Chapter 3 K_0 -group for a unital C^* -algebra

In this chapter, we associate with each unital C^* -algebra an Abelian group. This group will be constructed from equivalence classes of projections. The K_0 -group for non-unital C^* -algebra will be described in the next Chapter.

3.1 Semigroups of projections

Let us start by introducing a semigroup of projections in a C^* -algebra, with or without a unit. For that purpose, let \mathcal{C} be an arbitrary C^* -algebra and set for $n \in \mathbb{N}^*$

$$\mathcal{P}_n(\mathcal{C}) := \mathcal{P}(M_n(\mathcal{C}))$$
 and $\mathcal{P}_\infty(\mathcal{C}) := \bigcup_{n=1}^{\infty} \mathcal{P}_n(\mathcal{C}).$

One can then define the relation \sim_0 on $\mathcal{P}_{\infty}(\mathcal{C})$, namely for two elements $p, q \in \mathcal{P}_{\infty}(\mathcal{C})$ one writes $p \sim_0 q$ if there exits $v \in M_{m,n}(\mathcal{C})$ such that $p = v^* v \in \mathcal{P}_n(\mathcal{C})$ and $q = vv^* \in \mathcal{P}_m(\mathcal{C})$. Clearly, $M_{m,n}(\mathcal{C})$ denotes the set of $m \times n$ matrices with entries in \mathcal{C} , and the adjoint v^* of $v \in M_{m,n}(\mathcal{C})$ is obtained by taking the transpose of the matrix, and then the adjoint of each entry.

One easily observes that the relation \sim_0 is an equivalence relation on $\mathcal{P}_{\infty}(\mathcal{C})$. It combines both the Murray-von Neumann equivalence relation \sim and and the identification of projections in different sized matrix algebras over \mathcal{C} . For example, if $p, q \in \mathcal{P}_n(\mathcal{C})$ then $p \sim_0 q$ if and only if $p \sim q$.

We also define a binary operation \oplus on $\mathcal{P}_{\infty}(\mathcal{C})$ by

$$p \oplus q = \operatorname{diag}(p,q) := \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix},$$

so that $p \oplus q$ belongs to $\mathcal{P}_{m+n}(\mathcal{C})$ whenever $p \in \mathcal{P}_n(\mathcal{C})$ and $q \in \mathcal{P}_m(\mathcal{C})$. We can now derive some of the properties of \sim_0 .

Proposition 3.1.1. Let C be a C^* -algebra, and let p, q, r, p', q' be elements of $\mathcal{P}_{\infty}(C)$. Then:

- (i) $p \sim_0 p \oplus 0_n$ for any natural number n, where 0_n denotes the 0-element of $M_n(\mathcal{C})$,
- (ii) If $p \sim_0 p'$ and $q \sim_0 q'$, then $p \oplus q \sim_0 p' \oplus q'$,
- (*iii*) $p \oplus q \sim_0 q \oplus p$,
- (iv) If $p, q \in \mathcal{P}_n(\mathcal{C})$ such that pq = 0, then $p + q \in \mathcal{P}_n(\mathcal{C})$ and $p + q \sim_0 p \oplus q$,
- (v) $(p \oplus q) \oplus r = p \oplus (q \oplus r)$.

Proof. i) Let m, n be integers, and let $p \in \mathcal{P}_m(\mathcal{C})$. One then sets $v := \begin{pmatrix} p \\ 0 \end{pmatrix} \in M_{m+n,m}(\mathcal{C})$, and one gets $p = v^*v$ and $vv^* = p \oplus 0_n$.

ii) Let v, w such that $p = v^* v, p' = vv^*, q = w^* w$ and $q' = ww^*$, and set u :=diag(v, w). Then $p \oplus q = u^*u$ and $p' \oplus q' = uu^*$.

iii) Assume $p \in \mathcal{P}_n(\mathcal{C})$ and $q \in \mathcal{P}_m(\mathcal{C})$, and set $v := \begin{pmatrix} 0_{n,m} & q \\ p & 0_{m,n} \end{pmatrix}$, with $0_{k,l}$ the 0-matrix of size $k \times l$. Then one gets $p \oplus q = v^* v$ and $q \oplus p = vv^*$.

iv) If pq = 0 it is easily observe that p + q is itself a projection. Then, if one sets $v := \begin{pmatrix} p \\ q \end{pmatrix} \in M_{2n,n}(\mathcal{C})$, one gets $p + q = v^* v$ and $p \oplus q = vv^*$.

v) This last statement is trivial.

Definition 3.1.2. For any C^* -algebra \mathcal{C} , one sets

$$\mathcal{D}(\mathcal{C}) := \mathcal{P}_{\infty}(\mathcal{C}) / \sim_0$$

which corresponds to the equivalent classes of elements of $\mathcal{P}_{\infty}(\mathcal{C})$ modulo the equivalence relation \sim_0 . For any $p \in \mathcal{P}_{\infty}(\mathcal{C})$ one writes $[p]_{\mathcal{D}} \in \mathcal{D}(\mathcal{C})$ for the equivalent class containing p. The set $\mathcal{D}(\mathcal{C})$ is endowed with a binary operation defined for any $p, q \in \mathcal{P}_{\infty}(\mathcal{C})$ by

$$[p]_{\mathcal{D}} + [q]_{\mathcal{D}} = [p \oplus q]_{\mathcal{D}}.$$
(3.1)

Because of the previous proposition, one directly infers the following result:

Lemma 3.1.3. The pair $(\mathcal{D}(\mathcal{C}), +)$ defines an Abelian semigroup.

We end this section with two exercises dealing with projections.

Exercise 3.1.4. Let $\operatorname{tr}: M_n(\mathbb{C}) \to \mathbb{C}$ denote the usual trace on square matrices, and let $p, q \in \mathcal{P}(M_n(\mathbb{C}))$. Show that the following statements are equivalent:

(i) $p \sim q$,

(i)
$$\operatorname{tr}(p) = \operatorname{tr}(q)$$

(i) $\dim(p(\mathbb{C}^n)) = \dim(q(\mathbb{C}^n)).$

Use this to show that $\mathcal{D}(\mathbb{C}) \cong \mathbb{Z}_+ \equiv \{0, 1, 2, ...\}$ when \mathbb{Z}_+ is equipped with the usual addition.

Exercise 3.1.5. Let \mathcal{H} be an infinite dimensional separable Hilbert space, and let p, q be projections in $\mathcal{B}(\mathcal{H})$.

- (i) Show that $p \sim q$ if and only if $\dim(p(\mathcal{H})) = \dim(q(\mathcal{H}))$,
- (ii) Show that $p \sim_u q$ if and only if $\dim(p(\mathcal{H})) = \dim(q(\mathcal{H}))$ and $\dim(p(\mathcal{H})^{\perp}) = \dim(q(\mathcal{H})^{\perp})$,
- (iii) Infer that $\mathcal{D}(\mathcal{B}(\mathcal{H})) \cong \mathbb{Z}_+ \cup \{\infty\} \equiv \{0, 1, 2, \dots, \infty\}$, where the usual addition on \mathbb{Z}_+ is considered together with the addition $n + \infty = \infty + n = \infty$ for all $n \in \mathbb{Z}_+ \cup \{\infty\}$.

3.2 The K_0 -group

In this section we construct the K_0 -group associated with a unital C^* -algebra \mathcal{C} . This group is defined in terms of the Grothendieck construction applied to the Abelian semigroup $(\mathcal{D}(\mathcal{C}), +)$. We first recall this construction in an abstract setting.

Let $(\mathcal{D}, +)$ be an Abelian semigroup, and define on $\mathcal{D} \times \mathcal{D}$ the relation \sim by $(x_1, y_1) \sim (x_2, y_2)$ if there exists $z \in \mathcal{D}$ such that $x_1 + y_2 + z = x_2 + y_1 + z$. This relation is clearly reflexive and symmetric. For the transitivity, suppose that $(x_1, y_1) \sim (x_2, y_2)$ and that $(x_2, y_2) \sim (x_3, y_3)$. This means that there exist $z, w \in \mathcal{D}$ such that

$$x_1 + y_2 + z = x_2 + y_1 + z$$
 and $x_2 + y_3 + w = x_3 + y_2 + w$.

It then follows that

$$x_1 + y_3 + (y_2 + z + w) = x_2 + y_1 + z + y_3 + w = x_3 + y_1 + (y_2 + z + w)$$

so that $(x_1, y_1) \sim (x_3, y_3)$. As a consequence, ~ defines an equivalence relation on $\mathcal{D} \times \mathcal{D}$. The equivalence class containing (x, y) is denoted by $\langle x, y \rangle$, and we set $\mathcal{G}(\mathcal{D})$ for the quotient $\mathcal{D} \times \mathcal{D} / \sim$. Then, the operation

$$\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$$

endows $\mathcal{G}(\mathcal{D})$ with the structure of an Abelian group. Indeed, the inverse $-\langle x, y \rangle$ of $\langle x, y \rangle$ is given by $\langle y, x \rangle$, and $\langle x, x \rangle = 0$, for any $x, y \in \mathcal{D}$. The pair $(\mathcal{G}(\mathcal{D}), +)$ is called the Grothendieck group.

For any fixed $y \in \mathcal{D}$, let us also define the map

$$\gamma_{\mathcal{D}}: \mathcal{D} \ni x \mapsto \gamma_{\mathcal{D}}(x) := \langle x + y, y \rangle \in \mathcal{G}(\mathcal{D}),$$

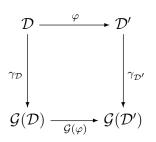
and observe that this map does not depend on the choice of any specific $y \in \mathcal{D}$. Indeed, one easily observes that (x+y, y) and (x+y', y') define the same equivalence class since (x+y) + y' = (x+y') + y. The map $\gamma_{\mathcal{D}}$ is called *the Grothendieck map*.

Finally, one says that the semigroup $(\mathcal{D}, +)$ has the *cancellation property* if whenever the equality x + z = y + z holds, it follows that x = y. Let us now gather some additional information on this construction in the following proposition. **Proposition 3.2.1.** Let $(\mathcal{D}, +)$ be an Abelian semigroup, and let $(\mathcal{G}(\mathcal{D}), +)$ and $\gamma_{\mathcal{D}}$ be the corresponding Grothendieck group and Grothendieck map. Then:

(i) Universal property: If H is an Abelian group and if $\varphi : \mathcal{D} \to H$ is an additive map, then there is one and only one group homomorphism $\psi : \mathcal{G}(\mathcal{D}) \to H$ making the diagram

commutative,

(ii) Functoriality: For every additive map $\varphi : \mathcal{D} \to \mathcal{D}'$ between semigroups there exists one and only one group morphism $\mathcal{G}(\varphi) : \mathcal{G}(\mathcal{D}) \to \mathcal{G}(\mathcal{D}')$ making the diagram



commutative,

- (*iii*) $\mathcal{G}(\mathcal{D}) = \{\gamma_{\mathcal{D}}(x) \gamma_{\mathcal{D}}(y) \mid x, y \in \mathcal{D}\},\$
- (iv) For any $x, y \in \mathcal{D}$ one has $\gamma_{\mathcal{D}}(x) = \gamma_{\mathcal{D}}(y)$ if and only if x + z = y + z for some $z \in \mathcal{D}$,
- (v) The Grothendieck map $\gamma_{\mathcal{D}} : \mathcal{D} \to \mathcal{G}(\mathcal{D})$ is injective if and only if $(\mathcal{D}, +)$ has the cancellation property,
- (vi) Let (H, +) be an Abelian group, and let \mathcal{D} be a non-empty subset of H. If \mathcal{D} is closed under addition, then $(\mathcal{D}, +)$ is an Abelian semigroup with the cancellation property. In addition, $\mathcal{G}(\mathcal{D})$ is isomorphic to the subgroup H_0 generated by \mathcal{D} , and $H_0 = \{x y \mid x, y \in \mathcal{D}\}.$

The proofs of these statements can be found in [RLL00, Sec. 3.1.2]. Let us just mention the one of (*iii*): Since each element of $\mathcal{G}(\mathcal{D})$ has the form $\langle x, y \rangle$ for some $x, y \in \mathcal{D}$, it is sufficient to observe that

$$\langle x, y \rangle = \langle x + y, y \rangle - \langle x + y, x \rangle = \gamma_{\mathcal{D}}(x) - \gamma_{\mathcal{D}}(y).$$

We still illustrate the previous construction with two examples.

Examples 3.2.2. (i) The Grothendieck group of the Abelian semigroup $(\mathbb{Z}_+, +)$ is isomorphic to $(\mathbb{Z}, +)$. Note that $(\mathbb{Z}_+, +)$ has the cancellation property.

(ii) The Grothendieck group of the Abelian semigroup $(\mathbb{Z}_+ \cup \{\infty\}, +)$ is $\{0\}$. Note that $(\mathbb{Z}_+ \cup \{\infty\}, +)$ does not possess the cancellation property.

We are now ready for the main definition of this chapter. Recall that for any C^* -algebra \mathcal{C} , the Abelian semigroup $(\mathcal{D}(\mathcal{C}), +)$ has been introduced in Definition 3.1.2, see also Lemma 3.1.3.

Definition 3.2.3. Let C be a unital C^* -algebra, and let $(\mathcal{D}(C), +)$ be the corresponding Abelian semigroup. The Abelian group $K_0(C)$ is defined by

$$K_0(\mathcal{C}) := \mathcal{G}(\mathcal{D}(\mathcal{C})).$$

One also set $[\cdot]_0 : \mathcal{P}_\infty(\mathcal{C}) \to K_0(\mathcal{C})$ for any $p \in \mathcal{P}_\infty(\mathcal{C})$ by

$$[p]_0 := \gamma([p]_{\mathcal{D}})$$

with $\gamma : \mathcal{D}(\mathcal{C}) \to K_0(\mathcal{C})$ the Grothendieck map.

In the following two propositions, we provide a standard picture of the K_0 -group for a unital C^* -algebra, and state some of its universal properties. Before them, we introduce one more equivalence relation on $\mathcal{P}_{\infty}(\mathcal{C})$, namely $p, q \in \mathcal{P}_{\infty}(\mathcal{C})$ are stable equivalent, written $p \sim_s q$, if there exists $r \in \mathcal{P}_{\infty}(\mathcal{C})$ such that $p \oplus r \sim_0 q \oplus r$. Note that if \mathcal{C} is unital, then $p \sim_s q$ if and only if $p \oplus \mathbf{1}_n \sim_0 q \oplus \mathbf{1}_n$ for some $n \in \mathbb{N}$. Indeed, if $p \oplus r \sim_0 q \oplus r$ for some $r \in \mathcal{P}_n(\mathcal{C})$, then

$$p \oplus \mathbf{1}_n \sim_0 p \oplus r \oplus (\mathbf{1}_n - r) \sim_0 q \oplus r \oplus (\mathbf{1}_n - r) \sim_0 q \oplus \mathbf{1}_n,$$

where Proposition 3.1.1.(iv) has been used twice.

Proposition 3.2.4. For any unital C^* -algebra \mathcal{C} one has

$$K_0(\mathcal{C}) = \left\{ [p]_0 - [q]_0 \mid p, q \in \mathcal{P}_\infty(\mathcal{C}) \right\} = \left\{ [p]_0 - [q]_0 \mid p, q \in \mathcal{P}_n(\mathcal{C}), n \in \mathbb{N}^* \right\}.$$
 (3.2)

Moreover, one has

- (i) $[p \oplus q]_0 = [p]_0 + [q]_0$ for any projections $p, q \in \mathcal{P}_{\infty}(\mathcal{C})$,
- (ii) $[0_{\mathcal{C}}] = 0$, where $0_{\mathcal{C}}$ stands for the zero element of \mathcal{C} ,
- (iii) If $p, q \in \mathcal{P}_n(\mathcal{C})$ for some $n \in \mathbb{N}^*$ and if $p \sim_h q \in \mathcal{P}_n(\mathcal{C})$, then $[p]_0 = [q]_0$,
- (iv) If p, q are mutually orthogonal projections in $\mathcal{P}_n(\mathcal{C})$, then $[p+q]_0 = [p]_0 + [q]_0$,
- (v) For all $p, q \in \mathcal{P}_{\infty}(\mathcal{C})$, then $[p]_0 = [q]_0$ if and only if $p \sim_s q$.

Proof. The first equality in (3.2) follows from Proposition 3.2.1.(*iii*). Hence, if g is an element of $K_0(\mathcal{C})$ there exist $p' \in \mathcal{P}_k(\mathcal{C})$ and $q' \in \mathcal{P}_l(\mathcal{C})$ such that $g = [p']_0 - [q']_0$. Choose then n greater than k and l, and set $p = p' \oplus 0_{n-k}$ and $q := q \oplus 0_{n-l}$. Then $p, q \in \mathcal{P}_n(\mathcal{C})$ with $p \sim_0 p'$ and $q \sim_0 q'$ by Proposition 3.1.1.(*i*). It thus follows that $g = [p]_0 - [q]_0$.

i) One has by (3.1)

$$[p \oplus q]_0 = \gamma \big([p \oplus q]_{\mathcal{D}} \big) = \gamma \big([p]_{\mathcal{D}} + [q]_{\mathcal{D}} \big) = \gamma \big([p]_{\mathcal{D}} \big) + \gamma \big([q]_{\mathcal{D}} \big) = [p]_0 + [q]_0$$

ii) Since $0_{\mathcal{C}} \oplus 0_{\mathcal{C}} \sim_0 0_{\mathcal{C}}$, point (i) yields that $[0_{\mathcal{C}}]_0 + [0_{\mathcal{C}}]_0 = [0_{\mathcal{C}}]_0$, which means that $[0_{\mathcal{C}}]_0 = 0$.

iii) This statement follows from the implications

$$p \sim_h q \Rightarrow p \sim q \Rightarrow p \sim_0 q \Leftrightarrow [p]_{\mathcal{D}} = [q]_{\mathcal{D}} \Rightarrow [p]_0 = [q]_0,$$

where the first two relations are defined only when p and q are in the same matrix algebra over \mathcal{C} , while the three other implications hold for any $p, q \in \mathcal{P}_{\infty}(\mathcal{C})$. Note that the first implication is due to Lemma 2.2.9.

iv) By Proposition 3.1.1.(*iv*), one has $p + q \sim_0 p \oplus q$, and therefore $[p + q]_0 = [p \oplus q]_0 = [p]_0 + [q]_0$ by (*i*).

v) If $[p]_0 = [q]_0$, then by Proposition 3.2.1.(*iv*) there exists $r \in \mathcal{P}_{\infty}(\mathcal{C})$ such that $[p]_{\mathcal{D}} + [r]_{\mathcal{D}} = [q]_{\mathcal{D}} + [r]_{\mathcal{D}}$. Hence $[p \oplus r]_{\mathcal{D}} = [q \oplus r]_{\mathcal{D}}$, and then $p \oplus r \sim_0 q \oplus r$. It thus follows that $p \sim_s q$.

Conversely, if $p \sim_s q$, then there exists $r \in \mathcal{P}_{\infty}(\mathcal{C})$ such that $p \oplus r \sim_0 q \oplus r$. By (i) one gets that $[p]_0 + [r]_0 = [q]_0 + [r]_0$, and because $K_0(\mathcal{C})$ is a group we conclude that $[p]_0 = [q]_0$.

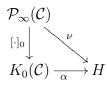
Proposition 3.2.5 (Universal property of K_0). Let \mathcal{C} be a unital C^* -algebra, and let H be an Abelian group. Suppose that there exists $\nu : \mathcal{P}_{\infty}(\mathcal{C}) \to H$ satisfying the three conditions:

(i)
$$\nu(p \oplus q) = \nu(p) + \nu(q)$$
 for any $p, q \in \mathcal{P}_{\infty}(\mathcal{C})$,

$$(ii) \ \nu(0_{\mathcal{C}}) = 0,$$

(iii) If $p, q \in \mathcal{P}_n(\mathcal{C})$ for some $n \in \mathbb{N}^*$ and if $p \sim_h q \in \mathcal{P}_n(\mathcal{C})$, then $\nu(p) = \nu(q)$.

Then there exists a unique group homomorphism $\alpha: K_0(\mathcal{C}) \to H$ such that the diagram



is commutative.

The proof of this statement is provided the proof of [RLL00, Prop. 3.1.8] to which we refer.

3.3 Functoriality of K_0

Let us now consider two unital C^* -algebras \mathcal{C} and \mathcal{Q} , and let $\varphi : \mathcal{C} \to \mathcal{Q}$ be a *-homomorphism. As already seen in Section 1.3, φ extends to a *-homomorphism $\varphi : M_n(\mathcal{C}) \to M_n(\mathcal{Q})$ for any $n \in \mathbb{N}^*$. Again, the same notation is used for the original morphism and for its extensions. Since *-homomorphisms map projections to projections, one infers that φ maps $\mathcal{P}_{\infty}(\mathcal{C})$ into $\mathcal{P}_{\infty}(\mathcal{Q})$. Let us then define the map $\nu : \mathcal{P}_{\infty}(\mathcal{C}) \to K_0(\mathcal{Q})$ by $\nu(p) := [\varphi(p)]_0$ for any $p \in \mathcal{P}_{\infty}(\mathcal{C})$. Since ν satisfies the three conditions of Proposition 3.2.5 with $H = K_0(\mathcal{Q})$ one infers that there exists a unique group homomorphism $K_0(\varphi) : K_0(\mathcal{C}) \to K_0(\mathcal{Q})$ given by

$$K_0(\varphi)([p]_0) = [\varphi(p)]_0 \tag{3.3}$$

for any $p \in \mathcal{P}_{\infty}(\mathcal{C})$. In other words, the following diagram is commutative:

$$\begin{array}{c|c} \mathcal{P}_{\infty}(\mathcal{C}) \xrightarrow{\varphi} \mathcal{P}_{\infty}(\mathcal{Q}) \\ \hline \\ [\cdot]_{0} \\ \\ K_{0}(\mathcal{C}) \xrightarrow{} K_{0}(\varphi) \end{array} \begin{array}{c} \mathcal{P}_{\infty}(\mathcal{Q}). \end{array}$$

With this construction at hand, we can now state and prove the main result on functoriality. Here, the functor K_0 associates with any unital C^* -algebra \mathcal{C} the Abelian group $K_0(\mathcal{C})$. For two unital C^* -algebras \mathcal{C} and \mathcal{Q} one sets $0_{\mathcal{C}\to\mathcal{Q}}$ for the map sending all elements of \mathcal{C} to $0 \in \mathcal{Q}$, and $0_{K_0(\mathcal{C})\to K_0(\mathcal{Q})}$ for the map sending all elements of $K_0(\mathcal{C})$ to the identity element in $K_0(\mathcal{Q})$.

Proposition 3.3.1 (Functoriality of K_0 (unital case)). Let \mathcal{J} , \mathcal{C} and \mathcal{Q} be unital C^* -algebras. Then

(i)
$$K_0(\operatorname{id}_{\mathcal{C}}) = \operatorname{id}_{K_0(\mathcal{C})},$$

(ii) If $\varphi : \mathcal{J} \to \mathcal{C}$ and $\psi : \mathcal{C} \to \mathcal{Q}$ are *-homomorphisms, then

$$K_0(\psi \circ \varphi) = K_0(\psi) \circ K_0(\varphi),$$

(*iii*) $K_0(\{0\}) = \{0\},\$

 $(iv) K_0(0_{\mathcal{C}\to\mathcal{Q}}) = 0_{K_0(\mathcal{C})\to K_0(\mathcal{Q})}.$

Proof. By using (3.3) one can check that for any $p \in \mathcal{P}_{\infty}(\mathcal{C})$ and any $q \in \mathcal{P}_{\infty}(\mathcal{J})$ the equalities

$$K_{0}(\mathrm{id}_{\mathcal{C}})([p]_{0}) = [p]_{0}, \qquad K_{0}(\psi \circ \varphi)([q]_{0}) = (K_{0}(\psi) \circ K_{0}(\varphi))([q]_{0})$$

hold. Then, by taking the standard picture of K_0 (equality (3.2)) into account, one readily deduces the statement (i) and (ii).

iii) One has $\mathcal{P}_n(\{0\}) = \{0_n\}$, with 0_n the zero (and single) element of $M_n(\{0\})$. Since the zero projections $0 = 0_1, 0_2, \ldots$ are all \sim_0 -equivalent, it follows that $\mathcal{D}(\{0\}) = \{[0]_{\mathcal{D}}\}$. As a consequence, one deduces that $K_0(\{0\}) = \mathcal{G}(\{[0]_{\mathcal{D}}\}) = \{0\}$.

iv) Since $0_{\mathcal{C}\to\mathcal{Q}} = 0_{0\to\mathcal{Q}} \circ 0_{\mathcal{C}\to0} : \mathcal{C}\to\{0\}\to\mathcal{Q}$, the statement (iv) can be deduced from (ii) and (iii).

For two C^* -algebras \mathcal{C} and \mathcal{Q} , two *-homomorphisms $\varphi_0 : \mathcal{C} \to \mathcal{Q}$ and $\varphi_1 : \mathcal{C} \to \mathcal{Q}$ are said to be *homotopic*, written $\varphi_0 \sim_h \varphi_1$, if there exists a path of *-homomorphisms $t \mapsto \varphi(t)$ with $\varphi(0) = \varphi_0$ and $\varphi(1) = \varphi_1$ such that for any $a \in \mathcal{C}$ the map $[0,1] \ni$ $t \mapsto [\varphi(t)](a) \in \mathcal{Q}$ is continuous. In this case, one also says that $t \mapsto \varphi(t)$ is *pointwise continuous*. The two C^* -algebras \mathcal{C} and \mathcal{Q} are said to be *homotopy equivalent* if there exist two *-homomorphisms $\varphi : \mathcal{C} \to \mathcal{Q}$ and $\psi : \mathcal{Q} \to \mathcal{C}$ such that $\psi \circ \varphi \sim_h \mathrm{id}_{\mathcal{C}}$ and $\varphi \circ \psi \sim_h \mathrm{id}_{\mathcal{Q}}$. In this case one says that

$$\mathcal{C} \xrightarrow{\varphi} \mathcal{Q} \xrightarrow{\psi} \mathcal{C} \tag{3.4}$$

is a homotopy between \mathcal{C} and \mathcal{Q} .

Proposition 3.3.2 (Homotopy invariance of K_0 (unital case)). Let C and Q be unital C^* -algebras.

- (i) If $\varphi, \psi : \mathcal{C} \to \mathcal{Q}$ are homotopic *-homomorphisms, then $K_0(\varphi) = K_0(\psi)$,
- (ii) If \mathcal{C} and \mathcal{Q} are homotopy equivalent, then $K_0(\mathcal{C})$ is isomorphic to $K_0(\mathcal{Q})$. More specifically, if (3.4) is a homotopy between \mathcal{C} and \mathcal{Q} , then $K_0(\varphi) : K_0(\mathcal{C}) \to K_0(\mathcal{Q})$ and $K_0(\psi) : K_0(\mathcal{Q}) \to K_0(\mathcal{C})$ are isomorphisms, with $K_0(\varphi)^{-1} = K_0(\psi)$.

Exercise 3.3.3. Provide a proof of Proposition 3.3.2, with the possible help of [RLL00, Prop. 3.2.6].

Our next aim is to show that K_0 preserves exactness of the short exact sequence obtained by adjoining a unit to a unital C^* -algebra. This result will be useful when defining the K_0 -group for a non-unital C^* -algebra.

For two C^* -algebras \mathcal{C} and \mathcal{Q} , two *-homomorphisms $\varphi : \mathcal{C} \to \mathcal{Q}$ and $\psi : \mathcal{C} \to \mathcal{Q}$ are said to be *orthogonal to each other* or *mutually orthogonal*, written $\varphi \perp \psi$, if $\varphi(a)\psi(b) = 0$ for any $a, b \in \mathcal{C}$.

Lemma 3.3.4. If \mathcal{C} and \mathcal{Q} are unital C^* -algebras, and if $\varphi : \mathcal{C} \to \mathcal{Q}$ and $\psi : \mathcal{C} \to \mathcal{Q}$ are mutually orthogonal *-homomorphisms, then $\varphi + \psi : \mathcal{C} \to \mathcal{Q}$ is a *-homomorphism, and $K_0(\varphi + \psi) = K_0(\varphi) + K_0(\psi)$.

Proof. One readily check that $\varphi + \psi : \mathcal{C} \to \mathcal{Q}$ is a *-homomorphism. In addition, the *-homomorphism $\varphi : M_n(\mathcal{C}) \to M_n(\mathcal{Q})$ and $\psi : M_n(\mathcal{C}) \to M_n(\mathcal{Q})$ are also orthogonal, for any $n \in \mathbb{N}^*$. By using then Proposition 3.2.4.(*iv*) we obtain for any $p \in \mathcal{P}_n(\mathcal{C})$:

$$K_0(\varphi + \psi)([p]_0) = [(\varphi + \psi)(p)]_0 = [\varphi(p) + \psi(p)]_0$$

= $[\varphi(p)]_0 + [\psi(p)]_0 = K_0(\varphi)([p]_0) + K_0(\psi)([p]_0)$

This shows that $K_0(\varphi + \psi) = K_0(\varphi) + K_0(\psi)$.

Lemma 3.3.5. For any unital C^* -algebra \mathcal{C} , the split exact sequence

$$0 \longrightarrow \mathcal{C} \stackrel{\iota}{\longleftrightarrow} \widetilde{\mathcal{C}} \xrightarrow[\lambda]{\pi} \mathbb{C} \longrightarrow 0$$

induces a split exact sequence

$$0 \longrightarrow K_0(\mathcal{C}) \xrightarrow{K_0(\iota)} K_0(\widetilde{\mathcal{C}}) \xleftarrow{K_0(\pi)}{\underset{K_0(\lambda)}{\longleftarrow}} K_0(\mathbb{C}) \longrightarrow 0$$
(3.5)

Proof. Recall from the proof of Lemma 2.2.4 that if $\tilde{1}$ denotes the unit of $\tilde{\mathcal{C}}$ and if 1 denotes the unit of \mathcal{C} , then $1 := \tilde{1} - 1$ is a projection in $\tilde{\mathcal{C}}$. In addition, $\tilde{\mathcal{C}} = \mathcal{C} + \mathbb{C}1$, with a1 = 1a = 0 for any $a \in \mathcal{C}$. Let us then define the *-homomorphisms $\mu : \tilde{\mathcal{C}} \to \mathcal{C}$ and $\lambda' : \mathbb{C} \to \tilde{\mathcal{C}}$ by $\mu(a + \alpha 1) := a$ and $\lambda'(\alpha) := \alpha 1$ for any $a \in \mathcal{C}$ and $\alpha \in \mathbb{C}$. One readily infers that

$$\mathrm{id}_{\mathcal{C}} = \mu \circ \iota, \quad \mathrm{id}_{\widetilde{\mathcal{C}}} = \iota \circ \mu + \lambda' \circ \pi, \quad \pi \circ \iota = 0_{\mathcal{C} \to \mathbb{C}}, \quad \pi \circ \lambda = \mathrm{id}_{\mathbb{C}},$$

and the *-homomorphisms $\iota \circ \mu$ and $\lambda' \circ \pi$ are orthogonal to each other. Proposition 3.3.1 and Lemma 3.3.4 then lead to

$$0_{K_0(\mathcal{C}) \to K_0(\mathbb{C})} = K_0(0_{\mathcal{C} \to \mathbb{C}}) = K_0(\pi) \circ K_0(\iota),$$
(3.6)

$$\operatorname{id}_{K_0(\mathbb{C})} = K_0(\operatorname{id}_{\mathbb{C}}) = K_0(\pi \circ \lambda) = K_0(\pi) \circ K_0(\lambda), \qquad (3.7)$$

$$\mathrm{id}_{K_0(\mathcal{C})} = K_0(\mathrm{id}_{\mathcal{C}}) = K_0(\mu \circ \iota) = K_0(\mu) \circ K_0(\iota), \qquad (3.8)$$

$$id_{K_0(\widetilde{\mathcal{C}})} = K_0(id_{\widetilde{\mathcal{C}}}) = K_0(\iota \circ \mu + \lambda' \circ \pi)$$

= $K_0(\iota) \circ K_0(\mu) + K_0(\lambda') \circ K_0(\pi).$ (3.9)

Now, the split exactness of (3.5) follows from these equalities. Indeed, the injectivity of $K_0(\iota)$ follows from (3.8). If $g \in \text{Ker}(K_0(\pi))$, one infers from (3.9) that $g = K_0(\iota)(K_0(\mu)(g))$, which shows that g belongs to $\text{Ran}(K_0(\iota))$. Since by (3.6) one also gets $\text{Ran}(K_0(\iota)) \subset \text{Ker}(K_0(\pi))$, these two inclusions mean that $\text{Ran}(K_0(\iota)) = \text{Ker}(K_0(\pi))$. Finally, the surjectivity of $K_0(\pi)$ is a by-product of (3.7), from which one also infers the splitness.

3.4 Examples

In this section, we introduce the examples discussed in [RLL00, Sec. 3.3] and refer to this book for the proofs.

Consider first a C^* -algebra \mathcal{C} endowed with a bounded trace τ , *i.e.* $\tau : \mathcal{C} \to \mathbb{C}$ is a bounded linear map satisfying the trace property

$$\tau(ab) = \tau(ba), \qquad \forall a, b \in \mathcal{C}.$$

33

This trace property implies in particular that $\tau(p) = \tau(q)$ whenever p, q are Murrayvon Neumann equivalent projections in \mathcal{C} . This trace is also called *positive* if $\tau(a) \geq 0$ whenever $a \in \mathcal{C}^+$. If \mathcal{C} is unital and if $\tau(\mathbf{1}_{\mathcal{C}}) = 1$, then τ is called a *tracial state*.

For any trace τ on a C^{*}-algebra \mathcal{C} , one defines a trace on $M_n(\mathcal{C})$ by setting

$$\tau \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = \sum_{j=1}^n \tau(a_{jj}).$$

It thus endows $\mathcal{P}_{\infty}(\mathcal{C})$ with a map $\tau : \mathcal{P}_{\infty}(\mathcal{C}) \to \mathbb{C}$, and this map satisfies the three conditions of Proposition 3.2.5. For the last one, recall that the homotopy equivalence implies the Murray-von Neumann equivalence, see Lemma 2.2.9. As a consequence, one infers that there exists a unique group homomorphism $K_0(\tau) : K_0(\mathcal{C}) \to \mathbb{C}$ satisfying for any $p \in \mathcal{P}_{\infty}(\mathcal{C})$

$$K_0(\tau)([p]_0) = \tau(p). \tag{3.10}$$

Note that if τ is positive, then the r.h.s. of (3.10) is a positive real number, and $K_0(\tau)$ maps $K_0(\mathcal{C})$ into \mathbb{R} .

Example 3.4.1. For any $n \in \mathbb{N}^*$, one has

$$K_0(M_n(\mathbb{C})) \cong \mathbb{Z}.$$
(3.11)

In fact, if tr denotes the usual trace already introduced in Exercise 3.1.4, then

$$K_0(\operatorname{tr}): K_0(M_n(\mathbb{C})) \to \mathbb{Z}$$
 (3.12)

is an isomorphism.

Example 3.4.2. If \mathcal{H} is an infinite dimensional separable Hilbert space, then we have

$$K_0(\mathcal{B}(\mathcal{H})) = \{0\}$$

Note that this fact is related to the content of Exercise 3.1.5.

Example 3.4.3. If Ω is a compact, connected and Hausdorff space, then there exists a surjective group homomorphism

$$\dim: K_0(C(\Omega)) \to \mathbb{Z}$$
(3.13)

which satisfies for $p \in \mathcal{P}_{\infty}(C(\Omega))$ and $x \in \Omega$

$$\dim([p]_0) = \operatorname{tr}(p(x)).$$

Note that by continuity this number is independent of x. Note also that if Ω is contractible¹ then the map (3.13) is an isomorphism.

Exercise 3.4.4. Provide the proofs for the statements of Examples 3.4.1, 3.4.2 and 3.4.3.

Extension 3.4.5. Study the K-theory for topological spaces, as presented for example in [RLL00, Sec. 3.3.7].

¹The space Ω is contractible if there exists $x_0 \in \Omega$ and a continuous map $\alpha : [0,1] \times \Omega \to \Omega$ such that $\alpha(1,x) = x$ and $\alpha(0,x) = x_0$ for any $x \in \Omega$.