⊕ C2 → Ci
for the projection ∗-homomorphism. The sequence

0 −→ C1
ι1−→ C1 ⊕ C2

π2−−−−−→←−−−−−
ι2

C2 −→ 0,

is a split exact short exact sequence of C∗-algebras, and therefore by Proposition 4.3.3
one directly infers that

0 −→ K0(C1)
K0(ι1)

−−−−−→ K0(C1 ⊕ C2)
K0(π2)

−−−−−→←−−−−−
K0(ι2)

K0(C2) −→ 0
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is a split exact short exact sequence. It then follows by a standard argument (five
lemma) that K0(C1)⊕K0(C2) is isomorphic to K0(C1⊕C2), with the isomorphism given
by

K0(C1)⊕K0(C2) ∋ (g, h) 7→ K0(ι1)(g) +K0(ι2)(h) ∈ K0(C1 ⊕ C2).

We shall now see on two examples that the functor K0 is not exact. Note that it
would be the case if any short exact sequence of C∗-algebras would be transformed in
a short exact sequence at the level of the K0-groups.

Example 4.3.5. Consider the exact sequence

0 −→ C0

(
(0, 1)

) ι
↪−→ C

(
[0, 1]

) ψ−→ C⊕ C −→ 0.

One deduces from Proposition 4.3.4 and from Example 3.4.1 that K0(C⊕C) ∼= Z2, and
from Example 3.4.3 that K0

(
C
(
[0, 1]

)) ∼= Z. Therefore K0(ψ) can not be surjective.

Example 4.3.6. Let H be an infinite dimensional separable Hilbert space, and consider
the C∗-algebra B(H). The C∗-subalgebra K(H) of compact operators on H is an ideal
of B(H), and the quotient algebra Q(H) := B(H)/K(H) is called the Calkin algebra.
Thus we have a short exact sequence

0 −→ K(H) ι
↪−→ B(H) ψ−→ Q(H) −→ 0.

From Example 3.4.2 one knows that K0

(
B(H)

)
= {0}. It will be shown later on that

K0

(
K(H)

) ∼= Z which means that K0(ι) can not be injective.

We finally state an important result for the computation of the K0-groups for C
∗-

algebras, but refer to [RLL00, Prop. 4.3.8 & 6.4.1] for its proof.

Proposition 4.3.7 (Stability of K0). Let C be a C∗-algebra and let n ∈ N∗. Then
K0(C) is isomorphic to K0

(
Mn(C)

)
. In addition, for any separable Hilbert space H the

following equality holds
K0

(
C ⊗ K(H)

) ∼= K0(C).

Extension 4.3.8. Work on the notion of ordered Abelian K0-group, as presented for
example in [RLL00, Sec. 5.1].

Extension 4.3.9. Work on the irrational rotation C∗-algebra, as introduced in Exercise
5.8 of [RLL00]. This algebra has played an important role in operator algebra, and the
literature on the subject is very rich.

Extension 4.3.10. Work on the notion of inductive limit of C∗-algebras, as presented
in Chapter 6 of [RLL00], and more precisely in Section 6.2 of this reference.


