Chapter 3

Ko-group for a unital C'*-algebra

In this chapter, we associate with each unital C*-algebra an Abelian group. This group
will be constructed from equivalence classes of projections. The Ky-group for non-unital
C*-algebra will be described in the next Chapter.

3.1 Semigroups of projections

Let us start by introducing a semigroup of projections in a C*-algebra, with or without
a unit. For that purpose, let C be an arbitrary C*-algebra and set for n € N*

P, (C) :=P(M,(C)) and  Pw(C) == | Pu(C).

One can then define the relation ~g on P (C), namely for two elements p, ¢ € Puo(C)
one writes p ~q ¢ if there exits v € M, ,(C) such that p = v*v € P,(C) and ¢ = vv* €
P (C). Clearly, M, ,,(C) denotes the set of m x n matrices with entries in C, and the
adjoint v* of v € M,,,(C) is obtained by taking the transpose of the matrix, and then
the adjoint of each entry.

One easily observes that the relation ~ is an equivalence relation on Py (C). It
combines both the Murray-von Neumann equivalence relation ~ and and the identifica-
tion of projections in different sized matrix algebras over C. For example, if p, g € P, (C)
then p ~q ¢ if and only if p ~ q.

We also define a binary operation @ on P (C) by

. p 0
@ q = diag(p, q) := )
pPeq g(p,q) (o q>

so that p @ ¢ belongs to Py, (C) whenever p € P,(C) and ¢ € P,,,(C). We can now
derive some of the properties of ~.

Proposition 3.1.1. Let C be a C*-algebra, and let p,q,7,p',q" be elements of Ps(C).
Then:
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26 CHAPTER 3. Ky-GROUP FOR A UNITAL C*-ALGEBRA

(1) p ~op® 0, for any natural number n, where 0,, denotes the 0-element of M, (C),
(i) If p~o p' and q ~o ¢, then p @ q ~o p' ® ¢,
(iit) p® q ~o ¢ © p,

() If p,q € Pn(C) such that pq =0, then p+ q € P,(C) and p+ q ~o p ® q,

(v) p®q)Br=pS (D).

Proof. i) Let m,n be integers, and let p € P,,(C). One then sets v := (§) € My4n.m(C),
and one gets p = v*v and vv* =p @ 0,,.

ii) Let v,w such that p = v*v, p’ = vv*, ¢ = w*w and ¢ = ww*, and set u :=
diag(v,w). Then p ® g = u*u and p' @ ¢’ = uu*.

iii) Assume p € P,(C) and g € P,,(C), and set v := (0”;;’" 073,n>, with 0y the
0-matrix of size k x [. Then one gets p & g = v*v and ¢ ® p = vv*.

iv) If pg = 0 it is easily observe that p + ¢ is itself a projection. Then, if one sets
v:= () € My, ,(C), one gets p+ ¢ = v*v and p & ¢ = vv*.

v) This last statement is trivial. O

Definition 3.1.2. For any C*-algebra C, one sets
D(C) := Pu(C)/ ~o

which corresponds to the equivalent classes of elements of Pso(C) modulo the equivalence
relation ~q. For any p € Px(C) one writes [p]p € D(C) for the equivalent class contain-
ing p. The set D(C) is endowed with a binary operation defined for any p,q € Ps(C)

by
Plp +dlp = [p @ glp. (3.1)

Because of the previous proposition, one directly infers the following result:
Lemma 3.1.3. The pair (D(C), +) defines an Abelian semigroup.
We end this section with two exercises dealing with projections.

Exercise 3.1.4. Let tr : M,(C) — C denote the usual trace on square matrices, and
let p,q € P(Mn(C)). Show that the following statements are equivalent:

(i) p~q,
(i) tr(p) = tr(q),
(i) dim(p(C")) = dim(g(C")).

Use this to show that D(C) = Z, = {0,1,2,...} when Z, is equipped with the usual
addition.
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Exercise 3.1.5. Let H be an infinite dimensional separable Hilbert space, and let p,q
be projections in B(H).

(i) Show that p ~ q if and only if dim(p(H)) = dim(q(H)),

(it) Show that p ~, q if and only if dim(p(H)) = dim(q(H)) and dim(p(H)*) =
dim(q(’H)L),

(iii) Infer that D(B(H)) = Z; U {oo} = {0,1,2,...,00}, where the usual addition
on Z, is considered together with the addition n + oo = oo +n = oo for all
n € Zy U{oo}.

3.2 The Ky-group

In this section we construct the Ky-group associated with a unital C*-algebra C. This
group is defined in terms of the Grothendieck construction applied to the Abelian
semigroup (D(C), +). We first recall this construction in an abstract setting.

Let (D, +) be an Abelian semigroup, and define on D xD the relation ~ by (z1,y;) ~
(x2,y2) if there exists z € D such that x1 + y» + 2 = x5 + y1 + 2. This relation is clearly
reflexive and symmetric. For the transitivity, suppose that (z1,41) ~ (22, y2) and that
(x2,y2) ~ (x3,y3). This means that there exist z,w € D such that

Tty Frz=224+y +2 and To+ys+w =23+ Yy +w.
It then follows that

T +ys+(ptrtw) =0ty tys+w=a3+y + (Y2 + 2 +w)

so that (z1,y1) ~ (x3,y3). As a consequence, ~ defines an equivalence relation on D xD.
The equivalence class containing (z,y) is denoted by (z,y), and we set G(D) for the
quotient D x D/ ~. Then, the operation

(T1,91) + (T2, y2) = (71 + 22, Y1 + ¥2)

endows G(D) with the structure of an Abelian group. Indeed, the inverse —(x,y) of
(x,y) is given by (y,x), and (x,z) = 0, for any z,y € D. The pair (Q(D), +) is called
the Grothendieck group.

For any fixed y € D, let us also define the map

Yo : D3z yp(x) = (x+y,y) € G(D),

and observe that this map does not depend on the choice of any specific y € D. Indeed,
one easily observes that (x+vy,y) and (z+v/,y’) define the same equivalence class since
(x4+y)+v =(x+9y)+y. The map ~p is called the Grothendieck map.

Finally, one says that the semigroup (D, +) has the cancellation property if whenever
the equality £+ 2z = y+ 2 holds, it follows that x = y. Let us now gather some additional
information on this construction in the following proposition.
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Proposition 3.2.1. Let (D,+) be an Abelian semigroup, and let (G(D),+) and vp be
the corresponding Grothendieck group and Grothendieck map. Then:

(i) Universal property: If H is an Abelian group and if ¢ : D — H is an additive
map, then there is one and only one group homomorphism ¢ : G(D) — H making
the diagram

commautative,

(11) Functoriality: For every additive map ¢ : D — D' between semigroups there exists
one and only one group morphism G(p) : G(D) — G(D') making the diagram

D— % .

YD Yp!

commautative,

(iii) G(D) = {vp(z) — p(y) | ¥,y € D},

(iv) For any x,y € D one has yp(x) = yp(y) if and only if v + z = y + z for some
z €D,

(v) The Grothendieck map ~vp : D — G(D) is injective if and only if (D,+) has the
cancellation property,

(vi) Let (H,+) be an Abelian group, and let D be a non-empty subset of H. If D is
closed under addition, then (D,4) is an Abelian semigroup with the cancellation
property. In addition, G(D) is isomorphic to the subgroup Hy generated by D, and
Hy={x—y|zyeD}

The proofs of these statements can be found in [RLL0OO, Sec. 3.1.2]. Let us just
mention the one of (7i7): Since each element of G(D) has the form (z,y) for some
x,y € D, it is sufficient to observe that

(z.y) =(x+y,y) — (@ +y,z) = p(x) — 10(y).
We still illustrate the previous construction with two examples.

Examples 3.2.2. (i) The Grothendieck group of the Abelian semigroup (Z.,+) is
isomorphic to (Z,+). Note that (Z,,+) has the cancellation property.
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(ii) The Grothendieck group of the Abelian semigroup (Zi U {oc},+) is {0}. Note
that (Z+ U {oo}, —I—) does not possess the cancellation property.

We are now ready for the main definition of this chapter. Recall that for any C*-
algebra C, the Abelian semigroup (D(C), +) has been introduced in Definition 3.1.2,
see also Lemma 3.1.3.

Definition 3.2.3. Let C be a unital C*-algebra, and let (D(C), +) be the corresponding
Abelian semigroup. The Abelian group Ko(C) is defined by

Ky(C) = Q(D(C)).
One also set [-]o : Poo(C) — Ko(C) for any p € Ps(C) by
[plo == 7([plp)
with v : D(C) — Ko(C) the Grothendieck map.

In the following two propositions, we provide a standard picture of the Ky-group
for a unital C*-algebra, and state some of its universal properties. Before them, we
introduce one more equivalence relation on Py (C), namely p,q € P (C) are stable
equivalent, written p ~g g, if there exists r € P (C) such that p@®r ~q ¢ @ r. Note that
if C is unital, then p ~; ¢ if and only if p & 1,, ~g ¢ & 1,, for some n € N. Indeed, if
pd T~y q®r for some r € P,(C), then

p@ln NOP@T@(ln_T) N0q®r@(]—n_r) Noq@lna
where Proposition 3.1.1.(iv) has been used twice.
Proposition 3.2.4. For any unital C*-algebra C one has
Ko(C) = {[plo — [alo | p,a € P(C)} = {[po — [alo | p,g € Pu(C),n €N} (3.2)
Moreover, one has
(i) o ® alo = [plo + [alo for any projections p,q € Pwo(C),
(i1) [0c] = 0, where Oc stands for the zero element of C,
(111) If p,q € P,(C) for some n € N* and if p ~;, q € P,(C), then [plo = [qlo,

() If p,q are mutually orthogonal projections in P,(C), then [p + qlo = [plo + [¢lo,

(v) For all p,q € Po(C), then [plo = [qlo if and only if p ~; q.
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Proof. The first equality in (3.2) follows from Proposition 3.2.1.(4i7). Hence, if g is an
element of K(C) there exist p’ € Py(C) and ¢’ € P;(C) such that g = [p']o—[¢]o. Choose
then n greater than k and [, and set p = p' ®0,,_ and ¢ := ¢® 0,,_;. Then p,q € P,(C)
with p ~g p" and ¢ ~o ¢’ by Proposition 3.1.1.(¢). It thus follows that g = [p]o — [¢lo-

i) One has by (3.1)

p®dalo=(lp® dp) =~(lplo + [dlp) = ([plp) +([alp) = [plo + [do-

ii) Since 0¢ @ 0¢ ~¢ Oc, point (i) yields that [0c|o + [Oc]o = [Oc]o, which means that
[Oclo = 0.
iii) This statement follows from the implications

P~Rq =D~ q=pr~o g [plo = [dlp = [plo = [do,

where the first two relations are defined only when p and ¢ are in the same matrix
algebra over C, while the three other implications hold for any p,q € P (C). Note that
the first implication is due to Lemma 2.2.9.

iv) By Proposition 3.1.1.(iv), one has p + ¢ ~¢ p @ ¢, and therefore [p + ¢lo =
[p © glo = [plo + [alo by (i)

v) If [plo = [q]o, then by Proposition 3.2.1.(iv) there exists r € Py (C) such that
plp + [r]lp = [¢]lp + [r]p. Hence [p @ r]p = [¢ ® r]p, and then p & r ~q ¢ & r. It thus
follows that p ~ q.

Conversely, if p ~, ¢, then there exists r € P, (C) such that p@®r ~y ¢ @ r. By (7)
one gets that [plo + [r]o = [¢]o + [r]o, and because Ky(C) is a group we conclude that

[plo = ldlo- O

Proposition 3.2.5 (Universal property of Ky). Let C be a unital C*-algebra, and let
H be an Abelian group. Suppose that there exists v : Poo(C) — H satisfying the three
conditions:

(i) v(ip® q) = v(p) +v(q) for any p,q € Px(C),
(ir) v(0c) =0,
(111) If p,q € P,(C) for some n € N* and if p ~p, ¢ € Pn(C), then v(p) = v(q).

Then there exists a unique group homomorphism o : Ko(C) — H such that the diagram

18 commutative.

The proof of this statement is provided the proof of [RLL00, Prop. 3.1.8] to which
we refer.
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3.3 Functoriality of K|

Let us now consider two unital C*-algebras C and Q, and let ¢ : C — Q be a
x-homomorphism. As already seen in Section 1.3, ¢ extends to a x-homomorphism
v : M,(C) — M,(Q) for any n € N*. Again, the same notation is used for the
original morphism and for its extensions. Since x-homomorphisms map projections to
projections, one infers that ¢ maps P (C) into P (Q). Let us then define the map
v Pso(C) = Ko(Q) by v(p) := [¢(p)]o for any p € P (C). Since v satisfies the three
conditions of Proposition 3.2.5 with H = Ky(Q) one infers that there exists a unique
group homomorphism Ky(p) : Ko(C) — Ko(Q) given by

Ko(e)([plo) = le(P)lo (3.3)

for any p € Poo(C). In other words, the following diagram is commutative:

Poo(C) —2— P (Q)
[lo o

Ky(C) Ky(9Q).

Ko(p)

With this construction at hand, we can now state and prove the main result on
functoriality. Here, the functor Ky associates with any unital C*-algebra C the Abelian
group Ky(C). For two unital C*-algebras C and Q one sets O¢_,o for the map sending
all elements of C to 0 € Q, and O, ) K,(o) for the map sending all elements of Ky(C)
to the identity element in Ky(Q).

Proposition 3.3.1 (Functoriality of Ky (unital case)). Let J, C and Q be unital C*-
algebras. Then

(i) Ko(ide) = idgy ey,

(i) If o : T — C and ¢ : C — Q are x-homomorphisms, then

Ko(¥ o) = Ko(¥) o Ko(e),

(i) Ko({0}) = {0},
(iv) Ko(Oc—o) = Okgc)—Ko(Q)-

Proof. By using (3.3) one can check that for any p € P (C) and any q € P (J) the
equalities

Ko(ide)([plo) = [plo,  Ko(v o @) (lglo) = (Ko(v) © Ko())([alo)
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hold. Then, by taking the standard picture of K (equality (3.2)) into account, one
readily deduces the statement (i) and (7).

iii) One has P,,({0}) = {0, }, with 0,, the zero (and single) element of M,,({0}). Since
the zero projections 0 = 01, 0a, ... are all ~p-equivalent, it follows that D({0}) = {[0]p}.
As a consequence, one deduces that Ko({0}) = G({[0]p}) = {0}.

iv) Since O¢c—o = 0p—0 0 0c—o : C — {0} — Q, the statement (iv) can be deduced
from (i7) and (7). O

For two C*-algebras C and Q, two x-homomorphisms ¢y : C — Q and ¢, : C — Q
are said to be homotopic, written ¢y ~p, @1, if there exists a path of *-homomorphisms
t — o(t) with ¢(0) = ¢o and ¢(1) = ¢, such that for any a € C the map [0,1] >
t — [p(t)](a) € Q is continuous. In this case, one also says that ¢t — ¢(t) is pointwise
continuous. The two C*-algebras C and Q are said to be homotopy equivalent if there
exist two x-homomorphisms ¢ : C — Q and ¥ : @ — C such that ¥ o ¢ ~}, id¢ and
@ o1 ~yp idg. In this case one says that

c-4H oY% (3.4)
is a homotopy between C and Q.

Proposition 3.3.2 (Homotopy invariance of Ky (unital case)). Let C and Q be unital
C*-algebras.

(1) If o, : C — Q are homotopic x-homomorphisms, then Ky(p) = Ko(v),

(i1) If C and Q are homotopy equivalent, then Ky(C) is isomorphic to Ko(Q). More
specifically, if (3.4) is a homotopy between C and Q, then Ko(p) : Ko(C) — Ko(Q)
and Ky(v) : Ko(Q) — Ko(C) are isomorphisms, with Ko(¢)™' = Ko(v).

Exercise 3.3.3. Provide a proof of Proposition 3.5.2, with the possible help of [RLLOO,
Prop. 3.2.6].

Our next aim is to show that K preserves exactness of the short exact sequence
obtained by adjoining a unit to a unital C*-algebra. This result will be useful when
defining the Ky-group for a non-unital C*-algebra.

For two C*-algebras C and Q, two *-homomorphisms ¢ : C — Q and ¢ : C — Q are
said to be orthogonal to each other or mutually orthogonal, written ¢ 11, if p(a)i(b) = 0
for any a,b € C.

Lemma 3.3.4. If C and Q are unital C*-algebras, and if ¢ : C — Q and ¢ : C — Q
are mutually orthogonal x-homomorphisms, then ¢+ : C = Q is a *-homomorphism,

and Ko(p + ) = Ko(p) + Ko(v).

Proof. One readily check that ¢ +1v : C — Q is a x-homomorphism. In addition, the
«-homomorphism ¢ : M, (C) — M,(Q) and ¢ : M,(C) — M,(Q) are also orthogonal,
for any n € N*. By using then Proposition 3.2.4.(iv) we obtain for any p € P,(C):

Ko +¥)([plo) = (¢ + ¥)(p)]o = [¢(p) + ¢ (D))o
= lp(@)]o + [¥(P)o = Ko(#)([Plo) + Ko(¥)([plo)-
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This shows that Ko(¢ + ) = Ko(p) + Ko(¥). O

Lemma 3.3.5. For any unital C*-algebra C, the split exact sequence

0—C-3C—=C—0
A

induces a split exact sequence

Ko(L) —~ KO(TF)
0 — Ko(C) — s Ko(C) = Ko(C) — 0 (3.5)
Ko(N)

Proof. Recall from the proof of Lemma 2.2.4 that if 1 denotes the unit of C and if 1
denotes the unit of C, then 1 := 1 — 1 is a projection in C. In addition, C = C +C1,
with al = 1la = 0 for any a € C. Let us then define the *-homomorphisms p : C — C
and A : C — C by pu(a+ al) := a and N(«) := al for any a € C and a € C. One
readily infers that

ide = pou, idC~:Lo,u—|—Xo7T, motr=0c_c, moA=idc,

and the x-homomorphisms ¢ o u and A o 7 are orthogonal to each other. Proposition
3.3.1 and Lemma 3.3.4 then lead to

Oso(0)—1o(c) = Ko(Ocsc) = Ko(m) o Ko(1), (3.6)
idk,(c) = Ko(ide) = Ko(m o A) = Ko(m) o Ko(A), (3.7)
idk(c) = Ko(ide) = Ko(p o t) = Ko(u) o Ko(v), (3.8)
idy @) = Kolidg) = Ko(top+ N o)

= Ko(t) o Ko(p) + Ko(X') o Ko(r). (3.9)

Now, the split exactness of (3.5) follows from these equalities. Indeed, the injectiv-
ity of Ko(¢) follows from (3.8). If g € Ker (Ko(m)), one infers from (3.9) that g =
Ko(v)(Ko(1)(g)), which shows that g belongs to Ran (Ko (¢)). Since by (3.6) one also gets
Ran (Ko(¢)) C Ker (Ko()), these two inclusions mean that Ran (Ko(¢)) = Ker (Ko(m)).
Finally, the surjectivity of Ky(m) is a by-product of (3.7), from which one also infers
the splitness. O]

3.4 Examples

In this section, we introduce the examples discussed in [RLL00, Sec. 3.3] and refer to
this book for the proofs.

Consider first a C*-algebra C endowed with a bounded trace T, i.e. 7: C — Cis a
bounded linear map satisfying the trace property

7(ab) = 7(ba), Va,b e C.
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This trace property implies in particular that 7(p) = 7(¢) whenever p,q are Murray-
von Neumann equivalent projections in C. This trace is also called positive if 7(a) > 0
whenever a € CT. If C is unital and if 7(1¢) = 1, then 7 is called a tracial state.

For any trace 7 on a C*-algebra C, one defines a trace on M, (C) by setting

ai, ... QA1n n

o [ =) ey

Apl -+ Gpn J=1

It thus endows P (C) with a map 7 : Py (C) — C, and this map satisfies the three
conditions of Proposition 3.2.5. For the last one, recall that the homotopy equivalence
implies the Murray-von Neumann equivalence, see Lemma 2.2.9. As a consequence, one
infers that there exists a unique group homomorphism Ky(7) : K¢(C) — C satisfying
for any p € P(C)

Ko(7)([plo) = 7(p). (3.10)
Note that if 7 is positive, then the r.h.s. of (3.10) is a positive real number, and Ky(7)
maps Ko(C) into R.

Example 3.4.1. For any n € N*, one has

Ko(M,(C)) = Z. (3.11)
In fact, if tr denotes the usual trace already introduced in Ezercise 3.1.4, then
Ko(tr) : Ko(M,(C)) — Z (3.12)

1 an isomorphism.

Example 3.4.2. If H is an infinite dimensional separable Hilbert space, then we have
Ko(B(H)) = {0}.

Note that this fact is related to the content of Fxercise 3.1.5.

Example 3.4.3. If Q is a compact, connected and Hausdorff space, then there exists a
surjective group homomorphism

dim : Ko(C(Q)) — Z (3.13)
which satisfies for p € P (C(Q)) and x €

dim([plo) = tr(p(x)).

Note that by continuity this number is independent of x. Note also that if Q) is con-
tractible! then the map (3.13) is an isomorphism.

Exercise 3.4.4. Provide the proofs for the statements of Fxamples 3.4.1, 3.4.2 and
3.4.3.

Extension 3.4.5. Study the K-theory for topological spaces, as presented for example
in [RLLOO, Sec. 3.3.7].

!The space ) is contractible if there exists 29 € Q and a continuous map « : [0,1] x Q — Q such
that a(1,2) = z and «(0,z) = xg for any = € Q.



