Chapter 1

C*-algebras

This chapter is mainly based on the first chapters of the books [Mur90] and [RLLO00].

1.1 Basics on (*-algebras

Definition 1.1.1. A Banach algebra C is a complex vector space endowed with an
associative multiplication and with a norm || - || which satisfy for any a,b,c € C and
aeC

(i) (aa)b = a(ab) = a(ab),

(ii) a(b+ c¢) = ab+ ac and (a + b)c = ac + be,
(111) ||ab|| < ||l |0l (submultiplicativity)
(iv) C is complete with the norm || - ||.

One says that C is Abelian or commutative if ab = ba for all a,b € C. One also says
that C is unital if 1 € C, i.e. if there exists an element 1 € C with ||1|| = 1 such that
la =a =al for all a € C . A subalgebra J of C is a vector subspace which is stable
for the multiplication. If J is norm closed, it is a Banach algebra in itself.

Examples 1.1.2. (i) C or M,(C) (the set of n x n-matrices over C) are unital
Banach algebras. C is Abelian, but M, (C) is not Abelian for any n > 2.

(i) The set B(H) of all bounded operators on a Hilbert space H is a unital Banach
algebra.

(iv) The set I(H) of all compact operators on a Hilbert space H is a Banach algebra.
It is unital if and only if H is finite dimensional.

!Some authors do not assume that ||1]] = 1. It has the advantage that the algebra {0} consisting
only in the element 0 is unital, which is not the case if one assumes that ||1]] = 1.
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(v) If Q is a locally compact topological space, Co(S2) and Cy(2) are Abelian Ba-
nach algebras, where Cy(S)) denotes the set of all bounded and continuous func-
tions from € to C, and Cy(Q2) denotes the subset of Cy(2) of functions f which
vanish at infinity, i.e. for any € > 0 there exists a compact set K C € such
that sup,cq\ | f(2)| < €. These algebras are endowed with the L>-norm, namely
| fll = sup,eq | f(z)|. Note that Cy(2) is unital, while Cy(Q) is not, except if ) is
compact. In this case, one has Cy(Q) = C(Q) = Cp(Q).

(v) If (2, 1) is a measure space, then L*°(Q), the (equivalent classes of) essentially
bounded complex functions on ) is a unital Abelian Banach algebra with the es-
sential supremum norm || - | co-

Observe that C is endowed with the complex conjugation, that M, (C) is also en-
dowed with an operation consisting of taking the transpose of the matrix, and then
the complex conjugate of each entry, and that Cy(£2) and Cy(Q2) are also endowed with
the operation consisting in taking the complex conjugate f — f. All these additional
structures are examples of the following structure:

Definition 1.1.3. A C*-algebra is a Banach algebra C together with a map * : C — C
which satisfies for any a,b € C and o € C

(i) (a*)" =a,
(ii) (a+b)* =a*+ b*,
(111) (oa)* = @a*,
(iv) (ab)* = b*a*,
(v) lla*all = [lal*.
The map * is called an involution.
Clearly, if C is a unital C*-algebra, then 1* = 1.

Examples 1.1.4. The Banach algebras described in Ezxamples 1.1.2 are in fact C*-
algebras, once complex conjugation is considered as the involution for complex functions.
Note that for B(H) and K(H) the involution consists in taking the adjoint® of any
element a € B(H) or a € K(H). In addition, let us observe that for a family {C;}icr
of C*-algebras, the direct sum ®;c;C;, with the pointwise multiplication and involution,
and the supremum norm, is also a C*-algebra.

Definition 1.1.5. A x-homomorphism ¢ between two C*-algebras C and Q is a linear
map ¢ : C — Q which satisfies p(ab) = ¢(a)p(b) and p(a*) = @(a)* for all a,b € C.
If C and Q are unital and if (1) = 1, one says that ¢ is unit preserving or a unital
s-homomorphism. If ||¢(a)|| = ||a|| for any a € C, the x-homomorphism is isometric.

2If H is a Hilbert space with scalar product denoted by (-, ) and if a € B(H), then its adjoint a* is
defined by the equality (af,g) = (f,a*g) for any f,g € H. If a € K(H), then a* € K(H) as well.
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A C*-subalgebra of a C*-algebra C is a norm closed (non-empty) subalgebra of C
which is stable for the involution. It is clearly a C*-algebra in itself. In particular, if
F' is a subset of a C*-algebra C, we denote by C*(F') the smallest C*-subalgebra of
C that contains F. It corresponds to the intersection of all C*-subalgebras of C that
contains F'.

Exercise 1.1.6. (i) Show that a x-homomorphism ¢ between C*-algebras is isomet-
ric if and only if ¢ is injective.

(i1) If ¢ : C — Q is a x-homomorphism between two C*-algebras, show that the kernel
Ker(p) of ¢ is a C*-subalgebra of C and that the image Ran(p) of ¢ is a C*-
subalgebra of Q.

An important result about C*-algebras states that each of them can be represented
faithfully in a Hilbert space. More precisely:

Theorem 1.1.7 (Gelfand-Naimark-Segal (GNS) representation). For any C*-algebra
C there ezists a Hilbert space H and an injective x-homomorphism from C to B(H). In
other words, every C*-algebra C is x-isomorphic® to a C*-subalgebra of B(H).

Extension 1.1.8. The proof of this theorem is based on the notion of states (positive
linear functionals) on a C*-algebra, and on the existence of sufficiently many such
states. The construction is rather explicit and can be studied, see for example [Mur90,

Thm. 8.4.1].
The next definition of an ideal is the most suitable one in the context of C*-algebra.

Definition 1.1.9. An ideal in a C*-algebra C is a (non-trivial) C*-subalgebra J of C
such that ab € J and ba € J whenever a € J and b € C. This ideal J is said to be
maximal in C if J is proper (< not equal to C) and if J is not contained in any other
proper ideal of C.

For example, Cy(2) is an ideal of Cy(Q2), while K(H) is an ideal of B(#). Let us
add one more important result about the quotient of a C*-algebra by any of its ideals.
In this setting we set

C/T={a+T|acC} and |a+J| ::gggﬂa—{—bﬂ.

In this way C/J becomes a C*-algebra, and if one sets 7 : C — C/J by 7(a) = a+ T,

then 7 is a *-homomorphism with J = Ker(w). The *-homomorphism 7 is called the

quotient map. We refer to [Mur90, Thm. 3.1.4] for the proof about the quotient C/J.
Consider now a (finite or infinite) sequence of C*-algebras and *-homomorphisms

n Pn
o= C 5 Crt B Cry —

3A x-isomorphism is a bijective *-homomorphism.
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This sequence is ezact if Ran(p,) = Ker(p,41) for any n. A sequence of the form

0—J-5Cc-%0-—0 (1.1)
is called a short exact sequence. In particular, if 7 is an ideal in C we can consider
0—J—C-"C/T—0

where ¢ is the inclusion map and 7 the quotient map already introduced.

If in (1.1) there exists a x-homomorphism A : @ — C such that ¢y o A = id, then A is
called a lift for v, and the short exact sequence is said to be split exact. For example,
let C;, Co be C*-algebras, and consider the direct sum C; @ Cy with the pointwise
multiplication and involution, and the supremum norm. One can then observe that the
following short exact sequence

O—>61L>61@62£>62—>0

is split exact, when ¢; and my are defined by ¢1(a) = (a,0) and 72 (a, b) = b. Indeed, one
can set A : Co — C; @ Co with A(b) = (0,b) and the equality m o A = id holds. Note
that neither all short exact sequences are split exact, nor all split exact short exact
sequences are direct sums.

Let us finally mention that with any C*-algebra C one can associate a unique unital
C*-algebra C which contains C as an ideal and such that C / C = C. In addition, the
short exact sequence

0—CC-C—0
is split exact, with A(a) = a1 for any o € C. Here 1 denotes the identity element of C.
The C*-algebra C is called the (smallest) unitization of C. Note that

5:{a+0z1|a€C,a€C}, (1.2)

and therefore C is naturally identified with the element of the form a + 01 in C.

Exercise 1.1.10. Work out the details of the construction of CN, see for example
[RLLOO, Ezercise 1.3].

An important property of the previous construction is its functoriality, in the sense
that for any *-homomorphism ¢ : C — Q between C*-algebras, there exists a unique
unit preserving *-homomorphism ¢ : C — Q such that ¢ o ¢ = 1o o ¢. This morphism
is defined by p(a + alz) = ¢(a) + alg for any a € C and a € C,

1.2 Spectral theory

Let us now consider an arbitrary unital C*-algebra C, and let a € C. One says that a
is invertible if there exists b € C such that ab = 1 = ba. In this case, the element b
is denoted by a~! and is called the inverse of a. The set of all invertible elements is
denoted by GL(C). Clearly, GL(C) is a group.
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Exercise 1.2.1. Show that GL(C) is an open set in any unital C*-algebra C, and that
the map GL(C) 3 a — a~! € C is differentiable. The Neumann series can be used in the
proof, namely if ||a|| < 1 one has

1-a)"' =) a" (1.3)

n=0

Note that in the sequel, we shall sometimes write a — z for a — z1, whenever a is
an element of a unital C*-algebra and z € C.

Definition 1.2.2. Let C be a unital C*-algebra and let a € C. The spectrum o¢(a) of a
with respect to C is defined by

oc(a) :={z€C|(a—21)€GL(C)}.
The spectral radius r(a) of a with respect to C is defined by

r(a) :==sup {|z| | z € oc(a)}.

Note that the spectrum o¢(a) of a is a closed subset of C which is never empty.
This result is not completely trivial and its proof is based on Liouville’s Theorem in
complex analysis. In addition, note that the estimate r(a) < ||a|| and the equality
r(a) = lim,_ ||a™||*/" always hold. We refer to [Mur90, Sec. 1.2] for the proofs of these
statements. Let us mention that if C has no unit, the spectrum of an element a € C can
still be defined by o¢(a) := os(a).

Based on these observations, we state two results which are often quite useful.

Theorem 1.2.3 (Gelfand-Mazur). If C is a unital C*-algebra in which every non-zero
element is invertible, then C = C1.

Proof. We know from the observation made above that for any a € C, there exists z € C
such that @ — 21 ¢ GL(C). By assumption, it follows that a — 21 = 0, which means
a=z1. [

Lemma 1.2.4. Let J be a mazimal ideal of a unital Abelian C*-algebra C, then C/J =
C1.

Proof. As already mentioned, C/J is a C*-algebra with unit 1 + J; we denote the
quotient map C — C/J by 7. If T is an ideal in C/J, then 77'(Z) is an ideal of C
containing J, which is therefore either equal to C or to J, by the maximality of 7.
Consequently, Z is either equal to C/J or to 0, and C/J has no proper ideal.

Now, if a € C/J and a # 0, then a € GL(C/J), since otherwise a(C/J) would be
a proper ideal of C/J. In other words, one has obtained that any non-zero element of
C/J is invertible, which implies that C/J = C1, by Theorem 1.2.3. ]

The following statement is an important result for spectral theory in the framework
of C*-algebras. It shows that the computation of the spectrum does not depend on the
surrounding algebra.
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Theorem 1.2.5. Let C be a C*-subalgebra of a unital C*-algebra Q which contains the
unit of Q. Then for any a € C,

oc(a) = ogla).

The proof of this theorem is mainly based on the previous lemmas, but requires
some preliminary works. We refer to [Mur90, Thm. 1.2.8 & 2.1.11] for its proof. Note
that because of this result, it is common to denote by o(a) the spectrum of an element
a of a C*-algebra, without specifying in which algebra the spectrum is computed.

In the next definition we consider some special elements of a C*-algebra.

Definition 1.2.6. Let C be a C*-algebra and let a € C. The element a is self-adjoint
or hermitian if a = a*, a is normal if aa* = a*a. If a is self-adjoint and o(a) C Ry,
then a is said to be positive. If C is unital and if u € C satisfies uwu* = uw*u = 1, then u
1s said to be unitary.

The set of all positive elements in C is usually denoted by C*, and one simply writes
a > 0 to mean that a is positive. An important result in this context is that for any
a € Ct, there exists b € C such that a = b*b. One can even strengthen this result by
showing that for any a € C*, there exists a unique b € C* such that a = b2. This
element b is usually denoted by a'/2. Now, for any self-adjoint operators ai,as, one
writes a; > as if a; — as > 0. For completeness, we add some information about C.

Proposition 1.2.7. Let C be a C*-algebra. Then,
(1) The sum of two positive elements of C is a positive element of C,
(i) The set CT is equal to {a*a | a € C},
(111) If a,b are self-adjoint elements of C and if ¢ € C, then a > b = c*ac > c*bc,
(iv) If a > b >0, then a'/? > b'/?,
(v) If a=b =0, then |[al| = [|b],

(vi) If C is unital and a,b are positive and invertible elements of C, then a > b =
b™'>at >0,

(vii) For any a € C there exist ay,as, a3, aq € CT such that
a = ap —a2+ia3—ia4.
Proof. See Lemma 2.2.3, Theorem 2.2.5 and Theorem 2.2.6 of [Mur90]. H

In the next statement, we provide some information on the spectrum of self-adjoint
and unitary elements of a unital C*-algebra. For that purpose, we immediately infer
from the equality ||u*u|| = ||ul|? that if u is unitary, then ||u|| = 1. We also set

T:={ze€C||z| =1}
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Lemma 1.2.8. Any self-adjoint element a in a unital C*-algebra C satisfies o(a) C R.
If u is a unitary element of C, then o(u) C T.

Proof. First of all, let b € C and observe that from the equality ((b—2)"1)" = (b*—2)7!,
one infers that if z € o(b), then Z € o(b*). Furthermore, from the equality

Nz =0t = (=Y,

one also deduces that if z € o(b) for some b € GL(C), then 27! € o(b71).

Now, for a unitary u € C, one deduces from the above computations that if z €
o(u), then 7' € o((u*)™) = o(u). Since |Jul| = 1 one then infers from the equality
r(u) = ||u|| = 1 that |2] < 1 and |27!| < 1, which means z € T.

If a = a* € C, one sets " := Y > (’Z?n and observes that

<€ia)* — e—ia _ (eia)—l‘

Therefore, €' is a unitary element of C and it follows that a(em) C T. Now, let us

assume that z € o(a), set b := > i"(a—z)" "

el ———, and observe that b commutes with a.
Then one has

eia . eiz _ (ei(a—z) . 1)612 _ (CL . Z)bezz

It follows from this equality that e € o(e'). Indeed, if (e — €*) € GL(C), then
be'* (e — eiz)_1 would be an inverse for (a — z), which can not be since z € o(a). From

the preliminary computation, one deduces that |e**| = 1, which holds if and only if
z € R. One has thus obtains that o(a) C R. O

Let us now state an important result for Abelian C*-algebras.

Theorem 1.2.9 (Gelfand). Any Abelian C*-algebra C is x-isomorphic to a C*-algebra
of the form Cy(2) for some locally compact Hausdorff* space Q.

In fact, Gelfand’s theorem provides more information, namely
(i) The mentioned *-isomorphism is isometric,
(ii) €2 is compact if and only if C is unital,
(iii) © and € are homeomorphic if and only if Cy(Q2) and Cy(€2') are *-isomorphic,
(iv) The set € is called the spectrum of C and corresponds to the set of characters of C

endowed with a suitable topology. A character on C is a non-zero *-homomorphism
from C to C.

4A Hausdorff space is a topological space in which distinct points have disjoint neighbourhoods.
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In this context, let us mention that there exists a bijective correspondence between
open subsets of 2 and ideals in Cy(X). For example, if X is any open subset of €, then
Co(X) C Co(R2) (by extending the element of Cy(X) by 0 on 2\ X) and Cy(X) is then
clearly an ideal of Cp(2). As a consequence, one gets the following short exact sequence:

0 — Co(X) — Co(Q) = Co(Q\ X) — 0.

Extension 1.2.10. Write down the details of the construction of the Gelfand trans-
form, first for Banach algebras, and then for C*-algebras. Provide a proof of the above
statements.

The Gelfand representation has various useful applications. One is contained in the
proof of the following statement, see [Mur90, Thm. 2.1.13] for its proof. This statement
corresponds to a so-called bounded functional calculus.

Proposition 1.2.11. Let a be a normal element of a unital C*-algebra C, and let
t:o(a) — C be the inclusion map, i.e. 1(z) = z for any z € o(a). Then there exists a
unique unital x-homomorphism @, : C(o(a)) — C satisfying ¢q(1) = a. Moreover, ¢,
is isometric and the image of @, is the C*-subalgebra C*({a,1}) of C generated by a
and 1.

Note that if f is a polynomial, then the equality ¢.(f) = f(a) holds, and if f
corresponds to the map f(z) = z, then one has ¢,(f) = a*. For the former reason, one
usually write simply f(a) instead of ¢,(f) for any f € C'(c(a)). We also mention a useful
result about the spectrum of elements obtained by the previous bounded functional
calculus [Mur90, Thm. 2.1.14].

Theorem 1.2.12 (Spectral mapping theorem). Let a be a normal element in a unital
C*-algebra C, and let v, be the x-homomorphism mentioned in the previous statement.
Then for any f € C(a(a)), the following equality holds:

o (f(a)) = f(o(a)).
Let us still gather some additional spectral properties.

(i) If ¢ : C — Q is a unital x-homomorphism between unital C*-algebras, and if a is
a normal element of C, then o(¢(a)) C o(a), or in other words the spectrum of
a can not increase through a *-homomorphism. In addition, if f € C' (U(a)), then

f(pla)) = ¢(f(a)).

(ii) If a is a normal element in a non-unital C*-algebra C, then f(a) is a priori defined
only in its unitization C. Now, if 7 : C — C denotes the quotient map and for
a € C, one has by the previous point that

©(f(a)) = f(7(a)) = £(0).

It thus follows from the description of C provided in (1.2) that f(a) belongs to C
if and only if f(0) = 0.
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(iii) If @ is a normal element in a C*-algebra, then r(a) = ||al|.

We finally state a technical result which will be used at several occasions in the
next chapter.

Lemma 1.2.13. Let C be a unital C*-algebra, let K be a non-empty compact subset of
R and let F be the set of self-adjoint elements of C with spectrum in K. Then for any
fized f € C(K), the map

Fr.>a— f(a) €C

18 continuous.

The proof of this statement is provided in [RLLO00, Lem. 1.2.5] and relies on an
e/3-argument.

1.3 Matrix algebras

For any C*-algebra C, let us denote by M, (C) the set of all n x n matrices with entries
in C. Addition, multiplication and involution for such matrices are mimicked from the
scalar case, i.e. when C = C. In order to define a C*-norm on M, (C), let us consider
any injective s-homomorphism ¢ : C — B(#H) for some Hilbert space #, and extend
this morphism to a *-homomorphism ¢ : M, (C) — B(H™) by defining®

aiy ... Qi fi plan) fi+ -+ plan) fo
el e = :
an1 .- Ann fn Sa(anl)fl + - Qp(ann)fn
for any *(f1,..., fn) € H"™ (the notation ’(...) means the transpose of a vector). Then
a C*-norm on M, (C) is obtained by setting ||a|| := ||¢(a)]|| for any a € M, (C), and this

norm is independent of the choice of ¢. Note that the following inequalities hold:

air ... Qin
max [lag || < || 51 S > llagll (1.4)
apl .. Gpn 2

These inequalities have a useful application. It shows that if {2 is a topological space
and if f: Q — M, (C), then f is continuous if and only if each function f;; : 2 — C is
continuous.

5The use of the same notation for the maps ¢ : C — B(H) and ¢ : M, (C) — B(H") is done on
purpose. Some authors would use ,, for the second map, but the omission of the index n does not
lead to any confusion and simplifies the notation.
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Finally, let us mention that if ¢ : C — Q is a x-homomorphism between two C*-
algebras C and Q, then the map ¢ : M,,(C) — M, (Q) defined by

air ... Q1n @(all) . @(Gln)
Apil . Qpp olan) .. @lap,)

is a *-homomorphism, for any n € N*. Note that again we have used the same notation
for two related but different maps.



