
Chapter 2

Projections and unitary elements

The K-theory of a C∗-algebra is constructed from equivalence classes of its projections
and from equivalence classes of its unitary elements. For that reason, we shall consider
several equivalence relations and look at the relations between them. The K-groups will
be defined only in the following chapters. This chapter is mainly based on Chapter 2 of
the book [RLL00].

2.1 Homotopy classes of unitary elements

Definition 2.1.1. For any topological space Ω, one says that a, b ∈ Ω are homotopic in
Ω if there exists a continuous map v : [0, 1] ∋ t 7→ v(t) ∈ Ω with v(0) = a and v(1) = b.
In such a case one writes a ∼h b in Ω.

Clearly, the relation ∼h defines an equivalence relation on Ω, and one says that
v is a continuous path from a to b in Ω. Note that if Ω′ is another topological space
with a, b ∈ Ω′ as well, then a, b could be homotopic in Ω without being homotopic in
Ω′. Thus, mentioning the ambient space Ω is crucial for the definition of the homotopy
relation. On the other hand, we shall often just write t 7→ v(t) for the continuous path,
without specifying t ∈ [0, 1].

In the next statement, we consider this equivalence relation in the set U(C) of all
unitary elements of a unital C∗-algebra C. Clearly, this set is a group (for the multiplica-
tion) but not a vector space. Note also that if u0, u1, v0, v1 ∈ U(C) satisfy u0 ∼h u1 and
v0 ∼h v1, then u0v0 ∼h u1v1. Indeed, if t 7→ u(t) and t 7→ v(t) denote the corresponding
continuous paths, then t 7→ u(t)v(t) is a continuous map between u0v0 and u1v1. In
the sequel we shall denote by U0(C) the set of elements in U(C) which are homotopic
to 1 ∈ C. Let us also recall from Lemma 1.2.8 that for any unitary element u, one has
σ(u) ∈ T.

Lemma 2.1.2. Let C be a unital C∗-algebra. Then:

(i) If a ∈ C is self-adjoint, then eia belongs to U0(C),

(ii) If u ∈ C is unitary and σ(u) ̸= T, then u ∈ U0(C),
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16 CHAPTER 2. PROJECTIONS AND UNITARY ELEMENTS

(iii) If u, v ∈ C are unitary with ∥u− v∥ < 2, then u ∼h v.

Proof. i) In the proof of Lemma 1.2.8 it has already been observed that if a is self-
adjoint, then eia is unitary. By considering now the map [0, 1] ∋ t 7→ v(t) := eita ∈ U(C),
one easily observes that this map is continuous, and that v(0) = 1 and v(1) = eia. As
a consequence, eia ∼h 1, or equivalently eia ∈ U0(C).

ii) Since σ(u) ̸= T, there exists θ ∈ R such that eiθ ̸∈ σ(u). Let us then define
v : σ(u) → R by v

(
ei(θ+t)

)
= θ + t for any t ∈ (0, 2π) such that ei(θ+t) ∈ σ(u). Since

σ(u) is a closed set in T, it follows that v is continuous. In addition, one has that
eiv(z) = z for any z ∈ σ(u). Thus, if one sets a := v(u), one infers that a is a self-adjoint
element of C and that u = eia. As a consequence of (i), one deduces that u ∈ U0(C).

iii) If ∥u − v∥ < 2, it follows that ∥v∗u − 1∥ = ∥v∗(u − v)∥ < 2. Then, from
the estimates |z| ≤ r(a) ≤ ∥a∥ valid for any z ∈ σ(a) and any a ∈ C, one infers
that −2 ̸∈ σ(v∗u − 1), or equivalently −1 ̸∈ σ(v∗u). Since v∗u is a unitary element of
C, one infers then from (ii) that v∗u ∼h 1. Finally, by multiplying the corresponding
continuous path on the left by v (or by using the remark made just before the statement
of the lemma), one infers that u ∼h v, as expected.

Let us stress that the previous lemma states that for any self-adjoint a ∈ C, eia is a
unitary element of U0(C). However, not all unitary elements of C are of this form, and
the point (ii) has only provided a sufficient condition for being of this form. Later on,
we shall construct unitary elements which are not obtained from a self-adjoint element.

Let us observe that since unitary elements of Mn(C) have only a finite spectrum,
one can directly infer from the previous statement (ii) the following corollary:

Corollary 2.1.3. The unitary group in Mn(C) is connected, or in other words

U0
(
Mn(C)

)
= U

(
Mn(C)

)
.

By considering matrix algebras, the following statement can easily be proved:

Lemma 2.1.4 (Whitehead). Let C be a unital C∗-algebra, and let u, v ∈ U(C). Then
one has in U

(
M2(C)

)
(
u 0
0 v

)
∼h

(
uv 0
0 1

)
∼h

(
vu 0
0 1

)
∼h

(
v 0
0 u

)
.

In particular, one infers that (
u 0
0 u∗

)
∼h

(
1 0
0 1

)
(2.1)

in U
(
M2(C)

)
.
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Proof. Since ( 0 1
1 0 ) is a unitary element of M2(C), one infers from the previous corollary

that ( 0 1
1 0 ) ∼h ( 1 0

0 1 ). Then, by observing that(
u 0
0 v

)
=

(
u 0
0 1

)(
0 1
1 0

)(
v 0
0 1

)(
0 1
1 0

)
,

one readily infers that the r.h.s. is homotopic to ( u 0
0 1 ) (

1 0
0 1 ) (

v 0
0 1 ) (

1 0
0 1 ) = ( uv 0

0 1 ). The
other relations can be proved similarly.

Let us add some more information on U0(C).

Proposition 2.1.5. Let C be a unital C∗-algebra. Then,

(i) U0(C) is a normal subgroup of U(C), i.e. vuv∗ ∈ U0(C) whenever u ∈ U0(C) and
v ∈ U(C),

(ii) U0(C) is open and closed relative to U(C),

(iii) An element u ∈ C belongs to U0(C) if and only if u = eia1 eia2 . . . eian for some
self-adjoint elements a1, . . . , an ∈ C.

Exercise 2.1.6. Provide the proof of this statement, see also [RLL00, Prop. 2.1.6].

Based on the content of this proposition, the following lemma can be proved:

Lemma 2.1.7. Let C, Q be unital C∗-algebras, and let φ : C → Q be a surjective (and
hence unit preserving) ∗-homomorphism. Then:

(i) φ
(
U0(C)

)
= U0(Q),

(ii) For each u ∈ U(Q) there exists v ∈ U0
(
M2(C)

)
such that φ(v) = ( u 0

0 u∗ ),

(iii) If u ∈ U(Q), and if there exists v ∈ U(C) such that u ∼h φ(v), then u belongs to
φ
(
U(C)

)
.

Proof. i) Since a unital ∗-homomorphism is continuous and maps unitary elements
on unitary elements, it follows that φ

(
U0(C)

)
is contained in U0(Q). Conversely, if u

belongs to U0(Q), then u = eib1 eib2 . . . eibn for some self-adjoint elements b1, . . . , bn ∈ Q
by Proposition 2.1.5.(iii). Since φ is surjective, there exists aj ∈ C such that bj = φ(aj)
for any j ∈ {1, . . . , n}. Note that aj can be chosen self-adjoint since otherwise the
element (aj + a∗j)/2 is self-adjoint and satisfies φ

(
(aj + a∗j)/2

)
= (bj + b∗j)/2 = bj. Then,

by setting v = eia1 eia2 . . . eian one gets, again by Proposition 2.1.5, that v ∈ U0(C) and
that φ(v) = u.

ii) For any u ∈ U(Q) consider the element ( u 0
0 u∗ ) which belongs to U0

(
M2(Q)

)
by

(2.1). By applying then the point (i) to U0
(
M2(C)

)
and U0

(
M2(Q)

)
instead of U0(C)

and U0(Q), one immediately deduces the second statement.
iii) If u ∼h φ(v), then uφ(v)∗ = uφ(v∗) is homotopic to 1 ∈ Q, i.e. uφ(v∗) ∈ U0(Q).

By (i) it follows that uφ(v∗) = φ(w) for some w ∈ U0(C). Consequently, one infers that
u = φ(wv), or in other words u ∈ φ

(
U(C)

)
.
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Recall that for any unital C∗-algebra C, one denotes by GL(C) the group of its
invertible elements. The set of elements of GL(C) which are homotopic to 1 is denoted
by GL0(C). Clearly, U(C) is a subgroup of GL(C). The following statement establishes
a more precise link between these two groups. Before this, observe that for any a ∈ C,
the element a∗a is positive, as recalled in Proposition 1.2.7. Thus, one can define |a| :=
(a∗a)1/2 which is also a positive element of C, and call it the absolute value of a.

Proposition 2.1.8. Let C be a unital C∗-algebra.

(i) If a belongs to GL(C), then |a| belongs to GL(C) as well, and w(a) := a|a|−1 belongs
to U(C). In addition, the equality a = w(a)|a| holds.

(ii) The map

w : GL(C) ∋ a 7→ w(a) ∈ U(C)

is continuous, satisfies w(u) = u for any u ∈ U(C), and verifies w(a) ∼h a in
GL(C) for any a ∈ GL(C),

(iii) If v0, v1 ∈ U(C) satisfies v0 ∼h v1 in GL(C), then v0 ∼h v1 in U(C).

Proof. i) If a is invertible, it follows that a∗ and a∗a are invertible as well. As a con-

sequence, the element |a| = (a∗a)1/2 is also invertible, with inverse
(
(a∗a)−1

)1/2
. For

simplicity, let us set w := a|a|−1 which verifies a = w|a|. Since w is the product of two
invertible elements, w is invertible as well, and it satisfies w∗ = w−1 since

w∗w = |a|−1a∗a|a|−1 = |a|−1|a|2|a|−1 = 1.

Consequently, w ∈ U(C).
ii) The continuity of the map a 7→ a−1 in GL(C) can easily be obtained by the

Neumann series, as recalled in Exercise 1.2.1. Thus, to show that the map a 7→ w(a)
is continuous, it is sufficient to show that the map a 7→ (a∗a)1/2 is continuous. Clearly,
the map a 7→ a∗a is continuous, because involution and multiplication are continuous.
It remains to show the continuity of the map b 7→ b1/2 on any bounded subset F of C+.
However, this directly follows from Lemma 1.2.13 since any bounded subset F of C+ is
contained in some FK (in the notation of the mentioned lemma) with K = [0, R] and
R := sup{∥a∥ | a ∈ F}.

If u is unitary, one has u∗u = 1 and thus |u| = 1, which implies that w(u) = u. On
the other hand, for a ∈ GL(C), let us set v(t) = w(a)

(
t|a| + (1 − t)1

)
with t ∈ [0, 1].

Clearly, v(0) = w(a) and v(1) = a, and let us show v(t) ∈ GL(C) for any t. Indeed, since
|a| is positive and invertible, it follows that λ := inf σ(|a|) > 0, from which one infers
that t|a| + (1 − t)1 ≥ min{λ, 1}1 > 0. As a consequence of Proposition 1.2.7.(vi), it
follows that t|a| + (1 − t)1 is invertible, and therefore v(t) is invertible as well. Since
the map t 7→ v(t) is continuous, one concludes that w(a) ∼h a in GL(C).

iii) If t 7→ v(t) is a continuous path in GL(C) between v0 and v1, then t 7→ w
(
v(t)

)
is a continuous path in U(C) between v0 and v1.
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The above proposition says that U(C) is a retract1 of GL(C). Note also that the
above decomposition a = w(a)|a| for any invertible element a of C is called the polar
decomposition of a. This decomposition is often written a = u|a| with u := w(a).

Finally, let us state a useful result:

Lemma 2.1.9. Let C be a unital C∗-algebra, and let a ∈ C be invertible. Assume that
b ∈ C satisfies ∥b− a∥ < ∥a−1∥−1. Then b is invertible, with

∥b−1∥−1 ≥ ∥a−1∥−1 − ∥a− b∥,

and a ∼h b in GL(C).

Exercise 2.1.10. Provide a proof of the previous lemma, with the possible help of
[RLL00, Prop. 2.1.11].

2.2 Equivalence of projections

We start with the definition of a (self-adjoint) projection in the setting of a C∗-algebra.

Definition 2.2.1. An element p in a C∗-algebra C is called a projection if p = p2 = p∗.
The set of all projections in C is denoted by P(C).

Exercise 2.2.2. Let C be a unital C∗-algebra, and let p ∈ P(C). Show that σ(p) ⊂
{0, 1}.

Clearly, the equivalence by homotopy ∼h can be considered on P(C), but let us
consider two additional equivalence relations. Namely, for any p, q ∈ P(C), one writes
p ∼ q if there exists v ∈ C such that p = v∗v and q = vv∗ and calls it the Murray-
von Neumann equivalence. Alternatively, one writes p ∼u q if there exists an element
u ∈ U(C̃) such that q = upu∗ and calls it the unitary equivalence. Note that an element
v of C satisfying v∗v, vv∗ ∈ P(C) is called a partial isometry. The projection p := v∗v
is called the support projection of v, and the projection q := vv∗ is called the range
projection of v. We can then observe that in this setting one has

v = qv = vp = qvp. (2.2)

Exercise 2.2.3. Show that for any v in a C∗-algebra such that v∗v is a projection, then
automatically vv∗ is also a projection. By using the equalities provided in (2.2), show
that the Murray-von Neumann relation is transitive.

Lemma 2.2.4. Let C be a unital C∗-algebra, and let p, q ∈ P(C). Then the following
statements are equivalent:

(i) p ∼u q,
1A retract of a topological space Ω consists in a subspace Ω0 such that there exists a continuous

map τ : Ω→ Ω0 satisfying x ∼h τ(x) in Ω, for any x ∈ Ω, and such that τ(x) = x for all x ∈ Ω0.
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(ii) q = upu∗ for some u ∈ U(C),

(iii) p ∼ q and 1− p ∼ 1− q.

Proof. Let us denote by 1̃ the unit of C̃ and keep the notation 1 for the unit of C. We
set 1 := 1̃− 1, and one can observe that 1 is a projection in C̃. In addition, one has

C̃ =
{
a+ α1 | a ∈ C, α ∈ C

}
and a1 = 1a = 0 for any a ∈ C.

(i) ⇒ (ii): Assume that q = vpv∗ for some v ∈ U(C̃). By the previous observation,
one has v = u+ α1 for some u ∈ C and α ∈ C. By computing v∗v and vv∗, one readily
infers that u ∈ U(C) and then that q = upu∗.

(ii) ⇒ (iii): Suppose that q = upu∗ for some u ∈ U(C). By setting v := up and
w := u(1− p) one gets

v∗v = p, vv∗ = q, w∗w = 1− p, ww∗ = 1− q. (2.3)

(iii)⇒ (i): Suppose that there are partial isometries v and w in C satisfying (2.3).
By setting u := v + w + 1 and by taking (2.3) and the definition of 1 into account one
gets

uu∗ = vv∗ + ww∗ + wv∗ + vw∗ + (1̃− 1) = wv∗ + vw∗ + 1̃

and

u∗u = v∗v + w∗w + w∗v + v∗w + (1̃− 1) = w∗v + v∗w + 1̃.

Then, by inserting the support and the range projections one readily obtains wv∗ =
w(1 − p)pv∗ = 0, and similarly vw∗ = 0, w∗v = 0 and v∗w = 0, which imply that

u ∈ U(C̃). We finally find that upu∗ = vpv∗ = vv∗ = q, as expected.

Let us now state a short technical result, which proof can be found in [RLL00,
Lem. 2.2.3].

Lemma 2.2.5. Let C be a C∗-algebra and let p ∈ P(C) and a ∈ C be self-adjoint. By
setting δ := ∥p− a∥, one has

σ(a) ⊂ [−δ, δ] ∪ [1− δ, 1 + δ].

Based on the previous lemma, one can now show the following statement:

Proposition 2.2.6. Let C be a C∗-algebra, and let p, q ∈ P(C) with ∥p− q∥ < 1. Then
p ∼h q in P(C).

Proof. For any t ∈ [0, 1], let us set a(t) := (1 − t)p + tq. Clearly, a(t) is self-adjoint, it
satisfies

min
{
∥a(t)− p∥, ∥a(t)− q∥

}
≤ ∥p− q∥/2 < 1/2,
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and the map t 7→ a(t) is continuous. Moreover, by Lemma 2.2.5 and with the notation of
Lemma 1.2.13, each a(t) belongs to FK withK := [−δ, δ]∪[1−δ, 1+δ] and δ = ∥p−q∥/2.
Note that since ∥p− q∥ < 1, these two intervals are disjoint.

Now, let f be the continuous function on K given by f(x) = 0 if x ∈ [−δ, δ] and
f(x) = 1 if x ∈ [1 − δ, 1 + δ]. Then, since f = f 2 = f , it follows that f

(
a(t)

)
is a

projection for each t ∈ [0, 1]. In addition, the map t 7→ f
(
a(t)

)
∈ P(C) is continuous by

Lemma 1.2.13, and hence one has in P(C)

p = f(p) = f
(
a(0)

)
∼h f

(
a(1)

)
= f(q) = q.

One usually says that two elements a, b in a unital C∗-algebra are similar if there
exists c ∈ GL(C) such that b = cac−1. In the next statement, we show that if two
self-adjoint elements are similar, then they are unitarily equivalent.

Proposition 2.2.7. Let a, b be self-adjoint elements in a unital C∗-algebra C, and
suppose that there exists c ∈ GL(C) such that b = cac−1. Let c = u|c| be the polar
decomposition of c, with u ∈ U(C). Then b = uau∗.

Proof. Since a and b are self-adjoint, the equation b = cac−1 implies that bc = ca and
that ac∗ = c∗b. As a consequence, one infers that

|c|2a = c∗ca = c∗bc = ac∗c = a|c|2,

which means that a and |c|2 commute. One then deduces that a commutes with all
elements of C∗({|c|2,1}) and in particular a commutes with |c|−1 (which exists since c
is invertible). It thus follows that

uau∗ = c|c|−1au∗ = ca|c|−1u∗ = bc|c|−1u∗ = buu∗ = b.

Let us add one more information on the relation between ∼h and the unitary equiv-
alence.

Proposition 2.2.8. Let C be a C∗-algebra, and let p, q ∈ P(C). Then p ∼h q in P(C)
if and only if there exists a unitary element u ∈ U0(C̃) such that q = upu∗.

Proof. Let 1 denote the unit of C̃, and assume that there exists u ∈ U0(C̃) which verifies

q = upu∗. Let t 7→ u(t) be a continuous path in U(C̃) with u(0) = 1 and u(1) = u.

Because C is an ideal in C̃ it follows that u(t)pu(t)∗ is a projection in C for any t, and
thus the map t 7→ u(t)pu(t)∗ is a continuous path in P(C) from p to q.

Conversely, if p ∼h q in P(C), then there are projections p0, p1, . . . pn in C with p0 = p
and pn = q such that ∥pj+1 − pj∥ < 1/2 for any j = 0, 1, . . . n− 1. By concatenation, it
is sufficient to show the statement for ∥p− q∥ < 1/2. Thus, let us set

b := pq + (1− p)(1− q) ∈ C̃
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and observe that

pb = pq = bq, (2.4)

and that

∥b− 1∥ =
∥∥p(q − p) + (1− p)(p− q)

∥∥ ≤ 2∥p− q∥ < 1.

By Lemma 2.1.9 it follows that b is invertible and that b ∼h 1 in GL(C̃). In addition, by

considering the polar decomposition b = u|b| with u ∈ U(C̃), one obtains from (2.4) and
from Proposition 2.2.7 that p = uqu∗. Finally, from Proposition 2.1.8.(ii) one deduces

that u ∼h b ∼h 1 in GL(C̃), from which one gets that u ∈ U0(C̃), again from Proposition
2.1.8.(iii).

Up to now, we have considered three equivalence relation, the homotopy relation
∼h, the Murray-von Neumann relation ∼ and the unitary relation ∼u. It can be shown
on examples that these three relations are different from each other, see for example
[RLL00, Ex. 2.2.9]. In fact, in the next lemma we shall show that homotopy equivalence
is stronger than unitary equivalence, which is itself stronger that Murray-von Neumann
equivalence. However, we shall see subsequently that these relations are equal modulo
passing to matrix algebras.

Lemma 2.2.9. Let p, q be projections in a C∗-algebra C. Then:

(i) If p ∼h q in P(C), then p ∼u q,

(ii) If p ∼u q, then p ∼ q.

Proof. Clearly, the first statement is a consequence of Proposition 2.2.8. For the second
one, let u ∈ U(C̃) such that q = upu∗. Then v := up belongs to C and satisfies v∗v = p
and vv∗ = upu∗ = q.

Proposition 2.2.10. Let p, q be projections in a C∗-algebra C. Then:

(i) If p ∼ q, then
(
p 0
0 0

)
∼u

(
q 0
0 0

)
in M2(C),

(ii) If p ∼u q, then
(
p 0
0 0

)
∼h

(
q 0
0 0

)
in P

(
M2(C)

)
.

Let us mention that both algebras M2(C̃) and M̃2(C) (the smallest unitization of
M2(C)) will be used during the proof of this proposition. It is easily observed that these
two algebras are not equal, as illustrated in the following proof.

Proof. i) Let v ∈ C such that p = v∗v and q = vv∗. By taking (2.2) into account and

by denoting by 1 the unit of C̃, one readily infers that

u :=

(
v 1− q

1− p v∗

)
, w :=

(
q 1− q

1− q q

)
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are unitary elements of M2(C̃), with u∗ =
(
v∗ 1−p
1−q v

)
and w∗ = w. Then, one observes

that

wu

(
p 0
0 0

)
u∗w∗ = w

(
q 0
0 0

)
w∗ =

(
q 0
0 0

)
.

Clearly, one has wu ∈M2(C̃), but by an explicit computation one observes that

wu =

(
v + (1− q)(1− p) (1− q)v∗

q(1− p) (1− q) + qv∗

)

belongs to M̃2(C) ⊂M2(C̃), the claim (i) is thus proved.

ii) Let u ∈ U(C̃) such that q = upu∗. By (2.1), there exists a continuous path

v : [0, 1] → U
(
M2(C̃)

)
such that v(0) = ( 1 0

0 1 ) and v(1) = ( u 0
0 u∗ ). Then by setting

w(t) := v(t)
(
p 0
0 0

)
v(t)∗, one gets that w(t) ∈ P

(
M2(C)

)
for any t, that the map t 7→ w(t)

is continuous, and that w(0) =
(
p 0
0 0

)
and w(1) =

(
q 0
0 0

)
.

2.3 Liftings

Let us now consider two C∗-algebras C and Q, and let φ : C → Q be a surjective
∗-homomorphism. Given an element b ∈ Q, an element a ∈ C satisfying φ(a) = b is
called a lift for b. The set of all lifts for b is then given by a + Ker(φ). Now, if b has
some additional properties, like being a projection or a unitary element, we shall be
interested in looking at lifts for b which share similar properties (if possible). In the
following statement, we collect several results in this direction.

Proposition 2.3.1. Let φ : C → Q be a surjective ∗-homomorphism between C∗-
algebras. Then:

(i) Every b ∈ Q has a lift a ∈ C satisfying ∥a∥ = ∥b∥,

(ii) Every self-adjoint b ∈ Q has a self-adjoint lift a ∈ C. Moreover, this self-adjoint
lift can be chosen such that ∥a∥ = ∥b∥,

(iii) Every positive b ∈ Q has a positive lift a ∈ C, and this lift can be chosen such that
∥a∥ = ∥b∥,

(iv) A normal element b ∈ Q does not in general lift to a normal element in C,

(v) A projection in Q does not in general lift to a projection in Q,

(vi) When C and Q are unital, a unitary element b ∈ Q does not in general lift to a
unitary element in C.
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Proof. ii) Consider a self-adjoint element b ∈ Q, and let x ∈ C be any lift for b. Then
a0 := (x + x∗)/2 defines a self-adjoint lift for b. In order to impose the equality of the
norms, let us consider f : R→ R be the continuous function defined by

f(t) =


−∥b∥ if t ≤ −∥b∥
t if − ∥b∥ ≤ t ≤ ∥b∥
∥b∥ if t ≥ ∥b∥

and set a := f(a0). Then a is self-adjoint, being obtained by functional calculus of a
self-adjoint element, and one has σ(a) = {f(t) | t ∈ σ(a0)} ⊂ [−∥b∥, ∥b∥]. One infers
from this inequality that ∥a∥ ≤ ∥b∥, since r(a) = ∥a∥ for any self-adjoint element. On
the other hand, one has

φ(a) = φ
(
f(a0)

)
= f

(
φ(a0)

)
= f(b) = b,

because of the definition of f . Since φ is a ∗-homomorphism, one infers that ∥φ∥ ≤ 1,
from which one concludes that ∥b∥ ≤ ∥a∥. By collecting these inequalities one obtains
that ∥a∥ = ∥b∥.

i) Let b be an arbitrary element of Q, and set y = ( 0 b
b∗ 0 ). Then y is a self-adjoint

element in M2(Q), and

∥y∥2 = ∥y∗y∥ = ∥( bb∗ 0
0 b∗b )∥ = max{∥bb∗∥, ∥b∗b∥} = ∥b∥2.

It follows then by (ii) that there exists a self-adjoint lift x = ( x11 x12x21 x22 ) ∈ M2(C) for y
with ∥x∥ = ∥y∥ = ∥b∥. Clearly, a := x12 is then a lift for b, and from (1.4) one infers
that ∥a∥ ≤ ∥x∥ = ∥b∥. As in the proof of (ii), one also has ∥b∥ ≤ ∥a∥, from which one
deduces that ∥a∥ = ∥b∥.

iii) Let b be a positive element inQ, and let x ∈ C be any lift for b. Set a0 := (x∗x)1/2,
which is positive, and observe that

φ(a0) =
(
φ(x)∗φ(x)

)1/2
= (b∗b)1/2 = b.

We can then set a := f(a0) with the function f introduced in the proof of (ii), and
one gets that a is self-adjoint with σ

(
f(a)

)
⊂ [0, ∥b∥]. Thus, a is positive and satisfies

φ(a) = b together with ∥a∥ = ∥b∥.
The remaining three assertions are based on counterexamples. For (iv), a coun-

terexample is provided in [RLL00, Ex. 9.4.(iii)] and is based on the unilateral shift. For
(v), consider the algebras C := C

(
[0, 1]

)
and Q := C ⊕ C, with φ : C → Q defined

by φ(f) =
(
f(0), f(1)

)
for any f ∈ C. Clearly, (0, 1) is a projection in Q, but there is

no lift f in C which is a projection and which satisfies
(
f(0), f(1)

)
= (0, 1). For (vi),

a counterexample is provided in [RLL00, Ex. 2.12.(ii)] for the algebras C := C(D) and
Q := C(T), with D := {z ∈ C | ∥z∥ ≤ 1}.


