Chapter 1

C^* -algebras

This chapter is mainly based on the first chapters of the books [Mur90] and [RLL00].

1.1 Basics on C^* -algebras

Definition 1.1.1. A Banach algebra C is a complex vector space endowed with an associative multiplication and with a norm $\|\cdot\|$ which satisfy for any $a, b, c \in C$ and $\alpha \in \mathbb{C}$

- (i) $(\alpha a)b = \alpha(ab) = a(\alpha b),$
- (*ii*) a(b+c) = ab + ac and (a+b)c = ac + bc,
- (iii) $||ab|| \le ||a|| ||b||$ (submultiplicativity)
- (iv) C is complete with the norm $\|\cdot\|$.

One says that \mathcal{C} is Abelian or commutative if ab = ba for all $a, b \in \mathcal{C}$. One also says that \mathcal{C} is unital if $\mathbf{1} \in \mathcal{C}$, *i.e.* if there exists an element $\mathbf{1} \in \mathcal{C}$ with $\|\mathbf{1}\| = 1$ such that $\mathbf{1}a = a = a\mathbf{1}$ for all $a \in \mathcal{C}^{-1}$. A subalgebra \mathcal{J} of \mathcal{C} is a vector subspace which is stable for the multiplication. If \mathcal{J} is norm closed, it is a Banach algebra in itself.

- **Examples 1.1.2.** (i) \mathbb{C} or $M_n(\mathbb{C})$ (the set of $n \times n$ -matrices over \mathbb{C}) are unital Banach algebras. \mathbb{C} is Abelian, but $M_n(\mathbb{C})$ is not Abelian for any $n \geq 2$.
 - (ii) The set $\mathcal{B}(\mathcal{H})$ of all bounded operators on a Hilbert space \mathcal{H} is a unital Banach algebra.
 - (iv) The set $\mathcal{K}(\mathcal{H})$ of all compact operators on a Hilbert space \mathcal{H} is a Banach algebra. It is unital if and only if \mathcal{H} is finite dimensional.

¹Some authors do not assume that $\|\mathbf{1}\| = 1$. It has the advantage that the algebra $\{0\}$ consisting only in the element 0 is unital, which is not the case if one assumes that $\|\mathbf{1}\| = 1$.

- (iv) If Ω is a locally compact topological space, $C_0(\Omega)$ and $C_b(\Omega)$ are Abelian Banach algebras, where $C_b(\Omega)$ denotes the set of all bounded and continuous functions from Ω to \mathbb{C} , and $C_0(\Omega)$ denotes the subset of $C_b(\Omega)$ of functions f which vanish at infinity, i.e. for any $\varepsilon > 0$ there exists a compact set $K \subset \Omega$ such that $\sup_{x \in \Omega \setminus K} |f(x)| \le \varepsilon$. These algebras are endowed with the L^{∞} -norm, namely $\|f\| = \sup_{x \in \Omega} |f(x)|$. Note that $C_b(\Omega)$ is unital, while $C_0(\Omega)$ is not, except if Ω is compact. In this case, one has $C_0(\Omega) = C(\Omega) = C_b(\Omega)$.
- (v) If (Ω, μ) is a measure space, then $L^{\infty}(\Omega)$, the (equivalent classes of) essentially bounded complex functions on Ω is a unital Abelian Banach algebra with the essential supremum norm $\|\cdot\|_{\infty}$.

Observe that \mathbb{C} is endowed with the complex conjugation, that $M_n(\mathbb{C})$ is also endowed with an operation consisting of taking the transpose of the matrix, and then the complex conjugate of each entry, and that $C_0(\Omega)$ and $C_b(\Omega)$ are also endowed with the operation consisting in taking the complex conjugate $f \mapsto \overline{f}$. All these additional structures are examples of the following structure:

Definition 1.1.3. A C^{*}-algebra is a Banach algebra C together with a map $^* : C \to C$ which satisfies for any $a, b \in C$ and $\alpha \in \mathbb{C}$

(*i*)
$$(a^*)^* = a_i$$

(*ii*)
$$(a+b)^* = a^* + b^*$$
,

(*iii*) $(\alpha a)^* = \overline{\alpha} a^*$,

$$(iv) (ab)^* = b^*a^*,$$

$$(v) ||a^*a|| = ||a||^2.$$

The map * is called an involution.

Clearly, if \mathcal{C} is a unital C^* -algebra, then $\mathbf{1}^* = \mathbf{1}$.

Examples 1.1.4. The Banach algebras described in Examples 1.1.2 are in fact C^* -algebras, once complex conjugation is considered as the involution for complex functions. Note that for $\mathcal{B}(\mathcal{H})$ and $\mathcal{K}(\mathcal{H})$ the involution consists in taking the adjoint² of any element $a \in \mathcal{B}(\mathcal{H})$ or $a \in \mathcal{K}(\mathcal{H})$. In addition, let us observe that for a family $\{C_i\}_{i \in I}$ of C^* -algebras, the direct sum $\bigoplus_{i \in I} C_i$, with the pointwise multiplication and involution, and the supremum norm, is also a C^* -algebra.

Definition 1.1.5. A *-homomorphism φ between two C*-algebras C and Q is a linear map $\varphi : C \to Q$ which satisfies $\varphi(ab) = \varphi(a)\varphi(b)$ and $\varphi(a^*) = \varphi(a)^*$ for all $a, b \in C$. If C and Q are unital and if $\varphi(1) = 1$, one says that φ is unit preserving or a unital *-homomorphism. If $\|\varphi(a)\| = \|a\|$ for any $a \in C$, the *-homomorphism is isometric.

²If \mathcal{H} is a Hilbert space with scalar product denoted by $\langle \cdot, \cdot \rangle$ and if $a \in \mathcal{B}(\mathcal{H})$, then its adjoint a^* is defined by the equality $\langle af, g \rangle = \langle f, a^*g \rangle$ for any $f, g \in \mathcal{H}$. If $a \in \mathcal{K}(\mathcal{H})$, then $a^* \in \mathcal{K}(\mathcal{H})$ as well.

A C^* -subalgebra of a C^* -algebra \mathcal{C} is a norm closed (non-empty) subalgebra of \mathcal{C} which is stable for the involution. It is clearly a C^* -algebra in itself. In particular, if F is a subset of a C^* -algebra \mathcal{C} , we denote by $C^*(F)$ the smallest C^* -subalgebra of \mathcal{C} that contains F. It corresponds to the intersection of all C^* -subalgebras of \mathcal{C} that contains F.

- **Exercise 1.1.6.** (i) Show that a *-homomorphism φ between C*-algebras is isometric if and only if φ is injective.
 - (ii) If $\varphi : \mathcal{C} \to \mathcal{Q}$ is a *-homomorphism between two C*-algebras, show that the kernel $\operatorname{Ker}(\varphi)$ of φ is a C*-subalgebra of \mathcal{C} and that the image $\operatorname{Ran}(\varphi)$ of φ is a C*-subalgebra of \mathcal{Q} .

An important result about C^* -algebras states that each of them can be represented faithfully in a Hilbert space. More precisely:

Theorem 1.1.7 (Gelfand-Naimark-Segal (GNS) representation). For any C^* -algebra C there exists a Hilbert space \mathcal{H} and an injective *-homomorphism from C to $\mathcal{B}(\mathcal{H})$. In other words, every C^* -algebra C is *-isomorphic³ to a C^* -subalgebra of $\mathcal{B}(\mathcal{H})$.

Extension 1.1.8. The proof of this theorem is based on the notion of states (positive linear functionals) on a C^* -algebra, and on the existence of sufficiently many such states. The construction is rather explicit and can be studied, see for example [Mur90, Thm. 3.4.1].

The next definition of an ideal is the most suitable one in the context of C^* -algebra.

Definition 1.1.9. An ideal in a C^* -algebra \mathcal{C} is a (non-trivial) C^* -subalgebra \mathcal{J} of \mathcal{C} such that $ab \in \mathcal{J}$ and $ba \in \mathcal{J}$ whenever $a \in \mathcal{J}$ and $b \in \mathcal{C}$. This ideal \mathcal{J} is said to be maximal in \mathcal{C} if \mathcal{J} is proper (\Leftrightarrow not equal to \mathcal{C}) and if \mathcal{J} is not contained in any other proper ideal of \mathcal{C} .

For example, $C_0(\Omega)$ is an ideal of $C_b(\Omega)$, while $\mathcal{K}(\mathcal{H})$ is an ideal of $\mathcal{B}(\mathcal{H})$. Let us add one more important result about the quotient of a C^* -algebra by any of its ideals. In this setting we set

$$\mathcal{C}/\mathcal{J} = \{a + \mathcal{J} \mid a \in \mathcal{C}\}$$
 and $||a + \mathcal{J}|| := \inf_{b \in \mathcal{J}} ||a + b||.$

In this way \mathcal{C}/\mathcal{J} becomes a C^* -algebra, and if one sets $\pi : \mathcal{C} \to \mathcal{C}/\mathcal{J}$ by $\pi(a) = a + \mathcal{J}$, then π is a *-homomorphism with $\mathcal{J} = \text{Ker}(\pi)$. The *-homomorphism π is called *the quotient map*. We refer to [Mur90, Thm. 3.1.4] for the proof about the quotient \mathcal{C}/\mathcal{J} .

Consider now a (finite or infinite) sequence of C^* -algebras and *-homomorphisms

$$\ldots \longrightarrow \mathcal{C}_n \xrightarrow{\varphi_n} \mathcal{C}_{n+1} \xrightarrow{\varphi_{n+1}} \mathcal{C}_{n+2} \longrightarrow \ldots$$

³A *-isomorphism is a bijective *-homomorphism.

This sequence is *exact* if $\mathsf{Ran}(\varphi_n) = \mathsf{Ker}(\varphi_{n+1})$ for any *n*. A sequence of the form

$$0 \longrightarrow \mathcal{J} \xrightarrow{\varphi} \mathcal{C} \xrightarrow{\psi} \mathcal{Q} \longrightarrow 0 \tag{1.1}$$

is called a short exact sequence. In particular, if \mathcal{J} is an ideal in \mathcal{C} we can consider

$$0 \longrightarrow \mathcal{J} \stackrel{\iota}{\longleftrightarrow} \mathcal{C} \stackrel{\pi}{\longrightarrow} \mathcal{C}/\mathcal{J} \longrightarrow 0$$

where ι is the inclusion map and π the quotient map already introduced.

If in (1.1) there exists a *-homomorphism $\lambda : \mathcal{Q} \to \mathcal{C}$ such that $\psi \circ \lambda = \text{id}$, then λ is called a *lift for* ψ , and the short exact sequence is said to be *split exact*. For example, let $\mathcal{C}_1, \mathcal{C}_2$ be C^* -algebras, and consider the direct sum $\mathcal{C}_1 \oplus \mathcal{C}_2$ with the pointwise multiplication and involution, and the supremum norm. One can then observe that the following short exact sequence

$$0 \longrightarrow \mathcal{C}_1 \xrightarrow{\iota_1} \mathcal{C}_1 \oplus \mathcal{C}_2 \xrightarrow{\pi_2} \mathcal{C}_2 \longrightarrow 0$$

is split exact, when ι_1 and π_2 are defined by $\iota_1(a) = (a, 0)$ and $\pi_2(a, b) = b$. Indeed, one can set $\lambda : \mathcal{C}_2 \to \mathcal{C}_1 \oplus \mathcal{C}_2$ with $\lambda(b) = (0, b)$ and the equality $\pi_2 \circ \lambda = \text{id holds}$. Note that neither all short exact sequences are split exact, nor all split exact short exact sequences are direct sums.

Let us finally mention that with any C^* -algebra \mathcal{C} one can associate a unique unital C^* -algebra $\widetilde{\mathcal{C}}$ which contains \mathcal{C} as an ideal and such that $\widetilde{\mathcal{C}}/\mathcal{C} = \mathbb{C}$. In addition, the short exact sequence

$$0 \longrightarrow \mathcal{C} \stackrel{\iota}{\longleftrightarrow} \widetilde{\mathcal{C}} \stackrel{\pi}{\longrightarrow} \mathbb{C} \longrightarrow 0$$

is split exact, with $\lambda(\alpha) = \alpha \mathbf{1}$ for any $\alpha \in \mathbb{C}$. Here $\mathbf{1}$ denotes the identity element of $\widetilde{\mathcal{C}}$. The C*-algebra $\widetilde{\mathcal{C}}$ is called *the (smallest) unitization of* \mathcal{C} . Note that

$$\widetilde{\mathcal{C}} = \left\{ a + \alpha \mathbf{1} \mid a \in \mathcal{C}, \alpha \in \mathcal{C} \right\},\tag{1.2}$$

and therefore \mathcal{C} is naturally identified with the element of the form a + 01 in $\widetilde{\mathcal{C}}$.

Exercise 1.1.10. Work out the details of the construction of \widetilde{C} , see for example [RLL00, Exercise 1.3].

An important property of the previous construction is its functoriality, in the sense that for any *-homomorphism $\varphi : \mathcal{C} \to \mathcal{Q}$ between C^* -algebras, there exists a unique unit preserving *-homomorphism $\tilde{\varphi} : \tilde{\mathcal{C}} \to \tilde{\mathcal{Q}}$ such that $\tilde{\varphi} \circ \iota_{\mathcal{C}} = \iota_{\mathcal{Q}} \circ \varphi$. This morphism is defined by $\tilde{\varphi}(a + \alpha \mathbf{1}_{\tilde{\mathcal{C}}}) = \varphi(a) + \alpha \mathbf{1}_{\tilde{\mathcal{O}}}$ for any $a \in \mathcal{C}$ and $\alpha \in \mathbb{C}$.

1.2 Spectral theory

Let us now consider an arbitrary unital C^* -algebra \mathcal{C} , and let $a \in \mathcal{C}$. One says that a is *invertible* if there exists $b \in \mathcal{C}$ such that $ab = \mathbf{1} = ba$. In this case, the element b is denoted by a^{-1} and is called *the inverse of* a. The set of all invertible elements is denoted by $\mathcal{GL}(\mathcal{C})$. Clearly, $\mathcal{GL}(\mathcal{C})$ is a group.

Exercise 1.2.1. Show that $\mathcal{GL}(\mathcal{C})$ is an open set in any unital C^* -algebra \mathcal{C} , and that the map $\mathcal{GL}(\mathcal{C}) \ni a \mapsto a^{-1} \in \mathcal{C}$ is differentiable. The Neumann series can be used in the proof, namely if ||a|| < 1 one has

$$(\mathbf{1}-a)^{-1} = \sum_{n=0}^{\infty} a^n.$$
(1.3)

Note that in the sequel, we shall sometimes write a - z for $a - z\mathbf{1}$, whenever a is an element of a unital C^* -algebra and $z \in \mathbb{C}$.

Definition 1.2.2. Let C be a unital C^* -algebra and let $a \in C$. The spectrum $\sigma_C(a)$ of a with respect to C is defined by

$$\sigma_{\mathcal{C}}(a) := \{ z \in \mathbb{C} \mid (a - z\mathbf{1}) \notin \mathcal{GL}(\mathcal{C}) \}.$$

The spectral radius r(a) of a with respect to C is defined by

$$r(a) := \sup \left\{ |z| \mid z \in \sigma_{\mathcal{C}}(a) \right\}$$

Note that the spectrum $\sigma_{\mathcal{C}}(a)$ of a is a closed subset of \mathbb{C} which is never empty. This result is not completely trivial and its proof is based on Liouville's Theorem in complex analysis. In addition, note that the estimate $r(a) \leq ||a||$ and the equality $r(a) = \lim_{n \to \infty} ||a^n||^{1/n}$ always hold. We refer to [Mur90, Sec. 1.2] for the proofs of these statements. Let us mention that if \mathcal{C} has no unit, the spectrum of an element $a \in \mathcal{C}$ can still be defined by $\sigma_{\mathcal{C}}(a) := \sigma_{\widetilde{\mathcal{C}}}(a)$.

Based on these observations, we state two results which are often quite useful.

Theorem 1.2.3 (Gelfand-Mazur). If C is a unital C^* -algebra in which every non-zero element is invertible, then $C = \mathbb{C}\mathbf{1}$.

Proof. We know from the observation made above that for any $a \in C$, there exists $z \in \mathbb{C}$ such that $a - z\mathbf{1} \notin \mathcal{GL}(C)$. By assumption, it follows that $a - z\mathbf{1} = 0$, which means $a = z\mathbf{1}$.

Lemma 1.2.4. Let \mathcal{J} be a maximal ideal of a unital Abelian C^* -algebra \mathcal{C} , then $\mathcal{C}/\mathcal{J} = \mathbb{C}\mathbf{1}$.

Proof. As already mentioned, \mathcal{C}/\mathcal{J} is a C^* -algebra with unit $\mathbf{1} + \mathcal{J}$; we denote the quotient map $\mathcal{C} \to \mathcal{C}/\mathcal{J}$ by π . If \mathcal{I} is an ideal in \mathcal{C}/\mathcal{J} , then $\pi^{-1}(\mathcal{I})$ is an ideal of \mathcal{C} containing \mathcal{J} , which is therefore either equal to \mathcal{C} or to \mathcal{J} , by the maximality of \mathcal{J} . Consequently, \mathcal{I} is either equal to \mathcal{C}/\mathcal{J} or to 0, and \mathcal{C}/\mathcal{J} has no proper ideal.

Now, if $a \in \mathcal{C}/\mathcal{J}$ and $a \neq 0$, then $a \in \mathcal{GL}(\mathcal{C}/\mathcal{J})$, since otherwise $a(\mathcal{C}/\mathcal{J})$ would be a proper ideal of \mathcal{C}/\mathcal{J} . In other words, one has obtained that any non-zero element of \mathcal{C}/\mathcal{J} is invertible, which implies that $\mathcal{C}/\mathcal{J} = \mathbb{C}\mathbf{1}$, by Theorem 1.2.3.

The following statement is an important result for spectral theory in the framework of C^* -algebras. It shows that the computation of the spectrum does not depend on the surrounding algebra.

Theorem 1.2.5. Let C be a C^* -subalgebra of a unital C^* -algebra Q which contains the unit of Q. Then for any $a \in C$,

$$\sigma_{\mathcal{C}}(a) = \sigma_{\mathcal{Q}}(a).$$

The proof of this theorem is mainly based on the previous lemmas, but requires some preliminary works. We refer to [Mur90, Thm. 1.2.8 & 2.1.11] for its proof. Note that because of this result, it is common to denote by $\sigma(a)$ the spectrum of an element a of a C^* -algebra, without specifying in which algebra the spectrum is computed.

In the next definition we consider some special elements of a C^* -algebra.

Definition 1.2.6. Let C be a C^* -algebra and let $a \in C$. The element a is self-adjoint or hermitian if $a = a^*$, a is normal if $aa^* = a^*a$. If a is self-adjoint and $\sigma(a) \subset \mathbb{R}_+$, then a is said to be positive. If C is unital and if $u \in C$ satisfies $uu^* = u^*u = \mathbf{1}$, then u is said to be unitary.

The set of all positive elements in \mathcal{C} is usually denoted by \mathcal{C}^+ , and one simply writes $a \geq 0$ to mean that a is positive. An important result in this context is that for any $a \in \mathcal{C}^+$, there exists $b \in \mathcal{C}$ such that $a = b^*b$. One can even strengthen this result by showing that for any $a \in \mathcal{C}^+$, there exists a unique $b \in \mathcal{C}^+$ such that $a = b^2$. This element b is usually denoted by $a^{1/2}$. Now, for any self-adjoint operators a_1, a_2 , one writes $a_1 \geq a_2$ if $a_1 - a_2 \geq 0$. For completeness, we add some information about \mathcal{C}^+ .

Proposition 1.2.7. Let C be a C^* -algebra. Then,

- (i) The sum of two positive elements of C is a positive element of C,
- (ii) The set \mathcal{C}^+ is equal to $\{a^*a \mid a \in \mathcal{C}\},\$
- (iii) If a, b are self-adjoint elements of C and if $c \in C$, then $a \ge b \Rightarrow c^*ac \ge c^*bc$,
- (iv) If $a \ge b \ge 0$, then $a^{1/2} \ge b^{1/2}$,
- (v) If $a \ge b \ge 0$, then $||a|| \ge ||b||$,
- (vi) If C is unital and a, b are positive and invertible elements of C, then $a \ge b \Rightarrow b^{-1} \ge a^{-1} \ge 0$,
- (vii) For any $a \in \mathcal{C}$ there exist $a_1, a_2, a_3, a_4 \in \mathcal{C}^+$ such that

$$a = a_1 - a_2 + ia_3 - ia_4.$$

Proof. See Lemma 2.2.3, Theorem 2.2.5 and Theorem 2.2.6 of [Mur90].

In the next statement, we provide some information on the spectrum of self-adjoint and unitary elements of a unital C^* -algebra. For that purpose, we immediately infer from the equality $||u^*u|| = ||u||^2$ that if u is unitary, then ||u|| = 1. We also set

$$\mathbb{T} := \{ z \in \mathbb{C} \mid |z| = 1 \}$$

Lemma 1.2.8. Any self-adjoint element a in a unital C^* -algebra C satisfies $\sigma(a) \subset \mathbb{R}$. If u is a unitary element of C, then $\sigma(u) \subset \mathbb{T}$.

Proof. First of all, let $b \in C$ and observe that from the equality $((b-z)^{-1})^* = (b^* - \overline{z})^{-1}$, one infers that if $z \in \sigma(b)$, then $\overline{z} \in \sigma(b^*)$. Furthermore, from the equality

$$z^{-1}(z-b)b^{-1} = -(z^{-1}-b^{-1}),$$

one also deduces that if $z \in \sigma(b)$ for some $b \in \mathcal{GL}(\mathcal{C})$, then $z^{-1} \in \sigma(b^{-1})$.

Now, for a unitary $u \in \mathcal{C}$, one deduces from the above computations that if $z \in \sigma(u)$, then $\overline{z}^{-1} \in \sigma((u^*)^{-1}) = \sigma(u)$. Since ||u|| = 1 one then infers from the equality r(u) = ||u|| = 1 that $|z| \leq 1$ and $|z^{-1}| \leq 1$, which means $z \in \mathbb{T}$.

If $a = a^* \in \mathcal{C}$, one sets $e^{ia} := \sum_{n=0}^{\infty} \frac{(ia)^n}{n!}$ and observes that

$$(e^{ia})^* = e^{-ia} = (e^{ia})^{-1}.$$

Therefore, e^{ia} is a unitary element of \mathcal{C} and it follows that $\sigma(e^{ia}) \subset \mathbb{T}$. Now, let us assume that $z \in \sigma(a)$, set $b := \sum_{n=1}^{\infty} \frac{i^n (a-z)^{n-1}}{n!}$, and observe that b commutes with a. Then one has

$$e^{ia} - e^{iz} = (e^{i(a-z)} - 1)e^{iz} = (a-z)be^{iz}.$$

It follows from this equality that $e^{iz} \in \sigma(e^{ia})$. Indeed, if $(e^{ia} - e^{iz}) \in \mathcal{GL}(\mathcal{C})$, then $be^{iz}(e^{ia} - e^{iz})^{-1}$ would be an inverse for (a - z), which can not be since $z \in \sigma(a)$. From the preliminary computation, one deduces that $|e^{iz}| = 1$, which holds if and only if $z \in \mathbb{R}$. One has thus obtains that $\sigma(a) \subset \mathbb{R}$.

Let us now state an important result for Abelian C^* -algebras.

Theorem 1.2.9 (Gelfand). Any Abelian C^* -algebra C is *-isomorphic to a C^* -algebra of the form $C_0(\Omega)$ for some locally compact Hausdorff⁴ space Ω .

In fact, Gelfand's theorem provides more information, namely

- (i) The mentioned *-isomorphism is isometric,
- (ii) Ω is compact if and only if C is unital,
- (iii) Ω and Ω' are homeomorphic if and only if $C_0(\Omega)$ and $C_0(\Omega')$ are *-isomorphic,
- (iv) The set Ω is called *the spectrum* of \mathcal{C} and corresponds to the set of *characters* of \mathcal{C} endowed with a suitable topology. A character on \mathcal{C} is a non-zero *-homomorphism from \mathcal{C} to \mathbb{C} .

⁴A Hausdorff space is a topological space in which distinct points have disjoint neighbourhoods.

In this context, let us mention that there exists a bijective correspondence between open subsets of Ω and ideals in $C_0(X)$. For example, if X is any open subset of Ω , then $C_0(X) \subset C_0(\Omega)$ (by extending the element of $C_0(X)$ by 0 on $\Omega \setminus X$) and $C_0(X)$ is then clearly an ideal of $C_0(\Omega)$. As a consequence, one gets the following short exact sequence:

$$0 \longrightarrow C_0(X) \stackrel{\iota}{\longleftrightarrow} C_0(\Omega) \stackrel{\pi}{\longrightarrow} C_0(\Omega \setminus X) \longrightarrow 0.$$

Extension 1.2.10. Write down the details of the construction of the Gelfand transform, first for Banach algebras, and then for C^* -algebras. Provide a proof of the above statements.

The Gelfand representation has various useful applications. One is contained in the proof of the following statement, see [Mur90, Thm. 2.1.13] for its proof. This statement corresponds to a so-called *bounded functional calculus*.

Proposition 1.2.11. Let a be a normal element of a unital C^* -algebra \mathcal{C} , and let $\iota : \sigma(a) \to \mathbb{C}$ be the inclusion map, i.e. $\iota(z) = z$ for any $z \in \sigma(a)$. Then there exists a unique unital *-homomorphism $\varphi_a : C(\sigma(a)) \to \mathcal{C}$ satisfying $\varphi_a(\iota) = a$. Moreover, φ_a is isometric and the image of φ_a is the C^* -subalgebra $C^*(\{a, 1\})$ of \mathcal{C} generated by a and **1**.

Note that if f is a polynomial, then the equality $\varphi_a(f) = f(a)$ holds, and if f corresponds to the map $f(z) = \overline{z}$, then one has $\varphi_a(f) = a^*$. For the former reason, one usually write simply f(a) instead of $\varphi_a(f)$ for any $f \in C(\sigma(a))$. We also mention a useful result about the spectrum of elements obtained by the previous bounded functional calculus [Mur90, Thm. 2.1.14].

Theorem 1.2.12 (Spectral mapping theorem). Let a be a normal element in a unital C^* -algebra C, and let φ_a be the *-homomorphism mentioned in the previous statement. Then for any $f \in C(\sigma(a))$, the following equality holds:

$$\sigma(f(a)) = f(\sigma(a)).$$

Let us still gather some additional spectral properties.

- (i) If $\varphi : \mathcal{C} \to \mathcal{Q}$ is a unital *-homomorphism between unital C^* -algebras, and if a is a normal element of \mathcal{C} , then $\sigma(\varphi(a)) \subset \sigma(a)$, or in other words the spectrum of a can not increase through a *-homomorphism. In addition, if $f \in C(\sigma(a))$, then $f(\varphi(a)) = \varphi(f(a)).$
- (ii) If a is a normal element in a non-unital C^* -algebra \mathcal{C} , then f(a) is a priori defined only in its unitization $\widetilde{\mathcal{C}}$. Now, if $\pi : \widetilde{\mathcal{C}} \to \mathbb{C}$ denotes the quotient map and for $a \in \mathcal{C}$, one has by the previous point that

$$\pi(f(a)) = f(\pi(a)) = f(0).$$

It thus follows from the description of $\widetilde{\mathcal{C}}$ provided in (1.2) that f(a) belongs to \mathcal{C} if and only if f(0) = 0.

(iii) If a is a normal element in a C^{*}-algebra, then r(a) = ||a||.

We finally state a technical result which will be used at several occasions in the next chapter.

Lemma 1.2.13. Let C be a unital C^* -algebra, let K be a non-empty compact subset of \mathbb{R} and let F_K be the set of self-adjoint elements of C with spectrum in K. Then for any fixed $f \in C(K)$, the map

$$F_k \ni a \mapsto f(a) \in \mathcal{C}$$

is continuous.

The proof of this statement is provided in [RLL00, Lem. 1.2.5] and relies on an $\varepsilon/3$ -argument.

1.3 Matrix algebras

For any C^* -algebra \mathcal{C} , let us denote by $M_n(\mathcal{C})$ the set of all $n \times n$ matrices with entries in \mathcal{C} . Addition, multiplication and involution for such matrices are mimicked from the scalar case, *i.e.* when $\mathcal{C} = \mathbb{C}$. In order to define a C^* -norm on $M_n(\mathcal{C})$, let us consider any injective *-homomorphism $\varphi : \mathcal{C} \to \mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} , and extend this morphism to a *-homomorphism $\varphi : M_n(\mathcal{C}) \to \mathcal{B}(\mathcal{H}^n)$ by defining⁵

$$\varphi \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} = \begin{pmatrix} \varphi(a_{11})f_1 + \dots + \varphi(a_{1n})f_n \\ \vdots \\ \varphi(a_{n1})f_1 + \dots + \varphi(a_{nn})f_n \end{pmatrix}$$

for any ${}^{t}(f_1, \ldots, f_n) \in \mathcal{H}^n$ (the notation ${}^{t}(\ldots)$ means the transpose of a vector). Then a C^* -norm on $M_n(\mathcal{C})$ is obtained by setting $||a|| := ||\varphi(a)||$ for any $a \in M_n(\mathcal{C})$, and this norm is independent of the choice of φ . Note that the following inequalities hold:

$$\max_{i,j} \|a_{ij}\| \le \left\| \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \right\| \le \sum_{i,j} \|a_{ij}\|.$$
(1.4)

These inequalities have a useful application. It shows that if Ω is a topological space and if $f: \Omega \to M_n(\mathcal{C})$, then f is continuous if and only if each function $f_{ij}: \Omega \to \mathcal{C}$ is continuous.

⁵The use of the same notation for the maps $\varphi : \mathcal{C} \to \mathcal{B}(\mathcal{H})$ and $\varphi : M_n(\mathcal{C}) \to \mathcal{B}(\mathcal{H}^n)$ is done on purpose. Some authors would use φ_n for the second map, but the omission of the index *n* does not lead to any confusion and simplifies the notation.

Finally, let us mention that if $\varphi : \mathcal{C} \to \mathcal{Q}$ is a *-homomorphism between two C^* algebras \mathcal{C} and \mathcal{Q} , then the map $\varphi : M_n(\mathcal{C}) \to M_n(\mathcal{Q})$ defined by

$$\varphi \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} \varphi(a_{11}) & \dots & \varphi(a_{1n}) \\ \vdots & \ddots & \vdots \\ \varphi(a_{n1}) & \dots & \varphi(a_{nn}) \end{pmatrix}$$
(1.5)

is a *-homomorphism, for any $n \in \mathbb{N}^*$. Note that again we have used the same notation for two related but different maps.