
Chapter 1

C∗-algebras

This chapter is mainly based on the first chapters of the books [Mur90] and [RLL00].

1.1 Basics on C∗-algebras

Definition 1.1.1. A Banach algebra C is a complex vector space endowed with an
associative multiplication and with a norm ∥ · ∥ which satisfy for any a, b, c ∈ C and
α ∈ C

(i) (αa)b = α(ab) = a(αb),

(ii) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc,

(iii) ∥ab∥ ≤ ∥a∥∥b∥ (submultiplicativity)

(iv) C is complete with the norm ∥ · ∥.

One says that C is Abelian or commutative if ab = ba for all a, b ∈ C. One also says
that C is unital if 1 ∈ C, i.e. if there exists an element 1 ∈ C with ∥1∥ = 1 such that
1a = a = a1 for all a ∈ C 1. A subalgebra J of C is a vector subspace which is stable
for the multiplication. If J is norm closed, it is a Banach algebra in itself.

Examples 1.1.2. (i) C or Mn(C) (the set of n × n-matrices over C) are unital
Banach algebras. C is Abelian, but Mn(C) is not Abelian for any n ≥ 2.

(ii) The set B(H) of all bounded operators on a Hilbert space H is a unital Banach
algebra.

(iv) The set K(H) of all compact operators on a Hilbert space H is a Banach algebra.
It is unital if and only if H is finite dimensional.

1Some authors do not assume that ∥1∥ = 1. It has the advantage that the algebra {0} consisting
only in the element 0 is unital, which is not the case if one assumes that ∥1∥ = 1.
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(iv) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are Abelian Ba-
nach algebras, where Cb(Ω) denotes the set of all bounded and continuous func-
tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which
vanish at infinity, i.e. for any ε > 0 there exists a compact set K ⊂ Ω such
that supx∈Ω\K |f(x)| ≤ ε. These algebras are endowed with the L∞-norm, namely
∥f∥ = supx∈Ω |f(x)|. Note that Cb(Ω) is unital, while C0(Ω) is not, except if Ω is
compact. In this case, one has C0(Ω) = C(Ω) = Cb(Ω).

(v) If (Ω, µ) is a measure space, then L∞(Ω), the (equivalent classes of) essentially
bounded complex functions on Ω is a unital Abelian Banach algebra with the es-
sential supremum norm ∥ · ∥∞.

Observe that C is endowed with the complex conjugation, that Mn(C) is also en-
dowed with an operation consisting of taking the transpose of the matrix, and then
the complex conjugate of each entry, and that C0(Ω) and Cb(Ω) are also endowed with
the operation consisting in taking the complex conjugate f 7→ f . All these additional
structures are examples of the following structure:

Definition 1.1.3. A C∗-algebra is a Banach algebra C together with a map ∗ : C → C
which satisfies for any a, b ∈ C and α ∈ C

(i) (a∗)∗ = a,

(ii) (a+ b)∗ = a∗ + b∗,

(iii) (αa)∗ = αa∗,

(iv) (ab)∗ = b∗a∗,

(v) ∥a∗a∥ = ∥a∥2.

The map ∗ is called an involution.

Clearly, if C is a unital C∗-algebra, then 1∗ = 1.

Examples 1.1.4. The Banach algebras described in Examples 1.1.2 are in fact C∗-
algebras, once complex conjugation is considered as the involution for complex functions.
Note that for B(H) and K(H) the involution consists in taking the adjoint 2 of any
element a ∈ B(H) or a ∈ K(H). In addition, let us observe that for a family {Ci}i∈I
of C∗-algebras, the direct sum ⊕i∈ICi, with the pointwise multiplication and involution,
and the supremum norm, is also a C∗-algebra.

Definition 1.1.5. A ∗-homomorphism φ between two C∗-algebras C and Q is a linear
map φ : C → Q which satisfies φ(ab) = φ(a)φ(b) and φ(a∗) = φ(a)∗ for all a, b ∈ C.
If C and Q are unital and if φ(1) = 1, one says that φ is unit preserving or a unital
∗-homomorphism. If ∥φ(a)∥ = ∥a∥ for any a ∈ C, the ∗-homomorphism is isometric.

2If H is a Hilbert space with scalar product denoted by ⟨·, ·⟩ and if a ∈ B(H), then its adjoint a∗ is
defined by the equality ⟨af, g⟩ = ⟨f, a∗g⟩ for any f, g ∈ H. If a ∈ K(H), then a∗ ∈ K(H) as well.
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A C∗-subalgebra of a C∗-algebra C is a norm closed (non-empty) subalgebra of C
which is stable for the involution. It is clearly a C∗-algebra in itself. In particular, if
F is a subset of a C∗-algebra C, we denote by C∗(F ) the smallest C∗-subalgebra of
C that contains F . It corresponds to the intersection of all C∗-subalgebras of C that
contains F .

Exercise 1.1.6. (i) Show that a ∗-homomorphism φ between C∗-algebras is isomet-
ric if and only if φ is injective.

(ii) If φ : C → Q is a ∗-homomorphism between two C∗-algebras, show that the kernel
Ker(φ) of φ is a C∗-subalgebra of C and that the image Ran(φ) of φ is a C∗-
subalgebra of Q.

An important result about C∗-algebras states that each of them can be represented
faithfully in a Hilbert space. More precisely:

Theorem 1.1.7 (Gelfand-Naimark-Segal (GNS) representation). For any C∗-algebra
C there exists a Hilbert space H and an injective ∗-homomorphism from C to B(H). In
other words, every C∗-algebra C is ∗-isomorphic 3 to a C∗-subalgebra of B(H).

Extension 1.1.8. The proof of this theorem is based on the notion of states (positive
linear functionals) on a C∗-algebra, and on the existence of sufficiently many such
states. The construction is rather explicit and can be studied, see for example [Mur90,
Thm. 3.4.1].

The next definition of an ideal is the most suitable one in the context of C∗-algebra.

Definition 1.1.9. An ideal in a C∗-algebra C is a (non-trivial) C∗-subalgebra J of C
such that ab ∈ J and ba ∈ J whenever a ∈ J and b ∈ C. This ideal J is said to be
maximal in C if J is proper (⇔ not equal to C) and if J is not contained in any other
proper ideal of C.

For example, C0(Ω) is an ideal of Cb(Ω), while K(H) is an ideal of B(H). Let us
add one more important result about the quotient of a C∗-algebra by any of its ideals.
In this setting we set

C/J = {a+ J | a ∈ C} and ∥a+ J ∥ := inf
b∈J
∥a+ b∥.

In this way C/J becomes a C∗-algebra, and if one sets π : C → C/J by π(a) = a+ J ,
then π is a ∗-homomorphism with J = Ker(π). The ∗-homomorphism π is called the
quotient map. We refer to [Mur90, Thm. 3.1.4] for the proof about the quotient C/J .

Consider now a (finite or infinite) sequence of C∗-algebras and ∗-homomorphisms

. . . −→ Cn
φn−→ Cn+1

φn+1−→ Cn+2 −→ . . .

3A ∗-isomorphism is a bijective ∗-homomorphism.
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This sequence is exact if Ran(φn) = Ker(φn+1) for any n. A sequence of the form

0 −→ J φ−→ C ψ−→ Q −→ 0 (1.1)

is called a short exact sequence. In particular, if J is an ideal in C we can consider

0 −→ J ι
↪−→ C π−→ C/J −→ 0

where ι is the inclusion map and π the quotient map already introduced.
If in (1.1) there exists a ∗-homomorphism λ : Q → C such that ψ ◦λ = id, then λ is

called a lift for ψ, and the short exact sequence is said to be split exact. For example,
let C1, C2 be C∗-algebras, and consider the direct sum C1 ⊕ C2 with the pointwise
multiplication and involution, and the supremum norm. One can then observe that the
following short exact sequence

0 −→ C1
ι1−→ C1 ⊕ C2

π2−→ C2 −→ 0

is split exact, when ι1 and π2 are defined by ι1(a) = (a, 0) and π2(a, b) = b. Indeed, one
can set λ : C2 → C1 ⊕ C2 with λ(b) = (0, b) and the equality π2 ◦ λ = id holds. Note
that neither all short exact sequences are split exact, nor all split exact short exact
sequences are direct sums.

Let us finally mention that with any C∗-algebra C one can associate a unique unital
C∗-algebra C̃ which contains C as an ideal and such that C̃/C = C. In addition, the
short exact sequence

0 −→ C ι
↪−→ C̃ π−→ C −→ 0

is split exact, with λ(α) = α1 for any α ∈ C. Here 1 denotes the identity element of C̃.
The C∗-algebra C̃ is called the (smallest) unitization of C. Note that

C̃ =
{
a+ α1 | a ∈ C, α ∈ C

}
, (1.2)

and therefore C is naturally identified with the element of the form a+ 01 in C̃.

Exercise 1.1.10. Work out the details of the construction of C̃, see for example
[RLL00, Exercise 1.3].

An important property of the previous construction is its functoriality, in the sense
that for any ∗-homomorphism φ : C → Q between C∗-algebras, there exists a unique
unit preserving ∗-homomorphism φ̃ : C̃ → Q̃ such that φ̃ ◦ ιC = ιQ ◦ φ. This morphism
is defined by φ̃(a+ α1C̃) = φ(a) + α1Q̃ for any a ∈ C and α ∈ C.

1.2 Spectral theory

Let us now consider an arbitrary unital C∗-algebra C, and let a ∈ C. One says that a
is invertible if there exists b ∈ C such that ab = 1 = ba. In this case, the element b
is denoted by a−1 and is called the inverse of a. The set of all invertible elements is
denoted by GL(C). Clearly, GL(C) is a group.
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Exercise 1.2.1. Show that GL(C) is an open set in any unital C∗-algebra C, and that
the map GL(C) ∋ a 7→ a−1 ∈ C is differentiable. The Neumann series can be used in the
proof, namely if ∥a∥ < 1 one has

(1− a)−1 =
∞∑
n=0

an. (1.3)

Note that in the sequel, we shall sometimes write a − z for a − z1, whenever a is
an element of a unital C∗-algebra and z ∈ C.

Definition 1.2.2. Let C be a unital C∗-algebra and let a ∈ C. The spectrum σC(a) of a
with respect to C is defined by

σC(a) :=
{
z ∈ C | (a− z1) ̸∈ GL(C)

}
.

The spectral radius r(a) of a with respect to C is defined by

r(a) := sup
{
|z| | z ∈ σC(a)

}
.

Note that the spectrum σC(a) of a is a closed subset of C which is never empty.
This result is not completely trivial and its proof is based on Liouville’s Theorem in
complex analysis. In addition, note that the estimate r(a) ≤ ∥a∥ and the equality
r(a) = limn→∞ ∥an∥1/n always hold. We refer to [Mur90, Sec. 1.2] for the proofs of these
statements. Let us mention that if C has no unit, the spectrum of an element a ∈ C can
still be defined by σC(a) := σC̃(a).

Based on these observations, we state two results which are often quite useful.

Theorem 1.2.3 (Gelfand-Mazur). If C is a unital C∗-algebra in which every non-zero
element is invertible, then C = C1.

Proof. We know from the observation made above that for any a ∈ C, there exists z ∈ C
such that a − z1 ̸∈ GL(C). By assumption, it follows that a − z1 = 0, which means
a = z1.

Lemma 1.2.4. Let J be a maximal ideal of a unital Abelian C∗-algebra C, then C/J =
C1.

Proof. As already mentioned, C/J is a C∗-algebra with unit 1 + J ; we denote the
quotient map C → C/J by π. If I is an ideal in C/J , then π−1(I) is an ideal of C
containing J , which is therefore either equal to C or to J , by the maximality of J .
Consequently, I is either equal to C/J or to 0, and C/J has no proper ideal.

Now, if a ∈ C/J and a ̸= 0, then a ∈ GL
(
C/J

)
, since otherwise a(C/J ) would be

a proper ideal of C/J . In other words, one has obtained that any non-zero element of
C/J is invertible, which implies that C/J = C1, by Theorem 1.2.3.

The following statement is an important result for spectral theory in the framework
of C∗-algebras. It shows that the computation of the spectrum does not depend on the
surrounding algebra.
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Theorem 1.2.5. Let C be a C∗-subalgebra of a unital C∗-algebra Q which contains the
unit of Q. Then for any a ∈ C,

σC(a) = σQ(a).

The proof of this theorem is mainly based on the previous lemmas, but requires
some preliminary works. We refer to [Mur90, Thm. 1.2.8 & 2.1.11] for its proof. Note
that because of this result, it is common to denote by σ(a) the spectrum of an element
a of a C∗-algebra, without specifying in which algebra the spectrum is computed.

In the next definition we consider some special elements of a C∗-algebra.

Definition 1.2.6. Let C be a C∗-algebra and let a ∈ C. The element a is self-adjoint
or hermitian if a = a∗, a is normal if aa∗ = a∗a. If a is self-adjoint and σ(a) ⊂ R+,
then a is said to be positive. If C is unital and if u ∈ C satisfies uu∗ = u∗u = 1, then u
is said to be unitary.

The set of all positive elements in C is usually denoted by C+, and one simply writes
a ≥ 0 to mean that a is positive. An important result in this context is that for any
a ∈ C+, there exists b ∈ C such that a = b∗b. One can even strengthen this result by
showing that for any a ∈ C+, there exists a unique b ∈ C+ such that a = b2. This
element b is usually denoted by a1/2. Now, for any self-adjoint operators a1, a2, one
writes a1 ≥ a2 if a1 − a2 ≥ 0. For completeness, we add some information about C+.

Proposition 1.2.7. Let C be a C∗-algebra. Then,

(i) The sum of two positive elements of C is a positive element of C,

(ii) The set C+ is equal to {a∗a | a ∈ C},

(iii) If a, b are self-adjoint elements of C and if c ∈ C, then a ≥ b⇒ c∗ac ≥ c∗bc,

(iv) If a ≥ b ≥ 0, then a1/2 ≥ b1/2,

(v) If a ≥ b ≥ 0, then ∥a∥ ≥ ∥b∥,

(vi) If C is unital and a, b are positive and invertible elements of C, then a ≥ b ⇒
b−1 ≥ a−1 ≥ 0,

(vii) For any a ∈ C there exist a1, a2, a3, a4 ∈ C+ such that

a = a1 − a2 + ia3 − ia4.

Proof. See Lemma 2.2.3, Theorem 2.2.5 and Theorem 2.2.6 of [Mur90].

In the next statement, we provide some information on the spectrum of self-adjoint
and unitary elements of a unital C∗-algebra. For that purpose, we immediately infer
from the equality ∥u∗u∥ = ∥u∥2 that if u is unitary, then ∥u∥ = 1. We also set

T := {z ∈ C | |z| = 1}.
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Lemma 1.2.8. Any self-adjoint element a in a unital C∗-algebra C satisfies σ(a) ⊂ R.
If u is a unitary element of C, then σ(u) ⊂ T.

Proof. First of all, let b ∈ C and observe that from the equality
(
(b−z)−1

)∗
= (b∗−z)−1,

one infers that if z ∈ σ(b), then z ∈ σ(b∗). Furthermore, from the equality

z−1(z − b)b−1 = −(z−1 − b−1),

one also deduces that if z ∈ σ(b) for some b ∈ GL(C), then z−1 ∈ σ(b−1).

Now, for a unitary u ∈ C, one deduces from the above computations that if z ∈
σ(u), then z−1 ∈ σ

(
(u∗)−1

)
= σ(u). Since ∥u∥ = 1 one then infers from the equality

r(u) = ∥u∥ = 1 that |z| ≤ 1 and |z−1| ≤ 1, which means z ∈ T.
If a = a∗ ∈ C, one sets eia :=

∑∞
n=0

(ia)n

n!
and observes that

(eia)∗ = e−ia = (eia)−1.

Therefore, eia is a unitary element of C and it follows that σ
(
eia

)
⊂ T. Now, let us

assume that z ∈ σ(a), set b :=
∑∞

n=1
in(a−z)n−1

n!
, and observe that b commutes with a.

Then one has

eia − eiz = (ei(a−z) − 1)eiz = (a− z)beiz.

It follows from this equality that eiz ∈ σ(eia). Indeed, if
(
eia − eiz

)
∈ GL(C), then

beiz
(
eia− eiz

)−1
would be an inverse for (a− z), which can not be since z ∈ σ(a). From

the preliminary computation, one deduces that |eiz| = 1, which holds if and only if
z ∈ R. One has thus obtains that σ(a) ⊂ R.

Let us now state an important result for Abelian C∗-algebras.

Theorem 1.2.9 (Gelfand). Any Abelian C∗-algebra C is ∗-isomorphic to a C∗-algebra
of the form C0(Ω) for some locally compact Hausdorff 4 space Ω.

In fact, Gelfand’s theorem provides more information, namely

(i) The mentioned ∗-isomorphism is isometric,

(ii) Ω is compact if and only if C is unital,

(iii) Ω and Ω′ are homeomorphic if and only if C0(Ω) and C0(Ω
′) are ∗-isomorphic,

(iv) The set Ω is called the spectrum of C and corresponds to the set of characters of C
endowed with a suitable topology. A character on C is a non-zero ∗-homomorphism
from C to C.

4A Hausdorff space is a topological space in which distinct points have disjoint neighbourhoods.



12 CHAPTER 1. C∗-ALGEBRAS

In this context, let us mention that there exists a bijective correspondence between
open subsets of Ω and ideals in C0(X). For example, if X is any open subset of Ω, then
C0(X) ⊂ C0(Ω) (by extending the element of C0(X) by 0 on Ω \X) and C0(X) is then
clearly an ideal of C0(Ω). As a consequence, one gets the following short exact sequence:

0 −→ C0(X)
ι

↪−→ C0(Ω)
π−→ C0(Ω \X) −→ 0.

Extension 1.2.10. Write down the details of the construction of the Gelfand trans-
form, first for Banach algebras, and then for C∗-algebras. Provide a proof of the above
statements.

The Gelfand representation has various useful applications. One is contained in the
proof of the following statement, see [Mur90, Thm. 2.1.13] for its proof. This statement
corresponds to a so-called bounded functional calculus.

Proposition 1.2.11. Let a be a normal element of a unital C∗-algebra C, and let
ι : σ(a) → C be the inclusion map, i.e. ι(z) = z for any z ∈ σ(a). Then there exists a
unique unital ∗-homomorphism φa : C

(
σ(a)

)
→ C satisfying φa(ι) = a. Moreover, φa

is isometric and the image of φa is the C∗-subalgebra C∗({a,1}) of C generated by a
and 1.

Note that if f is a polynomial, then the equality φa(f) = f(a) holds, and if f
corresponds to the map f(z) = z̄, then one has φa(f) = a∗. For the former reason, one
usually write simply f(a) instead of φa(f) for any f ∈ C

(
σ(a)

)
. We also mention a useful

result about the spectrum of elements obtained by the previous bounded functional
calculus [Mur90, Thm. 2.1.14].

Theorem 1.2.12 (Spectral mapping theorem). Let a be a normal element in a unital
C∗-algebra C, and let φa be the ∗-homomorphism mentioned in the previous statement.
Then for any f ∈ C

(
σ(a)

)
, the following equality holds:

σ
(
f(a)

)
= f

(
σ(a)

)
.

Let us still gather some additional spectral properties.

(i) If φ : C → Q is a unital ∗-homomorphism between unital C∗-algebras, and if a is
a normal element of C, then σ

(
φ(a)

)
⊂ σ(a), or in other words the spectrum of

a can not increase through a ∗-homomorphism. In addition, if f ∈ C
(
σ(a)

)
, then

f
(
φ(a)

)
= φ

(
f(a)

)
.

(ii) If a is a normal element in a non-unital C∗-algebra C, then f(a) is a priori defined

only in its unitization C̃. Now, if π : C̃ → C denotes the quotient map and for
a ∈ C, one has by the previous point that

π
(
f(a)

)
= f

(
π(a)

)
= f(0).

It thus follows from the description of C̃ provided in (1.2) that f(a) belongs to C
if and only if f(0) = 0.
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(iii) If a is a normal element in a C∗-algebra, then r(a) = ∥a∥.

We finally state a technical result which will be used at several occasions in the
next chapter.

Lemma 1.2.13. Let C be a unital C∗-algebra, let K be a non-empty compact subset of
R and let FK be the set of self-adjoint elements of C with spectrum in K. Then for any
fixed f ∈ C(K), the map

Fk ∋ a 7→ f(a) ∈ C

is continuous.

The proof of this statement is provided in [RLL00, Lem. 1.2.5] and relies on an
ε/3-argument.

1.3 Matrix algebras

For any C∗-algebra C, let us denote by Mn(C) the set of all n× n matrices with entries
in C. Addition, multiplication and involution for such matrices are mimicked from the
scalar case, i.e. when C = C. In order to define a C∗-norm on Mn(C), let us consider
any injective ∗-homomorphism φ : C → B(H) for some Hilbert space H, and extend
this morphism to a ∗-homomorphism φ :Mn(C)→ B(Hn) by defining5

φ

a11 . . . a1n
...

. . .
...

an1 . . . ann


f1...
fn

 =

φ(a11)f1 + · · ·+ φ(a1n)fn
...

φ(an1)f1 + · · ·+ φ(ann)fn


for any t(f1, . . . , fn) ∈ Hn (the notation t(. . . ) means the transpose of a vector). Then
a C∗-norm on Mn(C) is obtained by setting ∥a∥ := ∥φ(a)∥ for any a ∈Mn(C), and this
norm is independent of the choice of φ. Note that the following inequalities hold:

max
i,j
∥aij∥ ≤

∥∥∥∥∥∥∥
a11 . . . a1n

...
. . .

...
an1 . . . ann


∥∥∥∥∥∥∥ ≤

∑
i,j

∥aij∥. (1.4)

These inequalities have a useful application. It shows that if Ω is a topological space
and if f : Ω → Mn(C), then f is continuous if and only if each function fij : Ω → C is
continuous.

5The use of the same notation for the maps φ : C → B(H) and φ : Mn(C) → B(Hn) is done on
purpose. Some authors would use φn for the second map, but the omission of the index n does not
lead to any confusion and simplifies the notation.
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Finally, let us mention that if φ : C → Q is a ∗-homomorphism between two C∗-
algebras C and Q, then the map φ :Mn(C)→Mn(Q) defined by

φ

a11 . . . a1n
...

. . .
...

an1 . . . ann

 =

φ(a11) . . . φ(a1n)
...

. . .
...

φ(an1) . . . φ(ann)

 (1.5)

is a ∗-homomorphism, for any n ∈ N∗. Note that again we have used the same notation
for two related but different maps.


