
Chapter 3

K0-group for a unital C∗-algebra

In this chapter, we associate with each unital C∗-algebra an Abelian group. This group
will be constructed from equivalence classes of projections. The K0-group for non-unital
C∗-algebra will be described in the next Chapter.

3.1 Semigroups of projections

Let us start by introducing a semigroup of projections in a C∗-algebra, with or without
a unit. For that purpose, let C be an arbitrary C∗-algebra and set for n ∈ N∗

Pn(C) := P
(
Mn(C)

)
and P∞(C) :=

∞∪
n=1

Pn(C).

One can then define the relation ∼0 on P∞(C), namely for two elements p, q ∈ P∞(C)
one writes p ∼0 q if there exits v ∈ Mm,n(C) such that p = v∗v ∈ Pn(C) and q = vv∗ ∈
Pm(C). Clearly, Mm,n(C) denotes the set of m × n matrices with entries in C, and the
adjoint v∗ of v ∈ Mm,n(C) is obtained by taking the transpose of the matrix, and then
the adjoint of each entry.

One easily observes that the relation ∼0 is an equivalence relation on P∞(C). It
combines both the Murray-von Neumann equivalence relation ∼ and and the identifica-
tion of projections in different sized matrix algebras over C. For example, if p, q ∈ Pn(C)
then p ∼0 q if and only if p ∼ q.

We also define a binary operation ⊕ on P∞(C) by

p⊕ q = diag(p, q) :=

(
p 0
0 q

)
,

so that p ⊕ q belongs to Pm+n(C) whenever p ∈ Pn(C) and q ∈ Pm(C). We can now
derive some of the properties of ∼0.

Proposition 3.1.1. Let C be a C∗-algebra, and let p, q, r, p′, q′ be elements of P∞(C).
Then:
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(i) p ∼0 p⊕ 0n for any natural number n, where 0n denotes the 0-element of Mn(C),

(ii) If p ∼0 p
′ and q ∼0 q

′, then p⊕ q ∼0 p
′ ⊕ q′,

(iii) p⊕ q ∼0 q ⊕ p,

(iv) If p, q ∈ Pn(C) such that pq = 0, then p+ q ∈ Pn(C) and p+ q ∼0 p⊕ q,

(v) (p⊕ q)⊕ r = p⊕ (q ⊕ r).

Proof. i) Let m,n be integers, and let p ∈ Pm(C). One then sets v := ( p0 ) ∈Mm+n,m(C),
and one gets p = v∗v and vv∗ = p⊕ 0n.

ii) Let v, w such that p = v∗v, p′ = vv∗, q = w∗w and q′ = ww∗, and set u :=
diag(v, w). Then p⊕ q = u∗u and p′ ⊕ q′ = uu∗.

iii) Assume p ∈ Pn(C) and q ∈ Pm(C), and set v :=
(

0n,m q
p 0m,n

)
, with 0k,l the

0-matrix of size k × l. Then one gets p⊕ q = v∗v and q ⊕ p = vv∗.
iv) If pq = 0 it is easily observe that p + q is itself a projection. Then, if one sets

v := ( pq ) ∈M2n,n(C), one gets p+ q = v∗v and p⊕ q = vv∗.
v) This last statement is trivial.

Definition 3.1.2. For any C∗-algebra C, one sets

D(C) := P∞(C)/ ∼0

which corresponds to the equivalent classes of elements of P∞(C) modulo the equivalence
relation ∼0. For any p ∈ P∞(C) one writes [p]D ∈ D(C) for the equivalent class contain-
ing p. The set D(C) is endowed with a binary operation defined for any p, q ∈ P∞(C)
by

[p]D + [q]D = [p⊕ q]D. (3.1)

Because of the previous proposition, one directly infers the following result:

Lemma 3.1.3. The pair
(
D(C),+

)
defines an Abelian semigroup.

We end this section with two exercises dealing with projections.

Exercise 3.1.4. Let tr : Mn(C) → C denote the usual trace on square matrices, and
let p, q ∈ P

(
Mn(C)

)
. Show that the following statements are equivalent:

(i) p ∼ q,

(i) tr(p) = tr(q),

(i) dim
(
p(Cn)

)
= dim

(
q(Cn)

)
.

Use this to show that D(C) ∼= Z+ ≡ {0, 1, 2, . . . } when Z+ is equipped with the usual
addition.
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Exercise 3.1.5. Let H be an infinite dimensional separable Hilbert space, and let p, q
be projections in B(H).

(i) Show that p ∼ q if and only if dim
(
p(H)

)
= dim

(
q(H)

)
,

(ii) Show that p ∼u q if and only if dim
(
p(H)

)
= dim

(
q(H)

)
and dim

(
p(H)⊥

)
=

dim
(
q(H)⊥

)
,

(iii) Infer that D
(
B(H)

) ∼= Z+ ∪ {∞} ≡ {0, 1, 2, . . . ,∞}, where the usual addition
on Z+ is considered together with the addition n + ∞ = ∞ + n = ∞ for all
n ∈ Z+ ∪ {∞}.

3.2 The K0-group

In this section we construct the K0-group associated with a unital C∗-algebra C. This
group is defined in terms of the Grothendieck construction applied to the Abelian
semigroup

(
D(C),+

)
. We first recall this construction in an abstract setting.

Let (D,+) be an Abelian semigroup, and define onD×D the relation∼ by (x1, y1) ∼
(x2, y2) if there exists z ∈ D such that x1 + y2 + z = x2 + y1 + z. This relation is clearly
reflexive and symmetric. For the transitivity, suppose that (x1, y1) ∼ (x2, y2) and that
(x2, y2) ∼ (x3, y3). This means that there exist z, w ∈ D such that

x1 + y2 + z = x2 + y1 + z and x2 + y3 + w = x3 + y2 + w.

It then follows that

x1 + y3 + (y2 + z + w) = x2 + y1 + z + y3 + w = x3 + y1 + (y2 + z + w)

so that (x1, y1) ∼ (x3, y3). As a consequence, ∼ defines an equivalence relation on D×D.
The equivalence class containing (x, y) is denoted by ⟨x, y⟩, and we set G(D) for the
quotient D ×D/ ∼. Then, the operation

⟨x1, y1⟩+ ⟨x2, y2⟩ = ⟨x1 + x2, y1 + y2⟩

endows G(D) with the structure of an Abelian group. Indeed, the inverse −⟨x, y⟩ of
⟨x, y⟩ is given by ⟨y, x⟩, and ⟨x, x⟩ = 0, for any x, y ∈ D. The pair

(
G(D),+

)
is called

the Grothendieck group.
For any fixed y ∈ D, let us also define the map

γD : D ∋ x 7→ γD(x) := ⟨x+ y, y⟩ ∈ G(D),

and observe that this map does not depend on the choice of any specific y ∈ D. Indeed,
one easily observes that (x+y, y) and (x+y′, y′) define the same equivalence class since
(x+ y) + y′ = (x+ y′) + y. The map γD is called the Grothendieck map.

Finally, one says that the semigroup (D,+) has the cancellation property if whenever
the equality x+z = y+z holds, it follows that x = y. Let us now gather some additional
information on this construction in the following proposition.
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Proposition 3.2.1. Let (D,+) be an Abelian semigroup, and let
(
G(D),+

)
and γD be

the corresponding Grothendieck group and Grothendieck map. Then:

(i) Universal property: If H is an Abelian group and if φ : D → H is an additive
map, then there is one and only one group homomorphism ψ : G(D)→ H making
the diagram

D φ
//

γD ""D
DD

DD
DD

D H

G(D)

ψ

OO

commutative,

(ii) Functoriality: For every additive map φ : D → D′ between semigroups there exists
one and only one group morphism G(φ) : G(D)→ G(D′) making the diagram

D φ - D′

G(D)

γD

?

G(φ)
- G(D′)

γD′

?

commutative,

(iii) G(D) = {γD(x)− γD(y) | x, y ∈ D},

(iv) For any x, y ∈ D one has γD(x) = γD(y) if and only if x + z = y + z for some
z ∈ D,

(v) The Grothendieck map γD : D → G(D) is injective if and only if (D,+) has the
cancellation property,

(vi) Let (H,+) be an Abelian group, and let D be a non-empty subset of H. If D is
closed under addition, then (D,+) is an Abelian semigroup with the cancellation
property. In addition, G(D) is isomorphic to the subgroup H0 generated by D, and
H0 = {x− y | x, y ∈ D}.

The proofs of these statements can be found in [RLL00, Sec. 3.1.2]. Let us just
mention the one of (iii): Since each element of G(D) has the form ⟨x, y⟩ for some
x, y ∈ D, it is sufficient to observe that

⟨x, y⟩ = ⟨x+ y, y⟩ − ⟨x+ y, x⟩ = γD(x)− γD(y).

We still illustrate the previous construction with two examples.

Examples 3.2.2. (i) The Grothendieck group of the Abelian semigroup (Z+,+) is
isomorphic to (Z,+). Note that (Z+,+) has the cancellation property.
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(ii) The Grothendieck group of the Abelian semigroup
(
Z+ ∪ {∞},+

)
is {0}. Note

that
(
Z+ ∪ {∞},+

)
does not possess the cancellation property.

We are now ready for the main definition of this chapter. Recall that for any C∗-
algebra C, the Abelian semigroup

(
D(C),+

)
has been introduced in Definition 3.1.2,

see also Lemma 3.1.3.

Definition 3.2.3. Let C be a unital C∗-algebra, and let
(
D(C),+

)
be the corresponding

Abelian semigroup. The Abelian group K0(C) is defined by

K0(C) := G
(
D(C)

)
.

One also set [·]0 : P∞(C)→ K0(C) for any p ∈ P∞(C) by

[p]0 := γ
(
[p]D

)
with γ : D(C)→ K0(C) the Grothendieck map.

In the following two propositions, we provide a standard picture of the K0-group
for a unital C∗-algebra, and state some of its universal properties. Before them, we
introduce one more equivalence relation on P∞(C), namely p, q ∈ P∞(C) are stable
equivalent, written p ∼s q, if there exists r ∈ P∞(C) such that p⊕ r ∼0 q⊕ r. Note that
if C is unital, then p ∼s q if and only if p ⊕ 1n ∼0 q ⊕ 1n for some n ∈ N. Indeed, if
p⊕ r ∼0 q ⊕ r for some r ∈ Pn(C), then

p⊕ 1n ∼0 p⊕ r ⊕ (1n − r) ∼0 q ⊕ r ⊕ (1n − r) ∼0 q ⊕ 1n,

where Proposition 3.1.1.(iv) has been used twice.

Proposition 3.2.4. For any unital C∗-algebra C one has

K0(C) =
{
[p]0 − [q]0 | p, q ∈ P∞(C)

}
=

{
[p]0 − [q]0 | p, q ∈ Pn(C), n ∈ N∗}. (3.2)

Moreover, one has

(i) [p⊕ q]0 = [p]0 + [q]0 for any projections p, q ∈ P∞(C),

(ii) [0C] = 0, where 0C stands for the zero element of C,

(iii) If p, q ∈ Pn(C) for some n ∈ N∗ and if p ∼h q ∈ Pn(C), then [p]0 = [q]0,

(iv) If p, q are mutually orthogonal projections in Pn(C), then [p+ q]0 = [p]0 + [q]0,

(v) For all p, q ∈ P∞(C), then [p]0 = [q]0 if and only if p ∼s q.
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Proof. The first equality in (3.2) follows from Proposition 3.2.1.(iii). Hence, if g is an
element of K0(C) there exist p′ ∈ Pk(C) and q′ ∈ Pl(C) such that g = [p′]0− [q′]0. Choose
then n greater than k and l, and set p = p′⊕ 0n−k and q := q⊕ 0n−l. Then p, q ∈ Pn(C)
with p ∼0 p

′ and q ∼0 q
′ by Proposition 3.1.1.(i). It thus follows that g = [p]0 − [q]0.

i) One has by (3.1)

[p⊕ q]0 = γ
(
[p⊕ q]D

)
= γ

(
[p]D + [q]D

)
= γ

(
[p]D

)
+ γ

(
[q]D

)
= [p]0 + [q]0.

ii) Since 0C ⊕ 0C ∼0 0C, point (i) yields that [0C]0 + [0C]0 = [0C]0, which means that
[0C]0 = 0.

iii) This statement follows from the implications

p ∼h q ⇒ p ∼ q ⇒ p ∼0 q ⇔ [p]D = [q]D ⇒ [p]0 = [q]0,

where the first two relations are defined only when p and q are in the same matrix
algebra over C, while the three other implications hold for any p, q ∈ P∞(C). Note that
the first implication is due to Lemma 2.2.9.

iv) By Proposition 3.1.1.(iv), one has p + q ∼0 p ⊕ q, and therefore [p + q]0 =
[p⊕ q]0 = [p]0 + [q]0 by (i).

v) If [p]0 = [q]0, then by Proposition 3.2.1.(iv) there exists r ∈ P∞(C) such that
[p]D + [r]D = [q]D + [r]D. Hence [p ⊕ r]D = [q ⊕ r]D, and then p ⊕ r ∼0 q ⊕ r. It thus
follows that p ∼s q.

Conversely, if p ∼s q, then there exists r ∈ P∞(C) such that p⊕ r ∼0 q ⊕ r. By (i)
one gets that [p]0 + [r]0 = [q]0 + [r]0, and because K0(C) is a group we conclude that
[p]0 = [q]0.

Proposition 3.2.5 (Universal property of K0). Let C be a unital C∗-algebra, and let
H be an Abelian group. Suppose that there exists ν : P∞(C) → H satisfying the three
conditions:

(i) ν(p⊕ q) = ν(p) + ν(q) for any p, q ∈ P∞(C),

(ii) ν(0C) = 0,

(iii) If p, q ∈ Pn(C) for some n ∈ N∗ and if p ∼h q ∈ Pn(C), then ν(p) = ν(q).

Then there exists a unique group homomorphism α : K0(C)→ H such that the diagram

P∞(C)
[·]0

��

ν

""E
EE

EE
EE

EE

K0(C) α
// H

is commutative.

The proof of this statement is provided the proof of [RLL00, Prop. 3.1.8] to which
we refer.
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3.3 Functoriality of K0

Let us now consider two unital C∗-algebras C and Q, and let φ : C → Q be a
∗-homomorphism. As already seen in Section 1.3, φ extends to a ∗-homomorphism
φ : Mn(C) → Mn(Q) for any n ∈ N∗. Again, the same notation is used for the
original morphism and for its extensions. Since ∗-homomorphisms map projections to
projections, one infers that φ maps P∞(C) into P∞(Q). Let us then define the map
ν : P∞(C) → K0(Q) by ν(p) := [φ(p)]0 for any p ∈ P∞(C). Since ν satisfies the three
conditions of Proposition 3.2.5 with H = K0(Q) one infers that there exists a unique
group homomorphism K0(φ) : K0(C)→ K0(Q) given by

K0(φ)([p]0) = [φ(p)]0 (3.3)

for any p ∈ P∞(C). In other words, the following diagram is commutative:

P∞(C) φ- P∞(Q)

K0(C)

[·]0

?

K0(φ)
- K0(Q).

[·]0

?

With this construction at hand, we can now state and prove the main result on
functoriality. Here, the functor K0 associates with any unital C∗-algebra C the Abelian
group K0(C). For two unital C∗-algebras C and Q one sets 0C→Q for the map sending
all elements of C to 0 ∈ Q, and 0K0(C)→K0(Q) for the map sending all elements of K0(C)
to the identity element in K0(Q).

Proposition 3.3.1 (Functoriality of K0 (unital case)). Let J , C and Q be unital C∗-
algebras. Then

(i) K0(idC) = idK0(C),

(ii) If φ : J → C and ψ : C → Q are ∗-homomorphisms, then

K0(ψ ◦ φ) = K0(ψ) ◦K0(φ),

(iii) K0({0}) = {0},

(iv) K0(0C→Q) = 0K0(C)→K0(Q).

Proof. By using (3.3) one can check that for any p ∈ P∞(C) and any q ∈ P∞(J ) the
equalities

K0(idC)([p]0) = [p]0, K0(ψ ◦ φ)([q]0) =
(
K0(ψ) ◦K0(φ)

)
([q]0)
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hold. Then, by taking the standard picture of K0 (equality (3.2)) into account, one
readily deduces the statement (i) and (ii).

iii) One has Pn({0}) = {0n}, with 0n the zero (and single) element ofMn({0}). Since
the zero projections 0 = 01, 02, . . . are all ∼0-equivalent, it follows that D({0}) = {[0]D}.
As a consequence, one deduces that K0({0}) = G

(
{[0]D}

)
= {0}.

iv) Since 0C→Q = 00→Q ◦ 0C→0 : C → {0} → Q, the statement (iv) can be deduced
from (ii) and (iii).

For two C∗-algebras C and Q, two ∗-homomorphisms φ0 : C → Q and φ1 : C → Q
are said to be homotopic, written φ0 ∼h φ1, if there exists a path of ∗-homomorphisms
t 7→ φ(t) with φ(0) = φ0 and φ(1) = φ1 such that for any a ∈ C the map [0, 1] ∋
t 7→ [φ(t)](a) ∈ Q is continuous. In this case, one also says that t 7→ φ(t) is pointwise
continuous. The two C∗-algebras C and Q are said to be homotopy equivalent if there
exist two ∗-homomorphisms φ : C → Q and ψ : Q → C such that ψ ◦ φ ∼h idC and
φ ◦ ψ ∼h idQ. In this case one says that

C φ−→ Q ψ−→ C (3.4)

is a homotopy between C and Q.
Proposition 3.3.2 (Homotopy invariance of K0 (unital case)). Let C and Q be unital
C∗-algebras.

(i) If φ, ψ : C → Q are homotopic ∗-homomorphisms, then K0(φ) = K0(ψ),

(ii) If C and Q are homotopy equivalent, then K0(C) is isomorphic to K0(Q). More
specifically, if (3.4) is a homotopy between C and Q, then K0(φ) : K0(C)→ K0(Q)
and K0(ψ) : K0(Q)→ K0(C) are isomorphisms, with K0(φ)

−1 = K0(ψ).

Exercise 3.3.3. Provide a proof of Proposition 3.3.2, with the possible help of [RLL00,
Prop. 3.2.6].

Our next aim is to show that K0 preserves exactness of the short exact sequence
obtained by adjoining a unit to a unital C∗-algebra. This result will be useful when
defining the K0-group for a non-unital C∗-algebra.

For two C∗-algebras C and Q, two ∗-homomorphisms φ : C → Q and ψ : C → Q are
said to be orthogonal to each other ormutually orthogonal, written φ⊥ψ, if φ(a)ψ(b) = 0
for any a, b ∈ C.
Lemma 3.3.4. If C and Q are unital C∗-algebras, and if φ : C → Q and ψ : C → Q
are mutually orthogonal ∗-homomorphisms, then φ+ψ : C → Q is a ∗-homomorphism,
and K0(φ+ ψ) = K0(φ) +K0(ψ).

Proof. One readily check that φ + ψ : C → Q is a ∗-homomorphism. In addition, the
∗-homomorphism φ : Mn(C) → Mn(Q) and ψ : Mn(C) → Mn(Q) are also orthogonal,
for any n ∈ N∗. By using then Proposition 3.2.4.(iv) we obtain for any p ∈ Pn(C):

K0(φ+ ψ)([p]0) = [(φ+ ψ)(p)]0 = [φ(p) + ψ(p)]0

= [φ(p)]0 + [ψ(p)]0 = K0(φ)([p]0) +K0(ψ)([p]0).
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This shows that K0(φ+ ψ) = K0(φ) +K0(ψ).

Lemma 3.3.5. For any unital C∗-algebra C, the split exact sequence

0 −→ C ι
↪−→ C̃

π−−−−−→←−−−−−
λ

C −→ 0

induces a split exact sequence

0 −→ K0(C)
K0(ι)

−−−−−→ K0(C̃)
K0(π)

−−−−−→←−−−−−
K0(λ)

K0(C) −→ 0 (3.5)

Proof. Recall from the proof of Lemma 2.2.4 that if 1̃ denotes the unit of C̃ and if 1
denotes the unit of C, then 1 := 1̃ − 1 is a projection in C̃. In addition, C̃ = C + C1,
with a1 = 1a = 0 for any a ∈ C. Let us then define the ∗-homomorphisms µ : C̃ → C
and λ′ : C → C̃ by µ(a + α1) := a and λ′(α) := α1 for any a ∈ C and α ∈ C. One
readily infers that

idC = µ ◦ ι, idC̃ = ι ◦ µ+ λ′ ◦ π, π ◦ ι = 0C→C, π ◦ λ = idC,

and the ∗-homomorphisms ι ◦ µ and λ′ ◦ π are orthogonal to each other. Proposition
3.3.1 and Lemma 3.3.4 then lead to

0K0(C)→K0(C) = K0(0C→C) = K0(π) ◦K0(ι), (3.6)

idK0(C) = K0(idC) = K0(π ◦ λ) = K0(π) ◦K0(λ), (3.7)

idK0(C) = K0(idC) = K0(µ ◦ ι) = K0(µ) ◦K0(ι), (3.8)

idK0(C̃) = K0(idC̃) = K0(ι ◦ µ+ λ′ ◦ π)
= K0(ι) ◦K0(µ) +K0(λ

′) ◦K0(π). (3.9)

Now, the split exactness of (3.5) follows from these equalities. Indeed, the injectiv-
ity of K0(ι) follows from (3.8). If g ∈ Ker

(
K0(π)

)
, one infers from (3.9) that g =

K0(ι)
(
K0(µ)(g)

)
, which shows that g belongs to Ran

(
K0(ι)

)
. Since by (3.6) one also gets

Ran
(
K0(ι)

)
⊂ Ker

(
K0(π)

)
, these two inclusions mean that Ran

(
K0(ι)

)
= Ker

(
K0(π)

)
.

Finally, the surjectivity of K0(π) is a by-product of (3.7), from which one also infers
the splitness.

3.4 Examples

In this section, we introduce the examples discussed in [RLL00, Sec. 3.3] and refer to
this book for the proofs.

Consider first a C∗-algebra C endowed with a bounded trace τ , i.e. τ : C → C is a
bounded linear map satisfying the trace property

τ(ab) = τ(ba), ∀a, b ∈ C.
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This trace property implies in particular that τ(p) = τ(q) whenever p, q are Murray-
von Neumann equivalent projections in C. This trace is also called positive if τ(a) ≥ 0
whenever a ∈ C+. If C is unital and if τ(1C) = 1, then τ is called a tracial state.

For any trace τ on a C∗-algebra C, one defines a trace on Mn(C) by setting

τ

a11 . . . a1n
...

. . .
...

an1 . . . ann

 =
n∑
j=1

τ(ajj).

It thus endows P∞(C) with a map τ : P∞(C) → C, and this map satisfies the three
conditions of Proposition 3.2.5. For the last one, recall that the homotopy equivalence
implies the Murray-von Neumann equivalence, see Lemma 2.2.9. As a consequence, one
infers that there exists a unique group homomorphism K0(τ) : K0(C) → C satisfying
for any p ∈ P∞(C)

K0(τ)([p]0) = τ(p). (3.10)

Note that if τ is positive, then the r.h.s. of (3.10) is a positive real number, and K0(τ)
maps K0(C) into R.
Example 3.4.1. For any n ∈ N∗, one has

K0

(
Mn(C)

) ∼= Z. (3.11)

In fact, if tr denotes the usual trace already introduced in Exercise 3.1.4, then

K0(tr) : K0

(
Mn(C)

)
→ Z (3.12)

is an isomorphism.

Example 3.4.2. If H is an infinite dimensional separable Hilbert space, then we have

K0

(
B(H)

)
= {0}.

Note that this fact is related to the content of Exercise 3.1.5.

Example 3.4.3. If Ω is a compact, connected and Hausdorff space, then there exists a
surjective group homomorphism

dim : K0

(
C(Ω)

)
→ Z (3.13)

which satisfies for p ∈ P∞
(
C(Ω)

)
and x ∈ Ω

dim([p]0) = tr
(
p(x)

)
.

Note that by continuity this number is independent of x. Note also that if Ω is con-
tractible1 then the map (3.13) is an isomorphism.

Exercise 3.4.4. Provide the proofs for the statements of Examples 3.4.1, 3.4.2 and
3.4.3.

Extension 3.4.5. Study the K-theory for topological spaces, as presented for example
in [RLL00, Sec. 3.3.7].

1The space Ω is contractible if there exists x0 ∈ Ω and a continuous map α : [0, 1] × Ω → Ω such
that α(1, x) = x and α(0, x) = x0 for any x ∈ Ω.


