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Introduction

These lecture notes correspond to a first course in linear algebra, which does not rely on
any prerequisite. All necessary notions are introduced from scratch, and the proofs of
most of the statements are provided. Examples are provided in the text while exercises
are gathered at the end of each chapter. The main source of inspiration has been the
book of S. Lang: Introduction to linear algebra1.

0.1 Motivation

Several problems lead naturally to the basic concepts of linear algebra. We list some
examples which are at the root of this course or which provide some motivation for this
course.

Solving linear equations Consider the following linear system of equations{
2x+ y = 7
−x+ 2y = 4

.

Its only solution is

{
x = 2
y = 3

. However, if one considers the system

{
2x+ y = 7
4x+ 2y = 14

then one can find several solutions, as for example

{
x = 0
y = 7

or

{
x = 2
y = 3

. It is then natural

to wonder what are all solutions of this system ? How can one describe this set of
solutions and how can one understand it ?

Solutions of linear differential equations Consider a real function f defined on
R, i.e. f : R ∋ t 7→ f(t) ∈ R satisfying the relation

f ′′(t) = −m2f(t)

1Serge Lang, Introduction to linear algebra, second edition, Undergraduate texts in mathematics,
Springer.
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6 INTRODUCTION

for some constant m ∈ R. Can one find all solutions f for this equation ? For example,
f(t) = cos(mt), f(t) = 3 sin(mt) or f(t) = 2 cos(mt+ 3) are solutions of this equation,
but how can one describe all of them ?

Describing linear transformations Consider the following linear transformation:

x

y

Figure 1: Linear transformation

How can one describe this transformation efficiently ?

Change of bases Consider the same object described in two different reference sys-
tems:

x

y

x

y

Figure 2: Change of reference system

How can one compare the information on the same object in these two systems ?

Reading a scientific paper How can one understand the following paper: ”The
$25’000’000’000 eigenvector: the linear algebra behind Google”2.

Other motivations Linear algebra is also at the root of quantum mechanics, dy-
namical systems, linear response theory, linear perturbations theory, ...

2Kurt Bryan, Tanya Leise, The $25’000’000’000 eigenvector: the linear algebra behind Google, SIAM
REVIEW, Vol. 48, No. 3, pp. 569–581.



Chapter 1

Geometric setting

In this Chapter we recall some basic notions on points or vectors in Rn. The norm of a
vector and the scalar product between two vectors are also introduced.

1.1 The Euclidean space Rn

We set N := {1, 2, 3, . . . } for the set of natural numbers, also called positive integers,
and let R be the set of all real numbers.

Definition 1.1.1. One sets

Rn =
{
(a1, a2, . . . , an) | aj ∈ R for all j ∈ {1, 2, . . . , n}

}
1.

Alternatively, an element of Rn, also called a n-tuple or a vector, is a collection of n
numbers (a1, a2, . . . , an) with aj ∈ R for any j ∈ {1, 2, . . . , n}. The number n is called
the dimension of Rn.

In the sequel, we shall often write A ∈ Rn for the vector A = (a1, a2, . . . , an). With
this notation, the values a1, a2, . . . , an are called the components or the coordinates of
A. For example, a1 is the first component of A, or the first coordinate of A. Be aware
that (1, 3) and (3, 1) are two different elements of R2. Note that one often writes (x, y)
for elements of R2 and (x, y, z) for elements of R3, see Figure 1.1. However this notation
is not really convenient in higher dimensions.

The set Rn can be endowed with two operations, the addition and the multiplication
by a scalar.

Definition 1.1.2. For any A,B ∈ Rn with A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn)
and for any λ ∈ R one defines the addition of A and B by

A+B := (a1 + b1, a2 + b2, . . . , an + bn) ∈ Rn

and the multiplication of A by the scalar λ by

λA := (λa1, λa2, . . . , λan) ∈ Rn.

1The vertical line | has to be read “such that”.
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8 CHAPTER 1. GEOMETRIC SETTING

x

y

(x,y)

y

z

x

(x,y,z)

Figure 1.1: Elements of R2 and R3

Examples 1.1.3. (i) (1, 3) + (2, 4) = (3, 7) ∈ R2,

(ii) (1, 2, 3, 4, 5) + (5, 4, 3, 2, 1) = (6, 6, 6, 6, 6) ∈ R5,

(iii) 3(1, 2) = (3, 6) ∈ R2,

(iv) π(0, 0, 1) = (0, 0, π) ∈ R3.

One usually sets

0 = (0, 0, . . . , 0) ∈ Rn

and this element satisfies A + 0 = 0 + A = A for any A ∈ Rn. If A = (a1, a2, . . . , an)
one also writes −A for the element −1A = (−a1,−a2, . . . ,−an). Then, by an abuse of
notation, one writes A−B for A+(−B) if A,B ∈ Rn, and obviously one has A−A = 0.
Note that A+B is defined if and only if A and B belong to Rn, but has no meaning if
A ∈ Rn and B ∈ Rm with n ̸= m.

Properties 1.1.4. If A,B,C ∈ Rn and λ, µ ∈ R then one has

(i) A+B = B + A, (commutativity)

(ii) (A+B) + C = A+ (B + C), (associativity)

(iii) λ(A+B) = λA+ λB, (distributivity)

(iv) (λ+ µ)A = λA+ µA,

(v) (λµ)A = λ(µA).

These properties will be proved in Exercise 1.3.
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1.2 Located vectors in Rn

A geometric picture can often aid our intuition (but can also be misleading). For ex-
ample, one often identifies R with a line, R2 with a plane and R3 with the usual 3
dimensional space. In this setting, an element A ∈ Rn is often called a point in Rn.
However, one can also think about the elements of Rn as arrows. In this setting, the
element (3, 5) ∈ R2 can be thought as an arrow starting at the point (0, 0) of the usual
plane with two axes and ending at the point (3, 5) of this plane, see Figure 1.2. With

x

y

A

Figure 1.2: A point seen as an arrow

this interpretation in mind, the addition of two elements of Rn corresponds the addi-
tion of two arrows, and the multiplication by a scalar corresponds to the rescaling of an
arrow, see Figure 1.3. Note that in the sequel both interpretations (points and arrows)
will appear, but this should not lead to any confusion.

x

y

A

B

A+B

x

y

A

-A/2

Figure 1.3: Addition of arrows and multiplication by λ = −1/2

In relation with this geometric interpretation, it is sometimes convenient to have
the following notion at hand.

Definition 1.2.1. For any A,B ∈ Rn we set
−→
AB for the arrow starting at A and ending

at B, and call it the located vector
−→
AB.
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x

y

B

A

Figure 1.4: The located vector
−→
AB

With this definition and for any A ∈ Rn the located vector
−→
0A corresponds to the

arrow mentioned in the previous geometric interpretation. For that reason, the located

vector
−→
0A is simply called a vector and is often identified with the element A of Rn.

Let us now introduce various relations between located vectors:

Definition 1.2.2. For A,B,C,D ∈ Rn, the located vectors
−→
AB and

−−→
CD are equivalent

if B − A = D − C. These located vectors are parallel if there exists λ ∈ R∗ ≡ R \ {0}
such that B − A = λ(D − C). In particular, they have the same direction if λ > 0 or
have opposite direction if λ < 0.

In Figure 1.5 equivalent located vectors and parallel located vectors are represented.

Note that the located vector
−→
AB is always equivalent to the located vector

−−−−−−→
0(B − A)

x

y

B

A

D

C
x

y

B

A

D

C

Figure 1.5: Equivalent and parallel located vectors

which is located at the origin 0, see Figure 1.6. This fact follows from the equality

(B − A)− 0 = (B − A) = B − A.
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x

y

B

A B-A

Figure 1.6: Located vector
−→
AB equivalent to the located vector

−−−−−−→
0(B − A)

Question: What could be the meaning for two located vectors to be perpendicular?
Even if one has an intuition in R2 or R3, one needs a precise definition for located
vectors in Rn.

1.3 Scalar product in Rn

Definition 1.3.1. For any A,B ∈ Rn with A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn)
one sets

A ·B := a1b1 + a2b2 + · · ·+ anbn =
n∑

j=1

ajbj

and calls this number the scalar product between A and B.

For example, if A = (1, 2) and B = (3, 4), then A ·B = 1·3+2·4 = 3+8 = 11, but if
A = (1, 3) and B = (6,−2), then A ·B = 6−6 = 0. Be aware that the previous notation
is slightly misleading since the dot · between A and B corresponds to the scalar product
while the dot between numbers just corresponds to the usual multiplication of numbers.

Properties 1.3.2. For any A,B,C ∈ Rn and λ ∈ R one has

(i) A ·B = B · A,

(ii) A · (B + C) = A ·B + A · C,

(iii) (λA) ·B = A · (λB) = λ(A ·B),

(iv) A · A ≥ 0, and A · A = 0 if and only if A = 0.

These properties will be proved in Exercise 1.6.
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Definition 1.3.3. Two vectors A,B ∈ Rn are perpendicular or orthogonal if A·B = 0,

in which case one writes A ⊥ B. If A,B,C,D ∈ Rn, the located vectors
−→
AB and

−−→
CD

are perpendicular or orthogonal if they are equivalent to two perpendicular vectors, in

which case one writes
−→
AB ⊥

−−→
CD.

x

y

A

x

y

B

A

D

C

B

Figure 1.7: Perpendicular vectors and perpendicular located vectors

Remark first that if A,B ∈ Rn are perpendicular, then A is also perpendicular to
λB for any λ ∈ R. Indeed, from the above properties, it follows that if A · B = 0
then A · (λB) = λ(A · B) = 0. Now, observe also that in the setting of the previous

definition, and since
−→
AB is equivalent to the vector

−−−−−−→
0(B − A) and since

−−→
CD is equivalent

to the vector
−−−−−−→
0(D − C), one has

−→
AB ⊥

−−→
CD if and only

−−−−−−→
0(B − A) is perpendicular to

−−−−−−→
0(D − C), i.e. if and only if

(B − A) · (D − C) = 0. (1.3.1)

Example 1.3.4. In Rn let us set E1 = (1, 0, . . . , 0), E2 = (0, 1, 0, . . . , 0), . . . , En =
(0, . . . , 0, 1) the n different vectors obtained by assigning a 1 at the coordinate j of Ej

and 0 for all its other coordinates. Then, one easily checks that

Ej · Ek = 0 whenever j ̸= k and Ej · Ej = 1 for any j ∈ {1, 2, . . . , n}.

These n vectors are said to be mutually orthogonal.

1.4 Euclidean norm in Rn

Recall that for any A ∈ Rn one has A2 := A · A ≥ 0.

Definition 1.4.1. The Euclidean norm or simply norm of a vector A ∈ Rn is defined
by ∥A∥ :=

√
A2. The positive number ∥A∥ is also referred to as the magnitude of A. A

vector of norm 1 is called a unit vector.
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Example 1.4.2. If A = (−1, 2, 3) ∈ R3, then A ·A = (−1)2+22+32 = 14 and therefore
∥A∥ =

√
14.

Remark 1.4.3. If n = 2 and in the geometric interpretation mentioned in Section 1.2,
one observes that the norm ∥A∥ of an element A ∈ R2 is compatible with Pythagoras
theorem.

Properties 1.4.4. For any A ∈ Rn and λ ∈ R one has

(i) ∥A∥ = 0 if and only if A = 0,

(ii) ∥λA∥ = |λ|∥A∥,

(iii) ∥ − A∥ = ∥A∥.

Note that the third point is a special case of the second point. The proof of these
properties will be provided in Exercise 1.8.

Definition 1.4.5. For any A,B ∈ Rn, the distance between A and B, denoted by
d(A,B), is defined by d(A,B) := ∥B − A∥.

Properties 1.4.6. For any A,B,C ∈ Rn one has

(i) d(A,B) = d(B,A),

(ii) d(A,B) = 0 if and only if A = B,

(iii) d(A− C,B − C) = d(A,B), and in particular d(A,B) = d(0, B − A).

The proofs of these properties are left as a free exercise. Now, keeping in mind the
geometric interpretation provided in Section 1.2, it is natural to set∥∥−→AB∥∥ := d(A,B)

and to call this number the length of the located vector
−→
AB. Indeed, it follows from this

definition and from Property 1.4.6.(iii) that∥∥−→AB∥∥ = d(A,B) = d(0, B − A) =
∥∥−−−−−−→0(B − A)

∥∥ = ∥B − A∥.

Thus, the length of the located vector
−→
AB corresponds to the norm of the vector (B −

A) ∈ Rn. One also observes that any two located vectors which are equivalent have the
same length.
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Question: If r > 0 and A ∈ Rn, what is{
B ∈ Rn | d(A,B) < r

}
?

Can one draw a picture of this set for n = 1, n = 2 or n = 3?

Definition 1.4.7. For r > 0 and A ∈ Rn, one defines

B(A, r) :=
{
B ∈ Rn | d(A,B) < r

}
and call B(A, r) the (open) ball centered at A and of radius r.

For example, if n = 2 then B(0, 1) corresponds to the (open) unit disc in the plane,
i.e. to the set of points on R2 which are at a distance strictly less than 1 from the
origin (0, 0). If n = 3 then B(0, 1) corresponds to the (open) unit ball in the usual 3
dimensional space.

x

y

(2,4)

1

1

Figure 1.8: The open ball B
(
(2, 4), 1

)
in R2

Let us now get a better intuition for the notion of orthogonal vectors. First of all,
consider the following property:

Lemma 1.4.8. For any A,B ∈ Rn one has

∥B + A∥ = ∥B − A∥ ⇔ A ·B = 0.

Proof. One has

∥B + A∥ = ∥B − A∥ ⇔ ∥B + A∥2 = ∥B − A∥2

⇔ (B + A) · (B + A) = (B − A) · (B − A)

⇔ B2 + 2A ·B + A2 = B2 − 2A ·B + A2

⇔ 4A ·B = 0,

which justifies the statement.
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x

y

A

B

A+B

A-B

x

y

A

B

A+B

A-B

Figure 1.9: The vectors A+B and A−B

By considering the geometric setting introduced in Section 1.2, one observes that
the condition ∥B + A∥ = ∥B − A∥ corresponds to our intuition for the two vectors A
and B being perpendicular, see Figure 1.9. More generally, one can prove the general
Pythagoras theorem:

Theorem 1.4.9. Two vectors A,B ∈ Rn are mutually orthogonal if and only if the
equality ∥A+B∥2 = ∥A∥2 + ∥B∥2 holds.

The proof of this Theorem is provided in Exercise 1.9.

Question: Let A,B ∈ Rn with B ̸= 0. Let P denote the point on the line passing

through 0 and B, and such that the located vector
−→
PA is perpendicular to the located

vector
−→
0B, see Figure 1.10. Clearly, P = cB for some c ∈ R, but how can one compute

c ?

x

y

A

B
P

Figure 1.10:
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For the answer, it is sufficient to consider the following equivalences:

−→
PA ⊥

−→
0B ⇔

−−−−−−→
0(A− P ) ⊥

−→
0B

⇔ (A− P ) ·B = 0

⇔ (A− cB) ·B = 0

⇔ A ·B = cB2

⇔ c =
A ·B
∥B∥2

.

Definition 1.4.10. Let A,B ∈ Rn with B ̸= 0. Then the component of A along B is
by definition the number c := A·B

∥B∥2 . In this case cB is called the orthogonal projection
of A on B.

Let us recall from plane geometry that if one considers the right (or right-angled)
triangle with vertices the points 0, A and cB with A ̸= 0, B ̸= 0 and with c > 0, then
the angle θ at the vertex 0 satisfies

cos(θ) =
∥cB∥
∥A∥

=
c∥B∥
∥A∥

=
(A ·B)∥B∥
∥B∥2 ∥A∥

=
A ·B

∥A∥∥B∥
.

Note that the same argument also holds for c < 0, and thus one has for any such triangle

cos(θ) =
A ·B

∥A∥∥B∥
.

From the above considerations and since | cos(θ)| ≤ 1, one infers the following result:

Lemma 1.4.11. For any A,B ∈ Rn one has

|A ·B| ≤ ∥A∥∥B∥. (1.4.1)

Let us also deduce a very useful inequality called triangle inequality :

Lemma 1.4.12. For any A,B ∈ Rn one has

∥A+B∥ ≤ ∥A∥+ ∥B∥.

Proof. By taking into account the inequality (1.4.1) one obtains that

∥A+B∥2 = A2 +B2 + 2A ·B
≤ A2 +B2 + 2|A ·B|
≤ A2 +B2 + 2∥A∥∥B∥

=
(
∥A∥+ ∥B∥

)2
.

The expected result is then obtained by taking the square root on both sides of the
inequality.
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1.5 Parametric representation of a line

Let us consider P,N ∈ Rn with N ̸= 0, and let t ∈ R.

Question: What does {P + tN | t ∈ R} represent? Can one draw a picture of this
set?

Definition 1.5.1. For any P,N ∈ Rn with N ̸= 0 one defines

LP,N :=
{
P + tN | t ∈ R

}
and call this set the line passing through P and having the direction N . More precisely
LP,N is called the parametric representation of this line, see Figure 1.11.

Remark 1.5.2. (i) If N is replaced by λN for any λ ∈ R∗, then LP,λN describes
the same line. In addition, any element of LP,N can be used instead of P and the
resulting line will be the same.

(ii) If P,Q ∈ Rn, then the line passing through the two points P and Q is given by
LP,Q−P . Indeed one checks that LP,Q−P = {P + t(Q − P ) | t ∈ R}, and that this
line passes through P at t = 0 and passes through Q at t = 1.

(iii) For P,Q ∈ Rn, the set {P + t(Q − P ) | t ∈ [0, 1]} describes the line segment
starting at P and ending at Q.

Remark 1.5.3. If n = 2 a line is often describes by {(x, y) ∈ R2 | ax + by = c} for
some a, b, c ∈ R. Thus, in dimension 2 a line can be described by this formulation or
with LP,N for some P,N ∈ R2. Clearly, some relations between a, b, c and P,N can be
established. However, note that the above simple description does not exist for n > 2
while the definition LP,N holds in arbitrary dimension.

1.6 Planes and hyperplanes

Let us first recall that two located vectors are orthogonal if they are equivalent to two
perpendicular vectors.

Question: Let P,N ∈ R3 with N ̸= 0. How can one describe the plane passing
through P and perpendicular to the direction defined by the vector N ?

For the answer, consider a pointX belonging to this plane. By definition, the located

vector
−−→
PX is orthogonal to the located vector

−→
0N , or equivalently the located vector−−−−−−→

0(X − P ) is orthogonal to the located vector
−→
0N . Now this condition reads (X−P )⊥N ,

which is equivalent to (X − P ) · N = 0, or by a simple computation to the condition
X · N = P · N . In summary, the plane passing through P and perpendicular to the
direction defined by the vector N is given by{

X ∈ R3 | X ·N = P ·N
}
.
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x

y

N

P

Figure 1.11: Parametric representation of a line

In this case, one also says that the plan is normal to the vector N .

Example 1.6.1. If P = (2, 1,−1), N = (−1, 1, 3) and X = (x, y, z), then

X ·N = P ·N ⇔ (x, y, z) · (−1, 1, 3) = −2 + 1− 3 ⇔ −x+ y + 3z = −4.

Therefore, the plane passing through (2, 1,−1) and normal to the vector (−1, 1, 3) is
given by {

(x, y, z) ∈ R3 | −x+ y + 3z = −4
}
.

Let us now work in arbitrary dimension.

Definition 1.6.2. For any P,N ∈ Rn with N ̸= 0, the set

HP,N :=
{
X ∈ Rn | X ·N = P ·N

}
is called the hyperplane passing through P and normal to N .

Note that if P = (p1, p2, . . . , pn) and if N = (n1, n2, . . . , nn), then

HP,N =
{
(x1, x2, . . . , xn) ∈ Rn | n1x1 + n2x2 + · · ·+ nnxn =

n∑
j=1

pjnj

}
.

Remark 1.6.3. In the special case P ·N = 0, one observes that the element 0 belongs
to HP,N . Later on, we shall see that in this case HP,N is a vector space, see Chapter 3

Properties 1.6.4. For any P,N ∈ Rn with N ̸= 0, and for any λ ∈ R∗ one has

(i) HP,N = HP,λN ,

(ii) If P ′ ∈ HP,N , then HP ′,N = HP,N .
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The proof of these properties will be provided in Exercise 1.16. It is now natural to
define various notions related to hyperplanes. The following definitions correspond to
the intuition we can have in R2 or in R3.

Definition 1.6.5. Let P, P ′, N ∈ Rn with N ̸= 0 and with P ′ ̸∈ HP,N . Then the two
hyperplanes HP,N and HP ′,N are parallel.

Lemma 1.6.6. Two parallel hyperplanes have an empty intersection.

Proof. Let HP,N and HP ′,N be two parallel hyperplanes, and let us assume that there
exists X ∈ Rn which belongs to both hyperplanes. This assumption means that X ∈
HP,N andX ∈ HP ′,N , or equivalentlyX ·N = P ·N andX ·N = P ′·N . As a consequence,
it follows from these equalities that P ·N = P ′ ·N .

On the other hand, since the two planes are parallel, the assumption on P ′ is
P ′ ̸∈ HP,N , which means that P ′ · N ̸= P · N . Thus one has obtained a contradiction
since P ·N = P ′ ·N together with P ′ ·N ̸= P ·N is impossible. As a conclusion, there
does not exist any X in the intersection of the two hyperplanes, or equivalently this
intersection is empty.

Example 1.6.7. For n = 2, P = (0, 0), P ′ = (0, 1) and N = (1, 1), one checks that
P ′ · N = 1 ̸= 0 = P · N , and thus P ′ ̸∈ HP,N . In addition, if X = (x, y) one easily
observes that X ∈ HP,N if and only y = −x while X ∈ HP ′,N if and only if y = −x+1.

Definition 1.6.8. Let P, P ′, N,N ′ ∈ Rn with N ̸= 0 and N ′ ̸= 0. One defines the
angle θ between the hyperplanes HP,N and HP ′,N ′ as the angle between their normal
vectors, or more precisely

cos(θ) :=
N ·N ′

∥N∥∥N ′∥
.

From this definition, one observes that the angle between two parallel hyperplanes
is equal to 0.

Observation 1.6.9. Let P,N ∈ Rn with N ̸= 0.

(i) Since HP,N = HP,λN for any λ ∈ R∗, one has HP,N = HP,N̂ with N̂ := N
∥N∥ . Note

that N̂ is a unit vector (see Definition 1.4.1).

(ii) The hyperplane HP,N divides Rn into two distinct regions. Indeed, for any X ∈ Rn

one has either X ·N > P ·N , or X ·N = P ·N or X ·N < P ·N . In the second
case, X belongs to HP,N by definition of this hyperplane. Thus, one is left with
the other two regions {X ∈ Rn | X · N > P · N} or {X ∈ Rn | X · N < P · N}
and these two regions have an empty intersection.
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Question: What is the distance between a point X and a hyperplane HP,N?
The natural definition for such a notion can be understood as follows: Consider any

point Y ∈ HP,N and recall that the distance d(X, Y ) between X and Y has been defined
in Definition 1.4.5. Then, the distance d(X,HP,N) between X and the hyperplane HP,N

should be the minimal distance between X and any point Y ∈ HP,N , namely

d(X,HP,N) := inf
Y ∈HP,N

d(X, Y ),

where the notation inf has to be read ”infimum”. In the next Lemma, we give an
explicit formula for this distance.

Lemma 1.6.10. For any P,N,X ∈ Rn with N ̸= 0 one has

d(X,HP,N) =
|(X − P ) ·N |

∥N∥
.

Proof. First of all, observe that if X ̸∈ HP,N , there exists λ ∈ R∗ such that X ·N −λ =
P ·N . In fact, one simply has λ = X ·N − P ·N = (X − P ) ·N . In addition, observe
that

X ·N − λ = P ·N ⇔ X ·N − λ
N ·N
∥N∥2

= P ·N ⇔
(
X − λ

∥N∥
N

∥N∥

)
·N = P ·N

which means that X − λ
∥N∥

N
∥N∥ belongs to HP,N if λ = (X − P ) ·N .

From this observation, one infers that X ′ := X − (X−P )·N
∥N∥

N
∥N∥ ∈ HP,N and that

d(X,X ′) = ∥X ′ −X∥ =
∥∥∥− (X − P ) ·N

∥N∥
N

∥N∥

∥∥∥ =
|(X − P ) ·N |

∥N∥
.

As a consequence, one has d(X,HP,N) ≤ |(X−P )·N |
∥N∥ .

In order to show that this distance is the shortest one, consider any Y ∈ HP,N

and use the general Pythagoras theorem for the right triangle of vertices X,Y and X ′.

Indeed, since
−−→
X ′Y ⊥

−−→
X ′X (because Y ∈ HX′,N and X −X ′ = (X−P )·N

∥N∥2 N) one gets:

d(X, Y )2 = ∥Y −X∥2 = ∥Y −X ′∥2 + ∥X ′ −X∥2 ≥ ∥X ′ −X∥2 = d(X,X ′)2

from which one infers that d(X,Y ) ≥ d(X,X ′).

Question: What are the intersections of hyperplanes? More precisely, can we find
X ∈ Rn such that

X ∈ HP1,N1 ∩HP2,N2 ∩ · · · ∩HPm,Nm ? (1.6.1)

Obviously, if some hyperplanes are parallel, there does not exist any X satisfying this
condition. Even if the hyperplanes are not parallel, is it possible that the intersection
is empty? Before answering these questions, recall once more that

X ∈ HP,N ⇔ n1x1 + n2x2 + · · ·+ nnxn =
n∑

j=1

pjnj.

and therefore equation (1.6.1) corresponds to a system of linear equations, as we shall
see in the sequel.
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1.7 Exercises

Exercise 1.1. Compute A + B, A − B, 3A and −2B in each of the following cases,
and illustrate your result with the geometric interpretation.

1. A = (2,−1), B = (−1, 1)

2. A = (2,−1, 5), B = (−1, 1, 1)

3. A = (π, 3,−1), B = (2π,−3, 7)

Exercise 1.2. Let A = (1, 2) and B = (3, 1). Compute A + 2B, A − 3B and A + 1
2
B

and provide the geometric interpretation.

Exercise 1.3. Write the proofs for Properties 1.1.4.

Exercise 1.4. In the following cases, determine which located vectors
−→
PQ and

−→
AB are

equivalent.

1. P = (1,−1), Q = (4, 3), A = (−1, 5), B = (5, 2)

2. P = (1, 4), Q = (−3, 5), A = (5, 7), B = (1, 8)

3. P = (1,−1, 5), Q = (−2, 3,−4), A = (3, 1, 1), B = (0, 5, 10)

4. P = (2, 3,−4), Q = (−1, 3, 5), A = (−2, 3,−1), B = (−5, 3, 8)

Similarly, determine if the located vectors
−→
PQ and

−→
AB are parallel.

1. P = (1,−1), Q = (4, 3), A = (−1, 5), B = (7, 1)

2. P = (1, 4), Q = (−3, 5), A = (5, 7), B = (9, 6)

3. P = (1,−1, 5), Q = (−2, 3,−4), A = (3, 1, 1), B = (−3, 9,−17)

4. P = (2, 3,−4), Q = (−1, 3, 5), A = (−2, 3,−1), B = (−11, 3,−28)

Exercise 1.5. Compute A · A and A ·B for the following vectors.

1. A = (2,−1), B = (−1, 1)

2. A = (2,−1, 5), B = (−1, 1, 1)

3. A = (π, 3,−1), B = (2π,−3, 7)

4. A = (1,−1, 1), B = (2, 3, 1)

Which pairs of vectors are perpendicular?

Exercise 1.6. Write the proofs for Properties 1.3.2.
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Exercise 1.7. By using the properties of the previous exercise, show the following
equalities (we use the notation A2 for A · A).

1. (A+B)2 = A2 + 2A ·B +B2

2. (A−B)2 = A2 − 2A ·B +B2

Exercise 1.8. Write the proofs for Properties 1.4.4.

Exercise 1.9. Write a proof for Theorem 1.4.9.

Exercise 1.10. Let us consider the pair (A,B) of elements of Rn.

1. A = (2,−1), B = (−1, 1)

2. A = (−1, 3), B = (0, 4)

3. A = (2,−1, 5), B = (−1, 1, 1)

For each pair, compute the norm of A, the norm of B, and the orthogonal projection of
A along B.

Exercise 1.11. Find the cosine between the following vectors A and B :

1. A = (1, 2), B = (5, 3)

2. A = (1,−2, 3), B = (−3, 1, 5)

Exercise 1.12. Determine the cosine of the angles of the triangle whose vertices are
A = (2,−1, 1), B = (1,−3,−5) and C = (3,−4,−4).

Exercise 1.13. Let A1, . . . , Ar be non-zero vectors of Rn which are all mutually per-
pendicular, or in other words Aj · Ak = 0 if j ̸= k. Let c1, . . . , cr be real numbers such
that

c1A1 + c2A2 + · · ·+ crAr = 0.

Show that cj = 0 for all j ∈ {1, 2, . . . , r}.

Exercise 1.14. Find a parametric representation of the line passing through A and B
for

1. A = (1, 3,−1), B = (−4, 1, 2)

2. A = (−1, 5, 3), B = (−2, 4, 7)

Exercise 1.15. If P and Q are arbitrary points in Rn, determine the general formula
for the midpoint of the line segment between P and Q.

Exercise 1.16. Write the proofs for Properties 1.6.4.
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Exercise 1.17. Determine the cosine of the angle between the two planes defined by

{(x, y, z) ∈ R3 | 2x− y + z = 0} and {(x, y, z) ∈ R3 | x+ 2y − z = 1}.

Same question for the planes defined by

{(x, y, z) ∈ R3 | x = 1} and {(x, y, z) ∈ R3 | 3x+ 2y − 7z = 1}.

Exercise 1.18. Find the equation of the plane in R3 passing through the three points
P1 = (1, 2,−1), P2 = (−1, 1, 4) and P3 = (1, 3,−2).

Exercise 1.19. Let P = (−1, 1, 7), Q = (1, 3, 5) and N = (−1, 1,−1). Determine the
distance between the point Q and the plane HP,N .

Exercise 1.20. Let P = (1, 1, 1), Q = (1,−1, 2) and N = (1, 2, 3). Find the intersection
of the line passing through Q and having the direction N with the plane HP,N .

Exercise 1.21. Determine the equation of the hyperplane in R4 passing through the
point (1, 1, 1, 1) and which is parallel to the hyperplane defined by

{(x1, x2, x3, x4) ∈ R4 | 1x1 + 2x2 + 3x3 + 4x4 = 5}.

Similarly, for any n > 1 determine the equation of the hyperplane in Rn passing through
the point (1, 1, . . . , 1) and which is parallel to the hyperplane defined by

{
(x1, x2, . . . , xn) ∈ Rn |

n∑
j=1

j xj = n+ 1
}
.

Does something special happen for n = 2?
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Chapter 2

Matrices and linear equations

In this chapter we introduce the notion of matrices and provide an algorithm for solving
linear equations.

2.1 Matrices

In this section we introduce the matrices and some of their properties.

Definition 2.1.1. For any m,n ∈ N we set

A ≡ (aij) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


with aij ∈ R and call it a m × n matrix. m corresponds to the number of rows while
n corresponds to the number of columns. The number aij is called the ij-entry or the
ij-component of the matrix A. The set of all m× n matrices is denoted by Mmn(R)1.

Remark 2.1.2. (i) M11(R) is identified with R,

(ii) (a1 a2 . . . an) ≡ (a11 a12 . . . a1n) ∈ M1n(R) while

( a1
a2
...
am

)
≡

( a11
a21
...

am1

)
∈ Mm1(R).

Elements of M1n(R) are called row vectors while elements of Mm1(R) are called
column vectors.

(iii) If m = n one speaks about square matrices and sets Mn(R) for Mnn(R).

(iv) The matrix

(
0 0 ... 0
0 0 ... 0
...
...
...

...
0 0 ... 0

)
is called the 0-matrix, simply denoted by O.

1The symbol R is written because each entry aij belongs to R. Note that one can consider more
general matrices, as we shall see later on with complex numbers.

25
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In the sequel, we shall tacitly use the following notation:

A ≡ (aij) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , B ≡ (bij) =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

 ,

and

C ≡ (cij) =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cm1 cm2 . . . cmn

 .

The set Mmn(R) can be endowed with two operations, namely:

Definition 2.1.3. For any A,B ∈ Mmn(R) and for any λ ∈ R we define the addition
of A and B by

A+ B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn


and the multiplication of A by the scalar λ:

λA =


λa11 λa12 . . . λa1n
λa21 λa22 . . . λa2n
...

...
. . .

...
λam1 λam2 . . . λamn

 .

Remark 2.1.4. (i) Only matrices of the same size can be added, namely A + B is
well defined if and only if A ∈ Mmn(R) and B ∈ Mmn(R).

(ii) The above rules can be rewritten with the more convenient notations

(aij) + (bij) = (aij + bij) and λ(aij) = (λaij) .

It is now easily observed that A + O = O + A = A. In addition, one has −A =
−1A = (−aij) and A−A = A + (−A) = O. Some other properties are stated below,
and their proofs are left as a free exercise.

Properties 2.1.5. If A,B, C ∈ Mmn(R) and λ, µ ∈ R then one has

(i) A+ B = B +A, (commutativity)

(ii) (A+ B) + C = A+ (B + C), (associativity)
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(iii) λ(A+ B) = λA+ λB, (distributivity)

(iv) (λ+ µ)A = λA+ µA,

(v) (λµ)A = λ(µA).

Note that the above properties are very similar to the one already mentioned for
vectors in Properties 1.1.4. These similarities will be emphasized in the following chap-
ter.

Let us add one more operation on matrices, namely the transpose of a matrix.

Definition 2.1.6. For any A = (aij) ∈ Mmn(R), one defines tA ≡ (taij) ∈ Mnm(R) the
transpose of A by the relation

taij := aji .

In other words, taking the transpose of a matrix consists in changing rows into columns
and vice versa.

We also define a product for matrices:

Definition 2.1.7. For A ∈ Mmn(R) and for B ∈ Mnp(R) one defines the product of A
and B by C := AB ∈ Mmp(R) with

cik =
n∑

j=1

aijbjk .

Examples 2.1.8. 1.1 2
3 4
5 6


︸ ︷︷ ︸
∈M32(R)

(
7
8

)
︸︷︷︸

∈M21(R)

=

1 · 7 + 2 · 8
3 · 7 + 4 · 8
5 · 7 + 6 · 8

 =

23
53
83


︸ ︷︷ ︸
∈M31(R)

2.

(
a1 a2 . . . an

)︸ ︷︷ ︸
∈M1n(R)


b1
b2
...
bn


︸ ︷︷ ︸
∈Mn1(R)

= a1b1 + a2b2 + · · ·+ anbn ∈ M11(R)

3. 
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


︸ ︷︷ ︸

∈Mnn(R)


x1

x2
...
xn


︸ ︷︷ ︸
∈Mn1(R)

=


y1
y2
...
yn


︸ ︷︷ ︸
∈Mn1(R)

with yi =
∑n

j=1 aijxj.
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Remark 2.1.9. (i) If A ∈ Mmn(R) and B ∈ Mpq(R), then the product AB can be
defined if and only if n = p, in which case AB ∈ Mmq(R).

(ii) If A,B ∈ Mn(R), then AB and BA can be defined and belong to Mn(R). However,
in general it is not true that AB = BA, most of the time AB ̸= BA.

Let us now state some important properties of this newly defined product.

Properties 2.1.10. (i) For any A ∈ Mmn(R), B, C ∈ Mnp(R) and λ ∈ R one has

(a) A(B + C) = AB +AC,
(b) (λA)B = λ(AB) = A(λB).

(ii) If A ∈ Mmn(R), B ∈ Mnp(R) and C ∈ Mpq(R) one has

(AB)C = A(BC).

(iii) If A ∈ Mmn(R) and B ∈ Mnp(R) one also has

t(AB) = tB tA.

These properties will be proved in Exercise 2.2. Recall now that for the addition,
the matrix O has the property A + O = A = O + A. We shall now introduce the
square matrix 1n which share a similar property but with respect to the multiplication.
Indeed, let us set

1n :=


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


or equivalently 1n ∈ Mn(R) is the matrix having 1 on its diagonal, and 0 everywhere
else. Then one can show that for any A ∈ Mmn(R) one has A1n = A and 1m A = A,
see Exercise 2.3.

For the set of square matrices, we can define the notion of an inverse and state
several of their properties.

Definition 2.1.11. Let A ∈ Mn(R). The matrix B ∈ Mn(R) is an inverse for A if
AB = 1n and BA = 1n.

Lemma 2.1.12. The inverse of a matrix, if it exists, is unique

Proof. Assume that B1,B2 ∈ Mn(R) are inverses for A, i.e. AB1 = 1n = B1A and
AB2 = 1n = B2A, then one has

B1 = B11n = B1(AB2) = (B1A)B2 = 1nB2 = B2

which shows that B1 and B2 are equal.
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Since the inverse of a matrix A, if it exists, is unique, we can speak about the inverse
of A and denote it by A−1. In such a situation, A is called an invertible matrix.

Remark 2.1.13. We shall see later on that the property AB = 1n automatically implies
the property BA = 1n. Thus, it follows either from AB = 1n or from BA = 1n that B
is the inverse of A, i.e. B = A−1.

Properties 2.1.14. Let A,B ∈ Mn(R) both having an inverse, and let λ ∈ R∗. Then

(i)
(
A−1

)−1
= A,

(ii) t
(
A−1

)
=
(
tA
)−1

,

(iii) (λA)−1 = λ−1A−1,

(iv) (AB)−1 = B−1A−1.

Proof. (i) Since
(
A−1

)
A = 1n = A

(
A−1

)
, it follows that A is the inverse of A−1,

i.e.
(
A−1

)−1
= A.

(ii) Since t
(
A−1

)
tA = t

(
AA−1

)
= t1n = 1n and since tAt

(
A−1

)
= t
(
A−1A

)
= t1n =

1n, it follows that
t
(
A−1

)
is the inverse of tA, or in other words

(
tA
)−1

= t
(
A−1

)
.

(iii) One has (λA)(λ−1)A−1 = λλ−1AA−1 = 1n = (λ−1A−1)(λA), which means
that λ−1A−1 is the inverse for λA.

(iv) One observes that
(
B−1A−1

)
(AB) = 1n = (AB)

(
B−1A−1

)
, which shows that

(AB)−1 is given by B−1A−1.

Note that thanks to Remark 2.1.13 one could have simplified the above proof by
checking only one condition for each inverse. Let us still introduce some special classes
of matrices and the notion of similarity, which are going to play an important role in
the sequel.

Definition 2.1.15. (i) If A ≡ (aij) ∈ Mn(R) with aij = 0 whenever i ̸= j, then A
is called a diagonal matrix,

(ii) If A ≡ (aij) ∈ Mn(R) with aij = 0 whenever i > j, then A is called an upper
triangular matrix,

(iii) If A ∈ Mn(R) and if there exists m ∈ N such that Am := AA . . .A︸ ︷︷ ︸
m times

= O, then A

is called a nilpotent matrix.

Definition 2.1.16. For A,B ∈ Mn(R) one says that A and B are similar if there exists
an invertible matrix U ∈ Mn(R) such that

B = UAU−1 .

Lemma 2.1.17. Let A,B ∈ Mn(R) be two similar matrices. Then
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(i) A is invertible if and only if B is invertible,

(ii) tA and tB are similar,

(iii) A is nilpotent if and only if B is nilpotent.

Proof. Let us assume that B = UAU−1 for some invertible matrix U ∈ Mn(R).
(i) Assume that A is invertible, and observe that

B(UA−1U−1) = UAU−1UA−1U−1 = 1n

which means that UA−1U−1 is the inverse of B. As a consequence, B is invertible.
Similarly, if one assumes that B is invertible, then U−1B−1U is an inverse for A, as it
can easily be checked. One then deduces that A is invertible.

(ii) One observes that

tB = t(UAU−1) = t
(
U−1

)
tAtU = (tU)−1 tAt

(
(tU)−1

)−1
= V tAV−1

with V := (tU)−1 which is invertible. Thus tA and tB are similar.
(iii) If Am = O, then

Bm =
(
UAU−1

)m
= (UAU−1)(UAU−1) . . . (UAU−1)︸ ︷︷ ︸

m times

= UAmU−1 = O.

Similarly, if Bm = O, then Am = U−1BmU = O, which proves the statement.

2.2 Matrices and elements of Rn

In this section we show how a matrix can be applied to an element of Rn. In fact, such
an action has implicitly been mentioned in Example 2.1.8, but we shall now develop
this point of view.

First of all, we shall now modify the convention used in the previous chapter. In-
deed, for convenience we have written A = (a1, a2, . . . , an) for any element of Rn.

However, from now on we shall write A =

( a1
a2
...
an

)
for elements of Rn. However, the

following alternative notation will also be used: A = t(a1 a2 . . . an), or equivalently
tA = (a1 a2 . . . an). Note that is coherent with the notion of transpose of a matrix, since
column vector are identified with elements of Mn1(R) while row vectors are identified
with elements of M1n(R), see Remark 2.1.2.

The main interest in this notation is that a m×n matrix can now easily be applied
to a column vector, and the resulting object is again a column vector. For example1 2 3

4 5 6
7 8 9


︸ ︷︷ ︸

∈M33(R)

x1

x2

x3


︸ ︷︷ ︸

∈R3

=

1x1 + 2x2 + 3x3

4x1 + 5x2 + 6x3

7x1 + 8x2 + 9x3


︸ ︷︷ ︸

∈R3

. (2.2.1)
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More generally, one has
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


︸ ︷︷ ︸

∈Mmn(R)


x1

x2
...
xn


︸ ︷︷ ︸

∈Rn

=


y1
y2
...
ym


︸ ︷︷ ︸

∈Rm

or in other words by applying a m × n matrix to an element of Rn one obtains an
element of Rm.

Let us also observe that with the above convention for elements of Rn in mind,
the scalar product A · B of A,B ∈ Rn introduced in Definition 1.3.1 can be seen as a
product of matrices. Indeed the following equalities hold:

A ·B =
n∑

j=1

ajbj = (a1 a2 . . . an)


b1
b2
...
bn

 = tAB (2.2.2)

where the left hand side corresponds to the scalar product of two elements of Rn while
the right hand side corresponds to a product of a matrix in M1n(R) with a matrix in
Mn1(R).

We can also see that the product of two matrices can be rewritten with an alternative
notation. Indeed, for any A ∈ Mmn(R) let us set Aj ∈ Mm1(R) for the jth column of
A, and Ai ∈ M1n(R) for the ith row of A. More explicitly one sets

A =
(
A1 A2 . . . An

)
and A =


A1

A2
...

Am

 . (2.2.3)

With this notation, for any A ∈ Mmn(R) and B ∈ Mnp(R), the matrix C := AB is given
by

cik = AiBk (2.2.4)

where the right hand side corresponds to the product of Ai ∈ M1n(R) with Bk ∈
Mn1(R). In other words one can still write

cik = (row i of A)


col.
k
of
B

 .
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2.3 Homogeneous linear equations

In this section, we consider linear systems of equations when the number of unknowns
is strictly bigger than the number of equations.

Example 2.3.1. Let us consider the equation

2x+ y − 4z = 0

and look for a non-trivial solution, i.e. a solution
(

x
y
z

)
∈ R3 with

(
x
y
z

)
̸=
(

0
0
0

)
. By

writing x = −y+4z
2

and by choosing ( y
z ) with ( y

z ) ̸= ( 0
0 ), one gets for example

(
x
y
z

)
=(

3/2
1
1

)
. Note that an infinite number of other solutions exist.

Example 2.3.2. Let us consider the linear system of equations{
2x1 + 3x2 − x3 = 0
x1 + x2 + x3 = 0

and look for a non-trivial solution. By multiplying the second equation by 2 and by
subtracting it to the first equation one obtains{

2x1 + 3x2 − x3 − 2(x1 + x2 + x3) = 0
x1 + x2 + x3 = 0

⇔
{

x2 − 3x3 = 0
x1 + x2 + x3 = 0

⇔
{

x2 = 3x3

x1 + x2 + x3 = 0
.

Thus, a solution is for example
(

x1
x2
x3

)
=
(

−4
3
1

)
, but again this is one solution amongst

many others.

More generally, if one starts with a system of m equations for n unknowns

( x1

...
xn

)
with n > m, one can eliminate one unknown (say x1) and obtains m− 1 equations for
n−1 unknowns. By doing this process again, one can then eliminate one more unknown
(say x2) and obtains m− 2 equations for n− 2 unknowns. Obviously, this can be done
again and again...

Question: Can we always find a non-trivial solution in such a situation ? The answer
is yes, as we shall see now.

Let us consider the following system of m equations for n unknowns:
a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

(2.3.1)
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with aij ∈ R and bi ∈ R. By using the notation introduce before, this system can be
rewritten as

AX = B

with A = (aij) ∈ Mmn(R), X =

( x1

...
xn

)
∈ Rn and B =

( b1
...
bm

)
∈ Rm.

Definition 2.3.3. For any A = (aij) ∈ Mmn(R), X =

( x1

...
xn

)
∈ Rn and B =

( b1
...
bm

)
∈

Rm, the system
AX = 0

is called the homogeneous linear system associated with the linear system AX = B.

One easily observes that the solution X = 0 ∈ Rn is always a solution of the
homogeneous system.

Theorem 2.3.4. Let 
a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0

(2.3.2)

be a homogeneous linear system of m equations with for n unknowns, with n > m. Then
the system has a non-trivial solution (and maybe several).

Remark 2.3.5. As already mentioned, (2.3.2) is equivalent to AX = 0, with A ∈
Mmn(R) and X ∈ Rn. Then, by using the notation introduced in (2.2.3), this system is
still equivalent to A1

...
Am

X =

0
...
0

 (2.3.3)

where Ai ∈ M1n for i ∈ {1, . . .m}. Thus, (2.3.3) can still be rewritten as the m equations
AiX = 0 for i ∈ {1, . . .m}, with the notation analogous to the one already used in
(2.2.4). In other words, (2.3.2) is equivalent to

tAi ·X = 0 for i ∈ {1, . . . ,m},

meaning that X is orthogonal to all vectors tAi ∈ Rn.

Proof of Theorem 2.3.4. The proof consists in an induction procedure.
1) If m = 1, then the system reduces to the equation a11x1 + · · · + a1nxn = 0. If

a11 = · · · = a1n = 0, then any

( x1

...
xn

)
̸=
(

0
...
0

)
is a non-trivial solution. If a11 ̸= 0, then

x1 =
−a12x2 − · · · − a1nxn

a11
, (2.3.4)
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and we can choose any

( x2

...
xn

)
̸=
(

0
...
0

)
and then determine x1 by (2.3.4). The final

solution is non-trivial. Note that the choice a11 ̸= 0 is arbitrary, and any other choice
would lead to a non-trivial solution.

2) Assume that the statement is true for some m−1 equations and n−1 unknowns,
and let us prove that it is still true form equations and n unknowns. Again, if all aij = 0,

then any

( x1

...
xn

)
̸=
(

0
...
0

)
is a non-trivial solution. If a11 ̸= 0, let us consider the system


tA2 ·X − a21

a11
tA1 ·X = 0

...
tAm ·X − am1

a11
tA1 ·X = 0

with the notations recalled in Remark 2.3.5. Since the coefficients multiplying x1 are
all 0, this system is a system of m − 1 equations for n − 1 unknowns. By assumption,

such a system has a non-trivial solution which we denote by

( x2

...
xn

)
. Then, by solving

tA1 ·X = 0, one obtains that x1 is given by (2.3.4) and thus there exists

( x1

...
xn

)
̸=
(

0
...
0

)
which is a solution of the system.

3) Since m,n were arbitrary with the only condition n > m, one has exhibited a
non-trivial solution for the original system.

2.4 Row operations and Gauss elimination

Recall that a system of m equations for n unknowns as written in (2.3.1) is equivalent
to the equation

AX = B (2.4.1)

with A ∈ Mmn(R), B ∈ Rm and for the unknown X ∈ Rn.

Question: Given A and B, can one always find a solution X for the equation (2.4.1) ?
In some special cases, as seen in the previous chapter with B = 0 and n > m, the

answer is yes. We present a here a second special case.

Lemma 2.4.1. Assume that m = n and that A ∈ Mn(R) is invertible. Then the system
(2.4.1) admits a unique solution given by X := A−1B.

Proof. One directly checks that if X = A−1B, then A(A−1)B = B, as expected. On
the other hand, if there would exist X ′ ∈ Rn with X ′ ̸= X and satisfying AX ′ = B,
then by applying A−1 on the left of both sides of this equality one gets

A−1(AX ′) = A−1B ⇔ X ′ = A−1B = X

which is a contradiction. Thus the solution to (2.4.1) is unique in this case.
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Note that finding A−1 might be complicated, and how can we deal with the general
case m ̸= n ? In order to get an efficient way for dealing with linear systems, let us start
by recalling a convenient way for solving linear systems. Let us consider the system

2x+ y + 4z + w = −2
−3x+ 2y − 3z + w = 1
x+ y + z = −1

(2.4.2)

and look for a solution to it. By some simple manipulations one gets
2x+ y + 4z + w = −2
−3x+ 2y − 3z + w = 1
x+ y + z = −1

r1−2r3⇐==⇒


0x− y + 2z + w = 0
−3x+ 2y − 3z + w = 1
x+ y + z = −1

r2+3r3⇐==⇒


−y + 2z + w = 0
0x+ 5y + 0z + w = −2
x+ y + z = −1

r1↔r3⇐==⇒


x+ y + z = −1
5y + w = −2
−y + 2z + w = 0

r2+5r3⇐==⇒


x+ y + z = −1
0y + 10z + 6w = −2
−y + 2z + w = 0

−r3↔r2⇐===⇒


x+ y + z = −1
y − 2z − w = 0
10z + 6w = −2

.

A special solution for this system is obtained for example by fixing z = −2, and then
by deducing successively that w = 3, y = −1 and x = 2. In other words a solution to

this system is given by
( x

y
z
w

)
=

(
2
−1
−2
3

)
.

Let us now rewrite these manipulations in an equivalent way. A priori, it will look
longer, but with some practice, the size of the computations will become much shorter.
For that purpose, consider the augmented matrix 2 1 4 1 −2

−3 2 −3 1 1
1 1 1 0 −1


obtained by collecting in the same matrix the coefficients of the linear system together
with the coefficients on the right hand side of the equality. Then, one can perform the
following elementary operations 2 1 4 1 −2

−3 2 −3 1 1
1 1 1 0 −1

 r1−2r3∼

 0 −1 2 1 0
−3 2 −3 1 1
1 1 1 0 −1


r2+3r3∼

0 −1 2 1 0
0 5 0 1 −2
1 1 1 0 −1

 r1↔r3∼

1 1 1 0 −1
0 5 0 1 −2
0 −1 2 1 0


r2+5r3∼

1 1 1 0 −1
0 0 10 6 −2
0 −1 2 1 0

 −r3↔r2∼

1 1 1 0 −1
0 1 −2 −1 0
0 0 10 6 −2


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from which one deduces the new system of equations
x+ y + z = −1
y − 2z − w = 0
10z + 6w = −2

.

Note that this system is the one we had already obtained at the end of the previous
computation. For completeness, let us write all its solutions, namely the system is
equivalent to 

x = 4w−2
5

y = −w−2
5

z = −3w−1
5

w arbitrary element of R

.

Based on this example, let us formalize the procedure.

Definition 2.4.2. An elementary row operation on a matrix consists in one of the
following operations:

(i) multiplying one row by a non-zero number,

(ii) adding (or subtracting) one row to another row,

(iii) interchanging two rows.

Definition 2.4.3. Two matrices are row equivalent if one of them can be obtained from
the other by performing a succession of row elementary operations. One writes A ∼ B
if A and B are row equivalent.

Proposition 2.4.4. Let A,A′ ∈ Mmn(R) and let B,B′ ∈ Rm. If the augmented matrix
(A, B) and (A′, B′), both belonging to Mm(n+1)(R), are row equivalent then any solution
X ∈ Rn of the system AX = B is a solution of the system A′X = B′, and vice versa.

The proof of this statement consists simply in checking that the systems of linear
equations are equivalent at each step of the procedure. This can be inferred from the
example shown above, and can be proved without any difficulty.

Definition 2.4.5. A matrix is in row echelon form if it satisfies the following property:
Whenever two successive rows do not consist entirely of 0, then the second row starts
with a non-zero entry at least one step further than the first row. All the rows consisting
entirely of 0 are at the bottom of the matrix.

Examples 2.4.6. The following matrices are in row echelon form:
1 0 0 0
0 2 0 0
0 0 0 4
0 0 0 0

 ,

2 0 0 1 1
0 1 0 1 0
0 0 3 2 0

 ,

0 1 0 2
0 0 1 3
0 0 0 0

 .
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Theorem 2.4.7. Every matrix is row equivalent to a matrix in row echelon form.

Again, the proof is a simple abstraction of what has been performed on the above
example. Note that checking this kind of properties is a good exercise for computer
sciences. Indeed, the necessary iterative procedure can be easily implemented by some
bootstrap arguments.

Definition 2.4.8. The first non-zero coefficients occurring on the left of each row on
a matrix in row echelon form are called the leading coefficients.

Corollary 2.4.9. Every matrix is row equivalent to a matrix in row echelon form and
with all leading coefficients equal to 1.

Proof. Use the previous theorem and divide each non-zero row by its leading coefficient.

Corollary 2.4.10. Each matrix is row equivalent to a matrix in row echelon form, with
leading coefficients equal to 1, and with 0’s above each leading coefficient.

We shall say that such matrices are in the standard form. Examples of such matrices
are 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 ,

1 0 0 1/2 1/2
0 1 0 1 0
0 0 1 2/3 0

 ,


1 0 1 0
0 1 2 0
0 0 0 1
0 0 0 0

 ,

1 0 3
0 1 0
0 0 0

 .

Proof of Corollary 2.4.10. Starting from a matrix in row echelon form with all leading
coefficients equal to 1, subtract sufficiently many times each row to the rows above it.
Do this procedure iteratively, starting with the second row and going downward.

Example 2.4.11. Let us finally use this method on an example. In order to solve the
linear system 

2x+ y + 4z + w = 0
−3x+ 2y − 3z + w = 0
x+ y + z = 0

,

we consider the augmented matrix and some elementary row operations:(
2 1 4 1 0
−3 2 −3 1 0
1 1 1 0 0

)
∼
(

1 1 1 0 0
0 −1 2 1 0
0 5 0 1 0

)
∼
(

1 1 1 0 0
0 1 −2 −1 0
0 0 10 6 0

)
∼
(

1 0 0 −4/5 0
0 1 0 1/5 0
0 0 1 3/5 0

)
.

Then, we immediately infer from the last matrix the general solution
x = 4/5 w
y = −1/5 w
z = −3/5 w
w arbitrary

.

Note that adding the last column in the augmented matrix was not useful in this special
case.
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Note that it is only when the augmented matrix is in the standard form that the
solutions of the linear system can be written down very easily. This method for solving
linear system of equations is often call Gauss elimination or Gauss-Jordan elimination2.
However, Chinese people were apparently using this method already 2000 years ago,
see Chapter 1.2 of Bretscher’s book3 for details...

2.5 Elementary matrices

In this section we construct some very simple matrices and show how they can be used
in conjunction with Gauss elimination. For r, s ∈ {1, . . . ,m} let Irs ∈ Mm(R) be the
matrix whose rs-component is 1 and all the other ones are equal to 0. More precisely
one has

(Irs)ij = 1 if i = r and j = s, (Irs)ij = 0 otherwise.

These matrices satisfy the relation

Irs Ir′s′ =

{
Irs′ if s = r′

O if s ̸= r′
.

See Exercise 2.21 for the proof of this statement.

Definition 2.5.1. The following matrices are called elementary matrices:

(i) 1m − Irr + cIrr, for c ̸= 0,

(ii) (1m + Irs + Isr − Irr − Iss), for r ̸= s,

(iii) (1m + cIrs), for r ̸= s and c ̸= 0.

Lemma 2.5.2. (i) Each elementary matrix is invertible, and its inverse is again an
elementary matrix.

(ii) If A ∈ Mmn(R), all elementary row operations on A can be obtained by applying
successively elementary matrices on the left of A.

The proof of these statements are provided in Exercises 2.14 and 2.21. Note that the
second statements means that if A ∈ Mmn(R) and B1, . . . ,Bp are elementary matrices,
then BpBp−1 . . .B1A is row equivalent to A.

Observation 2.5.3. Assume that B ∈ Mm(R) is a square matrix with its last row
entirely filled with 0, then B is not invertible. Indeed, with the notation introduced
in (2.2.3), the assumption means that Bm = t0. Now, by absurd let us assume that
A ∈ Mm(R) is an inverse for B, or equivalently that BA = 1m. Then, since equation

2Johann Carl Friedrich Gauss: 30 April 1777 – 23 February 1855; Wilhelm Jordan: 1 March 1842 –
17 April 1899.

3O. Bretscher, Linear Algebra with Applications, International Edition, Prentice Hall, 2008.
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(2.2.4) would hold for this product, one would have (1m)ik = BiA
k, and in particular

for i = k = m one would have 1 = BmAm, which is impossible since Bm is made only
of 0. Thus, one concludes that there does not exist any inverse for B, or equivalently
that B is not invertible.

In the next statement, we provide information about invertibility of square matrices.

Theorem 2.5.4. (i) Let A,A′ ∈ Mm(R) be row equivalent. Then A is invertible if
and only if A′ is invertible,

(ii) Let A ∈ Mm(R) be upper triangular with non-zero diagonal elements. Then A is
invertible,

(iii) Any A ∈ Mm(R) is invertible if and only if A is row equivalent to 1m.

Proof. (i) This part of the proof is provided in Exercise 2.22.
(ii) Observe first that an upper triangular matrix is already in row echelon form.

Then by dividing each row by its leading term one obtains that A is row equivalent to
a matrix in row echelon form and with 1 on its diagonal. Then, by subtracting each
row coherently, starting with the second row and going downward, one obtains that A
is row equivalent to 1m. Since 1m is invertible, it follows from the point (i) that A is
invertible as well.

(iii) ⇐=: If A is row equivalent to 1m it follows from (i) that A is invertible. =⇒:
By Corollary 2.4.10 we know that A is row equivalent to a m × m matrix B in the
standard form. Since B is a square matrix, it follows that either B is equal to 1m or B
has at least its last row filled only with 0. Note that in the former case B is invertible
while in the second case B is not invertible, see Observation 2.5.3. However, since A is
invertible and row equivalent to B, it follows from (i) that B is invertible as well, and
therefore B has to be the identity matrix.

Corollary 2.5.5. Any invertible m × m matrix can be expressed as a product of ele-
mentary matrices.

Proof. This statement directly follows from the point (iii) of the previous theorem.
Indeed, if BpBp−1 . . .B1A = 1m with each Bj an elementary matrix, then

A = B−1
1 B−1

2 . . .B−1
p 1m = B−1

1 B−1
2 . . .B−1

p ,

which proves the statement.

Remark 2.5.6. It will be useful to observe that if BpBp−1 . . .B1A = 1m for some
elementary matrices Bj then

A−1 = BpBp−1 . . .B1.

This observation directly leads to a convenient method for finding the inverse of a matrix
A. Indeed, if A ∈ Mn(R), by considering the augmented matrix (A,1n) with n rows but
2n columns, and by performing elementary row operations such that A is transformed
into the matrix 1n, then the second part of the matrix will be equal to A−1. In other
words, one obtains that (A,1n) is row equivalent to (1n,A−1).
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2.6 Exercises

Exercise 2.1. Let us consider

A =

(
1 2 3
−1 0 2

)
and B =

(
−1 5 −2
1 1 −1

)
.

Compute A+ B, A− 2B, and tA.

Exercise 2.2. Write the proofs for Properties 2.1.10.

Exercise 2.3. Let A ∈ Mmn(R). Show that 1m A = A = A1n.

Exercise 2.4. One says that a matrix A ∈ Mn(R) is symmetric if tA = A and is
skew-symmetric if tA = −A. Show that for an arbitrary matrix A ∈ Mn(R), the matrix
A+ tA is symmetric while the matrix A− tA is skew-symmetric.

Exercise 2.5. Let A ∈ Mn(R).

1. If A2 = O, show that 1n −A is invertible.

2. More generally, if A is nilpotent, show that 1n −A is invertible.

3. Suppose that A2 + 2A+ 1n = O. Show that A is invertible.

Exercise 2.6. If A,B ∈ Mn(R) are two upper triangular matrices, show that the product
AB is also an upper triangular matrix.

Exercise 2.7. 1. Find some A ∈ M2(R) such that A2 = −12.

2. Determine all A ∈ M2(R) such that A2 = O.

Exercise 2.8. Let a, b be real numbers and let

A =

(
1 a
0 1

)
and B =

(
1 b
0 1

)
.

What is AB ? Compute A2 and A3. What is Am for an arbitrary integer m, and how
to prove it ?

Exercise 2.9. One says that a matrix A ∈ Mn(R) is orthogonal if tA = A−1, or
equivalently if tAA = 1n. Show that if A ∈ Mn(R) is an orthogonal matrix, then

1. ∥AX∥ = ∥X∥ for any X ∈ Rn,

2. (AX) · (AY ) = X · Y for any X,Y ∈ Rn.

In other words, orthogonal matrices preserve lengths and angles between vectors of Rn.
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Exercise 2.10. A special type of 2× 2 matrices represents rotations in the plane. For
arbitrary θ ∈ R, consider the matrix

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

1. Show that for arbitrary θ1, θ2 one has R(θ1)R(θ2) = R(θ2)R(θ1),

2. Show that for arbitrary θ1, θ2 one has R(θ1)R(θ2) = R(θ1 + θ2),

3. Show that for any θ, the matrix R(θ) has an inverse and write down this inverse.

Exercise 2.11. For any θ ∈ R, recall that the matrix

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
represents a rotation by θ in R2.

1. For tX = (1, 2), what are its coordinates after a rotation of π/4 ?

2. For tY = (−1, 3), what are its coordinates after a rotation of π/2 ?

Draw a picture of your results.

Exercise 2.12. Let

A =


2 3 −1 1
1 4 2 −2
−1 1 3 −5
1 2 3 4


and let U be one of the matrices shown below. Compute UA.

a) U =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 b) U =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 c) U =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0



d) U =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 e) U =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 f) U =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Exercise 2.13. Do the same exercise with the following matrices U and A as above:

a) U =

(
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
b) U =

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
c) U =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 5 0 1

)
d) U =

(
1 0 0 0
0 1 0 0
0 −2 1 0
0 0 0 1

)
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Exercise 2.14. Let A ∈ Mmn(R). For r ∈ {1, . . . ,m} and s ∈ {1, . . . ,m}, let Irs ∈
Mm(R) be the matrix whose rs-component is 1 and all the other ones are equal to 0.
Answer the following questions with words :

1. What is IrsA ?

2. For r ̸= s, what is (Irs + Isr)A ?

3. For r ̸= s, what is (1m + Irs + Isr − Irr − Iss)A ?

4. For r ̸= s, what is (1m + cIrs)A, for some c ∈ R ?

Exercise 2.15. Find a non-trivial solution for each of the following systems of equa-
tions.

a) 2x− 3y + 4z = 0

3x+ y + z = 0

b) 2x+ y + 4z + w = 0

−3x+ 2y − 3z + w = 0

x+ y + z = 0

c) − 2x+ 3y + z + 4w = 0

x+ y + 2z + 3w = 0

2x+ y + z − 2w = 0

Exercise 2.16. Let A ∈ Mmn(R) and B ∈ Rm.

1. Assume that X ∈ Rn is a solution of AX = 0. Show that for any c ∈ R, the
vector cX is also a solution of this equation.

2. Assume that X,X ′ ∈ Rn are solutions of the equations AX = 0 and AX ′ = 0.
Show that X +X ′ is also a solution of this equation.

3. Assume that Y ∈ Rn is a solution of the equation AY = B, and assume that
X ∈ Rn is a solution of the homogeneous equation AX = 0. Show that Y +X is
still a solution of the original equation.

Exercise 2.17. In each of the following cases find a row equivalent matrix in the stan-
dard form.

a)

 6 3 −4
−4 1 −6
1 2 −5

 b)

1 0 2
2 −1 3
4 1 8

 c)

0 1 3 −2
2 1 −4 3
2 3 2 −1

 d)

1 2 −1 2 1
2 4 1 −2 3
3 6 2 −6 5


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Exercise 2.18. Find all vectors in R4 which are perpendicular to the vectors

t(1, 1, 1, 1), t(1, 2, 3, 4), t(1, 9, 9, 7)

Exercise 2.19. By using Gauss elimination, find all solution for the following systems:

a) x+ y − 2z = 5

2x+ 3y + 4z = 2

b) x3 + x4 = 0

x2 + x3 = 0

x1 + x2 = 0

x1 + x4 = 0

c) x1 + 2x2 + 2x4 + 3x5 = 0

x3 + 3x4 + 2x5 = 0

x3 + 4x4 − x5 = 0

x5 = 0

Exercise 2.20. Find a polynomial of degree 3 whose graph goes through the points
(0,−1), (1,−1), (−1,−5) and (2, 1).

Exercise 2.21. For r ∈ {1, . . . ,m} and s ∈ {1, . . . ,m}, let Irs ∈ Mm(R) be the
matrix whose rs-component is 1 and all the other ones are equal to 0. First show that
if r, s, r′, s′ ∈ {1, . . . ,m} then

Irs Ir′s′ =

{
Irs′ if s = r′

O if s ̸= r′

Then, for c ̸= 0, consider the following 3 types of matrices :

1. 1m − Irr + cIrr, the matrix obtained from the identity matrix by multiplying the
r-th diagonal component by c,

2. For r ̸= s, (1m+Irs+Isr−Irr−Iss), the matrix obtained from the identity matrix
by interchanging the r-th row with the s-th row,

3. For r ̸= s, (1m+ cIrs), the matrix having the rs-th component equal to c, all other
components 0 except the diagonal components which are equal to 1.

Show that these matrices are invertible and exhibit their inverse. If A ∈ Mmn(R), show
that multiplying the matrix A on the left by one of these matrices corresponds to one of
the elementary row operations. For that reason, these matrices are called elementary
matrices.
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Exercise 2.22. Let A,A′ ∈ Mn(R) be row equivalent. With the help of the previous
exercise, prove the following statements : A is invertible if and only if A′ is invertible.

Exercise 2.23. By using elementary row operations, find the inverse for the following
matrices :

a)

1 2 −1
0 1 1
0 2 7

 b)

2 1 2
0 3 −1
4 1 1

 c)

 2 4 3
−1 3 0
0 2 1


Exercise 2.24. Consider the equation

x+ 2y + 3z = 4

x+ ky + 4z = 6

x+ 2y + (k + 2)z = 6

where k is an arbitrary constant.

1. For which values of k does this system have a unique solution ?

2. For which values of k does this system have no solution ?

3. For which values of k does this system have infinitely many solutions ?

Exercise 2.25. A conic is a curve in R2 that can be described by an equation of the
form

f(x, y) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2 = 0,

where at least one of the coefficients ci is non-zero. Find the conic passing through the
following points.

i) (0, 0), (1, 0), (0, 1), (1, 1).

ii) (0, 0), (1, 0), (2, 0), (3, 0), (1, 1).

Exercise 2.26. Let A ∈ Mmn(R) and X = t(x1, . . . , xn) ∈ Rn. The columns of A are
denoted by A1, . . . ,An, while the rows of A are denoted by A1, . . . ,Am. Show that the
following three statements are equivalent :

1. AX = 0,

2. the vector X is perpendicular to the vector tAj, for each j ∈ {1, . . . ,m},

3. the following linear relation holds :

x1A1 + x2A2 + · · ·+ xnAn = 0.



2.6. EXERCISES 45

Exercise 2.27. By using elementary row operations, find the inverse for the following
matrices :

a)

1 1 1
2 3 2
3 8 2

 b)


1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1


Exercise 2.28. For which values of the parameter k is the following matrix invertible:(

4 3− k
1− k 2

)
Exercise 2.29. To gauge the complexity of a computational task, one can count the
number of elementary operations (additions, subtractions, multiplications and divisions)
required. For a rough count, one can consider multiplication and divisions only, referring
to those jointly as multiplicative operations. Start by considering a 2 by 2 invertible
matrix ( a b

c d ) and check that 8 multiplicative operations are necessary for inverting this
matrix by using the Gauss elimination technique.

(i) How many multiplicative operations are necessary for inverting a 3× 3 matrix by
the same technique ?

(ii) What about a n× n matrix ?

(iii) If a very slow computer needs 1 second to invert a 3× 3 matrix, how long will it
take to invert a 12× 12 matrix ?

Exercise 2.30. Write if the following statements are ”true” or ”false”. Justify briefly
your answer, or give a counterexample.

1. If A and B are symmetric matrices, then A+ B is symmetric,

2. If A is symmetric and A ̸= O, then A is invertible,

3. If AB = O, then either A or B is the matrix O,

4. If A2 = 1, then A is invertible,

5. If A,B are invertible matrices, then BA is an invertible matrix,

6. If A ∈ Mn(R), B ∈ Rn with B ̸= 0, and if X and X ′ satisfy AX = B and
AX ′ = B, then (X +X ′) satisfies the same equation,

7. If A is diagonal and if B is an arbitrary matrix, then the product AB is diagonal,

8. There exists an invertible matrix A such that A−1 = ( 1 2
0 0 ),

9. Every matrices can be expressed as the product of elementary matrices,

10. ( 0 1
1 0 ) is an orthogonal matrix.
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Chapter 3

Vector spaces

In this Chapter, we provide an abstract framework which encompasses what we have
seen on Rn and for Mmn(R).

3.1 Abstract definition

Before introducing the abstract notion of a vector space, let us make the following
observation. For any X, Y, Z ∈ Rn, for any A,B, C ∈ Mmn(R) and for any λ, µ ∈ R one
has

(i) (X + Y ) + Z = X + (Y + Z),

(ii) X + Y = Y +X,

(iii) X + 0 = 0+X = X,

(iv) X −X = 0,

(v) 1X = X,

(vi) λ(X + Y ) = λX + λY ,

(vii) (λ+ µ)X = λX + µX,

(viii) (λµ)X = λ(µX).

(i) (A+ B) + C = A+ (B + C),

(ii) A+ B = B +A,

(iii) A+O = O +A = A,

(iv) A−A = O,

(v) 1A = A,

(vi) λ(A+ B) = λA+ λB,

(vii) (λ+ µ)A = λA+ µA,

(viii) (λµ)A = λ(µA).

Note that these properties are borrowed from Chapter 1 and 2 respectively. Another
example which would satisfy the same properties is provided by the set of real functions
defined on R, together with the addition of such functions and with the multiplication
by a scalar. In this case, the element 0 (or O) is simply the function which is equal to
0 at any point of R.

Question: Can one give an abstract definition for these rules ?

47
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In the first definition, we give a more general framework in which λ and µ live. You
can always think about R as the main example for the following definition.

Definition 3.1.1. A field1 (F,+, ·) is a set F endowed with two operations + and ·
such that for any λ, µ, ν ∈ F one has

(i) λ+ µ ∈ F and λ · µ ∈ F, (internal operations)

(ii) (λ+ µ) + ν = λ+ (µ+ ν) and (λ · µ) · ν = λ · (µ · ν), (associativity)

(iii) λ+ µ = µ+ λ and λ · µ = µ · λ, (commutativity)

(iv) There exist 0, 1 ∈ F such that λ+ 0 = λ and 1 · λ = λ, (existence of identity
elements)

(v) There exists −λ ∈ F such that λ + (−λ) = 0, and if λ ̸= 0 there exists λ−1 ∈ F
such that λ · λ−1 = 1, (existence of inverse elements)

(vi) λ · (µ+ ν) = λ · µ+ λ · ν. (distributivity)

Note that for simplicity, one usually writes λ − µ instead of λ + (−µ) and λ/µ
instead of λ · µ−1.

Example 3.1.2. Some examples of fields are (R,+, ·) the set of real numbers together
with the usual addition and multiplication, (Q,+, ·) the set of fractional numbers Q ={
a/b | a, b ∈ Z with b ̸= 0

}
together with the usual addition and multiplication, (C,+, ·)

the set of complex numbers together with its addition and multiplication (as we shall
see at the end of this course). Note that for simplicity, one usually writes R,Q,C, the
other two operations being implicit.

Let us provide a more general framework for the elements of X,Y, Z or A,B, C and
for the properties stated in the table above. However, you can always think about Rn

or Mmn(R) as the main examples for the following definition. Note that two slightly
different fonts are used for the two different multiplications and for the two different
additions.

Definition 3.1.3. A vector space over a field (F,+, ·) consists in a set V endowed with
two operations + : V ×V → V and · : F×V → V such that if X, Y, Z ∈ V and λ, µ ∈ F
the following properties are satisfied:

(i) (X + Y )+ Z = X + (Y + Z),

(ii) X + Y = Y +X,

(iii) There exists (a unique) 0 ∈ V such that X + 0 = 0 +X = X,

1Without explaining this notion, but tacitly we shall work only with fields of characteristic 0, like
R, Q or C.
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(iv) For all X ∈ V there exists −X ∈ V such that X + (−X) = 0,

(v) λ ·X ∈ V and 1 ·X = X,

(vi) λ · (X + Y ) = λ ·X + λ · Y ,

(vii) (λ+ µ) ·X = λ ·X + µ ·X,

(viii) (λ · µ) ·X = λ · (µ ·X).

Before providing some examples, let us just mention a consequence of the previous
conditions, namely 0 ·X = 0 for any X ∈ V . Indeed, for any X ∈ V one has

X = 1 ·X = (1 + 0) ·X = 1 ·X + 0 ·X = X + 0 ·X,

from which one infers that 0 ·X = 0. Let us also note that whenever the field F consists
in R, one simply says a real vector space instead of a vector space over the field R.

Examples 3.1.4. (i) F = R and V = Rn with the addition and multiplication by a
scalar, as introduced in Chapter 1,

(ii) F = R and V = Mmn(R) with the addition and the multiplication by a scalar, as
introduced in Chapter 2. More generally, for any field F the set Mmn(F), defined
exactly as Mmn(R), is a vector space over F,

(iii) F = R and V is the set of real functions defined on R, with the addition of
functions and the multiplication by scalar,

(iv) F = R and V = {polynomial functions on R}

=
{
f : R → R | f(x) =

m∑
j=0

ajx
j with aj ∈ R

}
,

(v) F = R and V = {f : R → R continuous },

(vi) F = R and V = {f : R → R differentiable }.

From now and for simplicity we shall no more use two different notations for the two
different multiplications and for the two different additions. This simplification should
not lead to any confusion. In addition, we shall simply write F for the field, instead of
(F,+, ·), and the multiplication will be denoted without a dot; the sign · will be kept
for the scalar product only.

Definition 3.1.5. Let V be a vector space over F, and let W be a (non-void) subset of
V . Then W is a subspace of V if the following conditions are satisfied:

(i) If X, Y ∈ W , then X + Y ∈ W ,
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(ii) If X ∈ W and λ ∈ F, then λX ∈ W .

In other words, a subspace of a vector space V is a subset W of V which is stable
for the two operations, i.e. the addition and the multiplication by a scalar. The next
statement will be very useful when checking that a certain set is a vector space. Its
proof will be provided in Exercise 3.5.

Lemma 3.1.6. Any subspace W of a vector space V over a field F is itself a vector
space over F.

Examples 3.1.7. (i)
{
t(x1, x2, . . . , xn−1, 0) | xj ∈ R for any j ∈ {1, . . . , n − 1}

}
⊂

Rn is a subspace of Rn,

(ii) If P,N ∈ Rn with N ̸= 0, then HP,N is a subspace of Rn if and only if 0 ∈ HP,N .
In particular, H0,N is a subspace of Rn,

(iii) The set of upper triangular n× n matrices is a subspace of Mn(R),

(iv) The set of n× n symmetric matrices is a subspace of Mn(R).

The following statement deals with the intersection of subspaces or with the sum
of subspaces of a vector space.

Lemma 3.1.8. Let V be a vector space over a field F, and let W1, W2 be two subspaces
of V . Then

(i) W1 ∩W2 =
{
X ∈ W1 and X ∈ W2

}
is a subspace of V ,

(ii) W1 +W2 =
{
X = X1 +X2 | X1 ∈ W1 and X2 ∈ W2

}
is a subspace of V .

Proof. The proof consists in checking that the two conditions of Definition 3.1.5 are
satisfied.

(i) If X, Y ∈ Wj for j ∈ {1, 2}, then X + Y ∈ Wj because Wj is a subspace. In
particular, this implies that if X,Y ∈ W1 ∩W2, then X + Y ∈ W1 ∩W2. Similarly, in
this case one also has λX ∈ W1∩W2, since W1 and W2 are stable for the multiplication
by a scalar.

(ii) If X = X1 +X2 and Y = Y1 + Y2 with Xj, Yj ∈ Wj, then X + Y = X1 +X2 +
Y1+Y2 = (X1+Y1)+(X2+Y2) with (X1+Y1) ∈ W1 and (X2+Y2) ∈ W2, which implies
that X+Y ∈ W1+W2. Similarly, in this case one also has λX = λX1+λX2 ∈ W1+W2,
since both W1 and W2 are stable for the multiplication by a scalar.

3.2 Linear combinations

Let us start with a definition:
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Definition 3.2.1. Let V be a vector space over a field F, and let X1, . . . , Xr ∈ V . One
sets

Vect(X1, . . . , Xr) :=
{
λ1X1 + · · ·+ λrXr | λj ∈ F for j ∈ {1, . . . , r}

}
,

and call this set the subspace of V generated by X1, . . . , Xr.

Obviously, the first thing to do is to check that this set is indeed a subspace of V .

Lemma 3.2.2. In the above setting, Vect(X1, . . . , Xr) is a subspace of V .

Proof. The proof consists in checking that both conditions of Definition 3.1.5 are sat-
isfied. First of all, if X = λ1X1 + · · ·+ λrXr and X ′ = λ′

1X1 + · · ·+ λ′
rXr, then

X +X ′ = (λ1 + λ′
1)︸ ︷︷ ︸

∈ F

X1 + · · ·+ (λr + λ′
r)︸ ︷︷ ︸

∈ F

Xr ∈ Vect(X1, . . . , Xr).

Similarly, if X = λ1X1 + · · ·+ λrXr and λ ∈ F, then

λX = (λλ1)︸ ︷︷ ︸
∈ F

X1 + · · ·+ (λλr)︸ ︷︷ ︸
∈ F

Xr ∈ Vect(X1, . . . , Xr).

Since both conditions are checked, it is thus a subspace of V .

Since Vect(X1, . . . , Xr) is a subspace of V , it was legitimate to call it as we did.
Note that one also says that λ1, . . . , λr are the coefficients of the linear combination
λ1X1 + · · ·+ λrXr.

Remark 3.2.3. If Vect(X1, . . . , Xr) = V , then one says that V is generated by the
elements X1, . . . , Xr, or that {X1, . . . , Xr} is a generating family.

The following three examples are related to real vector spaces, as it is the case in
most of the examples of these lecture notes.

Examples 3.2.4. (i) Recall that Ej =
t(0, . . . , 1, . . . , 0) with the entry 1 at the posi-

tion j. Then {Ej}nj=1 ≡ {E1, E2, . . . , En} is a generating family for Rn.

(ii) If N ∈ Rn with N ̸= 0, then Vect(N) is the line passing through 0 and having the
direction N , i.e. Vect(N) = L0,N , with the L0,N defined in Definition 1.5.1.

(iii) If X,Y ∈ R3 with X ̸= 0, Y ̸= 0, and Y ̸= λX for any λ ∈ R, then Vect(X, Y )
defines a plane in R3 passing through 0. In fact, it corresponds to the plane passing
through the three points 0, X, Y , as seen in Exercise 1.18.

Remark 3.2.5. If F = R and if one considers X1, . . . , Xr ∈ Rn, then one can set

Box(X1, . . . , Xr) :=
{
λ1X1 + · · ·+ λrXr | λj ∈ [0, 1] for j ∈ {1, . . . , r}

}
.

This is a subset of Vect(X1, . . . , Xr), called the hyperbox or generalized box generated
by X1, . . . Xr. Note that Box(X1, . . . , Xr) is not a subspace. It is also easily observed
that Box(X1) corresponds to the segment between 0 and X1 and that Box(X1, X2) cor-
responds to the parallelogram generated by X1 and X2, and with one apex at 0.
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3.3 Convex sets

In this section we consider only real vector spaces, i.e. the field F is equal to R for all
vector spaces.

Definition 3.3.1. Let S be a subset of a real vector space V . Then S is convex if for
any X,Y ∈ S and for any t ∈ [0, 1] one has

X + t(Y −X) ≡ (1− t)X + tY ∈ S.

Examples 3.3.2. (i) A ball is convex, but a doughnut is not convex,

(ii) For any X1, . . . , Xr in a real vector space V , Vect(X1, . . . , Xr) is convex. Indeed,
if X = λ1X1 + · · ·+ λrXr and X ′ = λ′

1X1 + · · ·+ λ′
rXr with λj, λ

′
j ∈ R then

(1− t)X+ tX ′ =
(
(1− t)λ1 + tλ′

1

)︸ ︷︷ ︸
∈ R

X1+
(
(1− t)λr + tλ′

r

)︸ ︷︷ ︸
∈ R

Xr ∈ Vect(X1, . . . , Xr),

(iii) For any X1, . . . , Xr in a real vector space V , Box(X1, . . . , Xr) is convex. Indeed, in
the framework of the previous example, observe that if 0 ≤ λj ≤ 1 and 0 ≤ λ′

j ≤ 1
then one has for any t ∈ [0, 1]

0 ≤ (1− t)λj + tλ′
j ≤ (1− t)1 + t1 = 1.

As a consequence, one infers that

(1− t)X + tX ′ =
(
(1− t)λ1 + tλ′

1

)︸ ︷︷ ︸
∈ [0,1]

X1+
(
(1− t)λr + tλ′

r

)︸ ︷︷ ︸
∈ [0,1]

Xr ∈ Box(X1, . . . , Xr).

Definition 3.3.3. Let V be a real vector space, and let X1, . . . , Xr ∈ V . We set

CS(X1, . . . , Xr) :=
{
λ1X1 + · · ·+ λrXr | 0 ≤ λj ≤ 1 for j ∈ {1, . . . , r}
and λ1 + λ2 + · · ·+ λr = 1

}
and call is the convex set generated or spanned by X1, . . . , Xr.

Note that by definition, the following inclusions always hold

CS(X1, . . . , Xr) ⊂ Box(X1, . . . , Xr) ⊂ Vect(X1, . . . , Xr).

Example 3.3.4. If V = Rn, then CS(X1) corresponds just to the point X1, CS(X1, X2)
corresponds to the segment between X1 and X2 while CS(X1, X2, X3) corresponds to the
triangle of apexes X1, X2 and X3.

Obviously, one has to show immediately the following statement:
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Lemma 3.3.5. If V is a real vector space and X1, . . . , Xr ∈ V , then CS(X1, . . . , Xr)
is convex.

In fact, CS(X1, . . . , Xr) is the smallest convex set containing X1, . . . , Xr.

Proof. Let X = λ1X1 + · · · + λrXr with 0 ≤ λj ≤ 1 and λ1 + λ2 + · · · + λr = 1, and
let X ′ = λ′

1X1 + · · ·+ λ′
rXr with 0 ≤ λ′

j ≤ 1 and λ′
1 + λ′

2 + · · ·+ λ′
r = 1. Then for any

t ∈ [0, 1] one has

(1− t)X + tX ′ =
r∑

j=1

(
(1− t)λj + tλ′

j

)
Xj

with 0 ≤ (1− t)λj + tλ′
j ≤ (1− t)1 + t1 = 1 and

r∑
j=1

(
(1− t)λj + tλ′

j

)
= (1− t)

r∑
j=1

λj + t
r∑

j=1

λ′
j = (1− t)1 + t1 = 1.

As a consequence, (1− t)X + tX ′ ∈ CS(X1, . . . , Xr), which means that CS(X1, . . . , Xr)
is convex.

3.4 Linear independence

The following definition will be of importance in the sequel.

Definition 3.4.1. Let V be a vector space over a field F, and let X1, . . . , Xr ∈ V . The
elements X1, . . . , Xr are linearly dependent if there exist λ1, . . . , λr ∈ F not all equal to
0 such that

λ1X1 + · · ·+ λrXr = 0. (3.4.1)

The elements X1, . . . , Xr are said linearly independent if there do not exist such scalars
λ1, . . . , λr.

Note that alternatively, the vectors X1, . . . , Xr are linearly independent if whenever
(3.4.1) is satisfied, then one must have λ1 = λ2 = · · · = λr = 0. In this case, one also
says that the family {X1, . . . , Xr} is linearly independent.

Examples 3.4.2. (i) For V = Rn, the family {Ej}nj=1 is linearly independent,

(ii) For V = Mn(R), the family {Irs}nr,s=1 of elementary matrices introduced in Section
2.5 is linearly independent,

(iii) For V = R2, the elements ( 1
0 ), (

0
1 ), and ( 1

1 ) are linearly dependent since

1

(
1
0

)
+ 1

(
0
1

)
− 1

(
1
1

)
= 0.
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(iv) Let f1, f2 be two continuous real functions on R. In this case f1, f2 are linearly
dependent if there exists λ1, λ2 ∈ R with (λ1, λ2) ̸= (0, 0) such that λ1f1+λ2f2 = 0,
or more precisely

λ1f1(x) + λ2f2(x) = 0 for all x ∈ R.

For example, if f1(x) = cos(x) and f2(x) = sin(x), then f1 and f2 are linearly
independent even if 0 cos(0) + λ sin(0) = 0 for arbitrary λ ∈ R.

Definition 3.4.3. Let V be a vector space over a field F, and let X1, . . . , Xr ∈ V . If
Vect(X1, . . . , Xr) = V and if X1, . . . , Xr are linearly independent, then {X1, . . . , Xr} is
called a basis for V . Alternatively, one also says that the family {X1, . . . , Xr} constitutes
or forms a basis for V .

Examples 3.4.4. (i) {Ej}nj=1 forms a basis for Rn,

(ii) {Irs}nr,s=1 forms a basis for Mn(R),

(iii) {x 7→ xn}∞n=0 forms a basis for the vector space of all polynomials on R.

Let us consider a special case of the previous definition in the case n = 2. The
content of the following lemma will be useful later on, and its proof will be provided in
Exercise 3.9.

Lemma 3.4.5. Let ( a
b ), (

c
d ) ∈ R2, with a, b, c, d ∈ R.

(i) The two vectors are linearly independent if and only if ad− bc ̸= 0,

(ii) If the two vectors are linearly independent, they form a basis of R2.

Given a basis of a vector space V , any point X can be expressed as a linear com-
binations of elements of this basis. More precisely, one sets:

Definition 3.4.6. Let {X1, . . . , Xr} be a basis for a vector space V over F. Then, for
X = λ1X1 + · · · + λrXr the coefficients {λ1, . . . , λr} are called the coordinates of X
with respect to the basis {X1, . . . , Xr} of V .

In order to speak about “the” coordinates, the following lemma is necessary.

Lemma 3.4.7. The coordinates of a vector with respect to a basis are unique.

Proof. Let {X1, . . . , Xr} be a basis, and assume that

X = λ1X1 + · · ·+ λrXr = λ′
1X1 + · · ·+ λ′

rXr.

It then follows that

X −X = 0 = (λ1 − λ′
1)X1 + · · ·+ (λr − λ′

r)Xr.

By independence of X1, . . . , Xr, it follows that (λj−λ′
j) = 0 for all j ∈ {1, . . . , r}, which

means that λj = λ′
j. Thus, the coordinates of X with respect to a basis are unique.
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3.5 Dimension

Question: Can one find 3 linearly independent elements in R2 ? For instance, if
A = ( 1

2 ), B = ( −5
7 ) and C = ( 10

4 ), are they linearly independent vectors ? The answer
is no, and there is no need to do any computation for getting this answer. Indeed, let
us consider the more general setting provided by A = ( a1

a2 ), B =
(
b1
b2

)
and C = ( c1

c2 ).
Then one has

λ1

(
a1
a2

)
+ λ2

(
b1
b2

)
+ λ3

(
c1
c2

)
= 0 ⇐⇒

{
λ1a1 + λ2b1 + λ3c1 = 0
λ1a2 + λ2b2 + λ3c2 = 0

.

Note that this corresponds to a system of two equations for the three unknowns λ1, λ2

and λ3. As seen in Theorem 2.3.4, such a homogeneous system of equations has al-
ways a non-trivial solution, which means that there exists a non trivial solution for
the corresponding equation 3.4.1. As a consequence, three vectors in R2 can never be
independent.

More generally, one has:

Theorem 3.5.1. Let {X1, . . . , Xr} be a basis of a vector space V over F. Consider also
Y1, . . . , Ym ∈ V and assume that m > r. Then Y1, . . . , Ym are linearly dependent.

Note that if m ≤ r, the statement does not imply that Y1, . . . , Ym are linearly
independent.

Now, in order to give the proof in its full generality, we need to extend the definition
of Mmn(R) to Mmn(F), for an arbitrary field F. In fact, since elements in a field can be
added and multiplied, all definitions related to Mmn(R) can be translated directly into
the same definitions for Mmn(F). The only modification is that any entry aij of a matrix
A belongs to F instead of R, and the multiplication of a matrix by a scalar λ ∈ R is
now replaced by the multiplication by an element of F. Then, most of the statements of
Section 2 are valid (simply by replacing R by F), and in particular Theorem 2.3.4 can
be obtained in this more general context. This theorem is precisely the one required for
the proof of the above statement.

Proof. Since X1, . . . , Xr generate V , there exists aij ∈ F such that

Yj = a1jX1 + · · ·+ arjXr for any j ∈ {1, . . . ,m}.

Then, let us consider λ1, . . . , λm ∈ F and observe that

λ1Y1 + · · ·+ λmYm = 0

⇐⇒λ1(a11X1 + · · ·+ ar1Xr) + · · ·+ λm(a1mX1 + · · ·+ armXr) = 0

⇐⇒(λ1a11 + λ2a12 + · · ·+ λma1m)X1 + · · ·+ (λ1ar1 + . . . λmarm)Xr = 0

which is equivalent to the following expression, by linear independence of X1, . . . , Xr:
a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...
ar1 ar2 . . . arm




λ1

λ2
...
λm

 =


0
0
...
0

 .
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Finally, since m > r, it follows from a simple adaptation of Theorem 2.3.4 to Mn(F)
that this system of equation always has a non-trivial solution. However, this means
precisely that the elements Y1, . . . , Ym are linearly dependent.

Corollary 3.5.2. Let V be a vector space and suppose that {X1, . . . , Xn} is a basis for
V . Then any other basis for V also contains n elements.

Proof. Let {Y1, . . . , Ym} be a second basis for V . If m > n then Y1, . . . , Ym can not be
linearly independent, by the previous theorem. Similarly, if m < n then X1, . . . , Xn can
not be linearly independent, also by the previous theorem. Since any basis is made of
linearly independent vectors, one obtains that the only possibility is m = n.

We now define a notion which has been implicitly used from the beginning for Rn.

Definition 3.5.3. Let V be a vector space over a field F, and let {X1, . . . , Xn} be a
basis for V . Then one says that V is of dimension n, since this number is independent
of the choice of a particular basis for V . The dimension of the vector space V is denoted
by dim(V ).

Remark 3.5.4. In these lecture notes except in a few exercises, all vector spaces are
of finite dimension. This fact is tacitly assumed in many statements later on, but note
that vector spaces of infinite dimensions often appear in physics or in mathematics.

Examples 3.5.5. (i) Rn is of dimension n, Fn is also of dimension n,

(ii) For any vector space V and any X ∈ V , the dimension of Vect(X) is 1,

(iii) Any plane in R3 (passing through the origin) is of dimension 2, while a line passing
through the origin is of dimension 1.

The following result is often useful, when the dimension of the vector space is already
known.

Lemma 3.5.6. Let V be a vector space of dimension n, and let X1, . . . , Xn ∈ V be
linearly independent. Then {X1, . . . , Xn} is a basis for V .

Proof. One only has to show that Vect(X1, . . . , Xn) = V . By contradiction, assume that
there exists Y ∈ V such that Y ̸∈ Vect(X1, . . . , Xn). Then, the vectors X1, . . . , Xn, Y
are linearly independent, and {X1, . . . , Xn, Y } would generate a basis for V of dimension
n+ 1, which is impossible by the previous Corollary.

3.6 The rank of a matrix

Let A ∈ Mmn(F), and recall from Section 2.2 that the columns of A have been denoted
by A1, . . . ,An. Each column is an element of Fm (a column vector with m entries in
F) and the family {A1, . . . ,An} generates a subspace of Fm, which we have denoted by
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Vect(A1, . . . ,An). In this case this subspace is called the column space. Alternatively,
the rows of A generate the subspace Vect(tA1, . . . ,

tAm) of Fn, which is called the row
space. The dimension of the first subspace is called the column rank, while the dimension
of the second subspace is called the row rank.

By what we have seen in the previous sections, the column rank corresponds to the
maximal number of linearly independent columns, while the row rank corresponds to
the maximal number of linearly independent rows. Our aim in this section is to study
these numbers.

Lemma 3.6.1. Elementary row operations do not change the row rank of a matrix.

Proof. For this proof, it is sufficient to observe that

Vect(tA1, . . . ,
tAj, . . . ,

tAk, . . . ,
tAm)

= Vect(tA1, . . . ,
tAk, . . . ,

tAj, . . . ,
tAm)

= Vect(tA1, . . . , c
tAj, . . . ,

tAk, . . . ,
tAm)

= Vect(tA1, . . . ,
tAj + ctAk, . . . ,

tAk, . . . ,
tAm)

for any c ̸= 0. Since these subspaces are the same, their dimension coincide.

Similarly, one can show that elementary row operations do not change the column
rank of a matrix. Note that this proof is less easy since elementary row operations have
been defined on rows, and not on columns.

Theorem 3.6.2. For any A ∈ Mmn(F), the column rank and the row rank of A are
equal.

Thanks to this statement, it is sufficient to speak about the rank of a matrix, denoted
by rank(A), there is no need to specify if it is the column rank or the row rank.

Proof. First of all, recall that the matrix A is row equivalent to a matrix B in the
standard form, see Corollary 2.4.10. Since elementary row operations do not change the
row rank or the column rank, the matrix B has the same row rank and column rank as
the original matrix A. Then, it is easily observed that the number of leading coefficients
of B is equal to the number of linearly independent rows, but also to the number of
linearly independent columns of B. Therefore, the number of leading coefficients of B
is equal to the row rank of B and to the column rank of B. It follows that these two
numbers are equal, and that the row rank of A and the column rank of A are also equal
to this number.
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3.7 Exercises

Exercise 3.1. Show that the following sets of elements of R3 form subspaces :

i) S1 := {t(x, y, z) ∈ R3 | x+ y + z = 0},

ii) S2 := {t(x, y, z) ∈ R3 | x = y and 2y = z},

iii) S3 := {t(x, y, z) ∈ R3 | x+ y = 3z}.

Exercise 3.2. Let V be a subspace of Rn, and let W be the set of all elements of Rn

which are perpendicular to all elements of V . Show that W itself is a subspace of Rn.
This subspace is often denoted by V ⊥ and called the orthogonal complement of V in Rn.

Exercise 3.3. Let A1, . . . , Ar be generators of a subspace V of Rn. Let W be the set of
all elements in Rn which are perpendicular to A1, . . . , Ar. Show that W = V ⊥.

Exercise 3.4. Show that the set of all real polynomials is a subspace of the vector space
of all real and continuous functions on R. Exhibit a generating family for this subspace.

Exercise 3.5. Let V be a vector space over a field F. Show that any subspace of V is
itself a vector space.

Exercise 3.6. Let S be a convex set in a real vector space V .

i) For λ ∈ R, show that λS is a convex set in V , with λS = {λX | X ∈ S}.

ii) For Y ∈ V , show that S+Y is a convex set in V , with S+Y = {X+Y | X ∈ S}.

Exercise 3.7. Show that the intersection of two convex sets is still convex.

Exercise 3.8. Show that the vectors
(

1
0
0

)
,
(

0
1
0

)
and

(
1
1
1

)
form a basis of R3.

Exercise 3.9. Let ( a
b ), (

c
d ) ∈ R2. Show that these two vectors are linearly independent

if and only if ad− bc ̸= 0.

Exercise 3.10. Express the coordinates of Y in the basis generated by X1 and X2 :

i) Y =

(
1
0

)
, X1 =

(
1
1

)
and X2 =

(
0
1

)
,

ii) Y =

(
2
1

)
, X1 =

(
1
−1

)
and X2 =

(
1
1

)
.

Exercise 3.11. Let X1, . . . , Xr be non-zero elements of Rn and assume that Xj ·Xk = 0
for each j ̸= k. Show that these elements are linearly independent.

Exercise 3.12. Determine the dimension of the following subspaces:

i) S1 := {t(x, y, z) ∈ R3 | x+ y + z = 0},
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ii) S2 := {t(x, y, z) ∈ R3 | x = y and 2y = z},

iii) S3 := {t(x, y, z) ∈ R3 | x+ y = 3z}.

Exercise 3.13. Determine the rank of the following matrices :

a)

 6 3 −4
−4 1 −6
1 2 −5

 b)

1 0 2
2 −1 3
4 1 8

 c)

0 1 3 −2
2 1 −4 3
2 3 2 −1

 d)

1 2 −1 2 1
2 4 1 −2 3
3 6 2 −6 5


Exercise 3.14. A doubly stochastic matrix is a n × n matrix A = (ajk) such that
ajk ∈ [0, 1] and such that the sum of the elements of each line is equal to 1, as well as
the sum of the elements of each column.

(i) Show that the product of two doubly stochastic matrices is still a doubly stochastic
matrix,

(ii) Show that the set of all doubly stochastic matrices is a convex set.
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Chapter 4

Linear maps

Before concentrating on linear maps, we provide a more general setting.

4.1 General maps

We start with the general definition of a map between two sets, and introduce some
notations.

Definition 4.1.1. Let S, S ′ be two sets. A map T from S to S ′ is a rule which associates
to each element of S an element of S ′. The notation

T : S ∋ X 7→ T(X) ∈ S ′

will be used for such a map. If X ∈ S, then T(X) ∈ S ′ is called the image of X by T.
The set S is often called the domain of T and is also denoted by Dom(T), while

T(S) :=
{
T(X) | X ∈ S

}
is often called the range of T and is also denoted by Ran(T).

Examples 4.1.2. (i) The function f : R ∋ x 7→ f(x) = x2 − 3x + 2 ∈ R is a map
from R to R,

(ii) Any A ∈ Mmn(R) defines a map LA : Rn → Rm by LA(X) := AX for any
X ∈ Rn. More generally, for any field F and any A ∈ Mmn(F), one defines a map
LA : Fn → Fm by LA(X) := AX for any X ∈ Fn,

(iii) The rule F : R3 ∋
(

x
y
z

)
7→ F

(
x
y
z

)
=
(

x2+y
x+y+z+3

)
∈ R2 is a map,

(iv) Let C1(R) := {continuous functions f on R | f ′ exists and is continuous } and
let C(R) := {continuous functions f on R}. Then the following rule defines a
map:

D : C1(R) ∋ f 7→ Df = f ′ ∈ C(R)

61
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(v) For any A,B ∈ Mn(R) one can define a map by

TA,B : Mn(R) ∋ X 7→ TA,B(X) = AX + B ∈ Mn(R),

(vi) The function g : R∗ ∋ x 7→ g(x) = 3x−2
x

∈ R is a map from R∗ to R, but is not a
map from R to R because g(0) is not defined,

(vii) For any fixed Y ∈ Rn, a map is defined by TY : Rn ∋ X 7→ TY (X) = X+Y ∈ Rn,
and is called the translation by Y .

Remark 4.1.3. For a map T : S → S ′, the determination of Ran(T) is not always an
easy task. For example if one considers f : R → R with f(x) = x2 − 3x + 2, then one
has to look for the minimum of f , which is −1/4 obtained for x = 3/2, and one can
then set Ran(f) = [−1/4,∞). Similarly, if A ∈ Mmn(R), then what is the range of LA,
i.e. the set of Y ∈ Rm such that Y = AX for some X ∈ Rn ?

We end this section with a natural definition.

Definition 4.1.4. Let T : S → S ′ be a map, let W ⊂ S be a subset of S and let Z be
a subset of S ′. Then the set T(W ) := {T(X) | X ∈ W} is called the image of W by T,
while the set

T−1(Z) :=
{
X ∈ S | T(X) ∈ Z

}
is called the preimage of Z by T.

4.2 Linear maps

From now on, we shall concentrate on the simplest maps, the linear ones. Note that in
order to state the next definition, one has to deal with vector spaces instead of arbitrary
sets, and in addition the two vector spaces have to be defined on the same field.

Definition 4.2.1. Let V,W be two vector spaces over the same field F. A map T : V →
W is a linear map if the following two conditions are satisfied:

(i) T(X + Y ) = T(X) + T(Y ) for any X, Y ∈ V ,

(ii) T(λX) = λT(X) for any X ∈ V and λ ∈ F.

Note that the examples (ii) and (iv) of Examples 4.1.2 were already linear maps.
Let us still mention the map Id : V → V (also denoted by 1) defined by Id(X) = X for
any X ∈ V , which is clearly linear, and the map O : V → W defined by O(X) = 0 for
any X ∈ V , which is also linear.

Let us now observe that linear maps are rather simple maps.

Lemma 4.2.2. Let V,W be vector spaces over the same field F, and let T : V → W be
a linear map. Then,
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(i) T(0) = 0,

(ii) T(−X) = −T(X) for any X ∈ V .

Proof. (i) It is sufficient to observe that

T(0) = T(0+ 0) = T(0) + T(0) = 2T(0)

which implies the result.
(i) Observe that

0 = T(0) = T(X −X) = T(X) + T(−X)

which directly leads to the result.

Let go us step further in abstraction and consider families of linear maps. For that
purpose, let us first define an addition of linear maps, and the multiplication of a linear
map by a scalar. Namely, if V,W are vector spaces over the same field F and if T1,T2

are linear maps from V to W , one sets(
T1 + T2

)
(X) = T1(X) + T2(X) for any X ∈ V. (4.2.1)

If λ ∈ F and if T : V → W is linear, one also sets(
λT
)
(X) = λT(X) for any X ∈ V. (4.2.2)

It is then easily observed that T1 +T2 is still a linear map, and that λT is also a linear
map. We can then even say more:

Proposition 4.2.3. Let V,W be vector spaces over the same field F. Then

L(V,W ) :=
{
T : V → W | T is linear

}
,

is a vector space over F, once endowed with the addition defined by (4.2.1) and the
multiplication by a scalar defined in (4.2.2).

Before giving the proof, let us observe that if V = Rn and W = Rn, then L(Rn,Rm)
corresponds to the set of all LA with A ∈ Mmn(R). Note that this statement also holds
for arbitrary field F, i.e.

L(Fn,Fm) =
{
LA | A ∈ Mmn(F)

}
.

Proof. The proof consists in checking all conditions of Definition 3.1.3. For that purpose,
consider T,T1,T2,T3 be linear maps from V to W , and let λ, µ ∈ F. Let also X be an
arbitrary element of V .

(i) One has[
(T1 + T2) + T3

]
(X) = (T1 + T2)(X) + T3(X) = T1(X) + T2(X) + T3(X)

= T1(X) + (T2 + T3)(X) =
[
T1 + (T2 + T3)

]
(X).
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Since X is arbitrary, it follows that (T1 + T2) + T3 = T1 + (T2 + T3).
(ii) One has

(T1 + T2)(X) = T1(X) + T2(X) = T2(X) + T1(X) = (T2 + T1)(X)

which implies that T1 + T2 = T2 + T1.
(iii) We already know that O : V → W is linear, which means that O ∈ L(V,W ).

In addition, one clearly has T +O = O + T = T.
(iv) By setting [−T](X) := −T(X), one readily observes that −T ∈ L(V,W ) and

by using the addition (4.2.1) one infers that T + (−T) = O.
(v) Similarly, λT ∈ L(V,W ) and 1T = T.
The remaining three properties are easily checked by using the definition 4.2.2 and

the basic properties of vector spaces.

Question : If dim(V ) = n and if dim(W ) = m, what is the dimension of L(V,W ) ?
Let us now consider a linear map T : V → Rn with V a real vector space. Since for

each X ∈ V one has T(X) ∈ Rn, one often sets

T(X) =

T1(X)
...

Tn(X)

 (4.2.3)

with Tj(X) := T(X)j the j
th component of T evaluated at X. Thus, T defines a family

of maps Tj : V → R, and reciprocally, any family {Tj}nj=1 with Tj : V → R defines a
map T : V → Rn by (4.2.3). Sometimes, the maps T1, . . . ,Tn are called the components
of T.

Example 4.2.4. If T : R2 → R3 is defined by

T

(
x
y

)
=

 2x− y
3x+ 4y
x− 5y

 ,

then T = t(T1,T2,T3) with T1

(
x
y

)
= 2x− y, T2

(
x
y

)
= 3x+ 4y and T3

(
x
y

)
= x− 5y.

More generally:

Lemma 4.2.5. Let V be a vector space over a field F, and let T : V → Fn with
T = t(T1, . . . ,Tn) the components of T. Then T is a linear map if and only if each Tj

is a linear map.

Proof. One has T(X + Y ) = t
(
T1(X + Y ), . . . ,Tn(X + Y )

)
and T(X) + T(Y ) =

t
(
T1(X) + T1(Y ), . . . ,Tn(X) + Tn(Y )

)
. It then follows that

T(X + Y ) = T(X) + T(Y ) ⇐⇒

T1(X + Y )
...

Tn(X + Y )

 =

T1(X) + T1(Y )
...

Tn(X) + Tn(Y )

 ,

which corresponds to half of the statement. A similar argument holds for the multipli-
cation by a scalar.
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4.3 Kernel and range of a linear map

Let V,W be two vector spaces over the same field F and let T : V → W be a linear
map. Recall that

Ran(T) := {Y ∈ W | Y = T(X) for some X ∈ V }

and

Ker(T) := {X ∈ V | T(X) = 0}.

Lemma 4.3.1. In the previous setting, Ker(T) is a subspace of V while Ran(T) is a
subspace of W .

Proof. The first part of the statement is proved in Exercise 4.4. For the second part
of the statement, consider Y1, Y2 ∈ Ran(T), i.e. there exist X1, X2 ∈ V such that
Y1 = T(X1) and Y2 = T(X2). Then one has

Y1 + Y2 = T(X1) + T(X2) = T(X1 +X2)

with X1 +X2 ∈ V . In other words, Y1 + Y2 belongs to Ran(T). Similarly, for λ ∈ F and
any Y = T(X) with X ∈ V one has

λY = λT(X) = T(λX)

with λX ∈ V . Again, it follows that λY ∈ Ran(T), from which one concludes that
Ran(T) is a subspace of W .

Examples 4.3.2. (i) Let N ∈ Rn with N ̸= 0, and let us set TN : Rn → R by
TN(X) = N ·X. In this case, TN is a linear map. Indeed, one has

TN(X + Y ) = N · (X + Y ) = N ·X +N · Y = TN(X) + TN(Y ),

and similarly TN(λX) = N · (λX) = λ(N · X) = λTN(X). Then one observes
that

Ker(TN) = {X ∈ Rn | N ·X = 0} = {X ∈ Rn | X ·N = 0 ·N} = HN,0.

On the other hand, Ran(TN) = R, as it can easily be checked by considering
elements X of the form λN , for any λ ∈ R.

(ii) Let A ∈ Mmn(R) and let us set LA : Rn → Rm defined by LA(X) = AX for any
X ∈ Rn. As already mentioned, this map is linear, and one has Ker(LA) = {X ∈
Rn | AX = 0}, i.e. Ker(LA) are the solutions of the linear system AX = 0.

Remark 4.3.3. The kernel of a linear map is never empty, indeed it always contains
the element 0.
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Lemma 4.3.4. Let T : V → W be a linear map between vector spaces over the same
field F, and assume that Ker(T) = {0}. If {X1, . . . , Xr} are linearly independent ele-
ments of V , then {T(X1), . . . ,T(Xn)} are linearly independent elements of W .

Proof. Let λ1, . . . , λn such that

λ1T(X1) + λ2T(X2) + · · ·+ λnT(Xn) = 0.

By linearity, this is equivalent to T
(
λ1X1+ · · ·+λnXn

)
= 0, but since the kernel of T is

reduced to 0 it means that λ1X1 + · · ·+ λnXn = 0. Finally, by the linear independence
of X1, . . . , Xn it follows that λj = 0 for any j ∈ {1, . . . , n}. As a consequence, the
elements T(X1), . . . ,T(Xn) of W are linearly independent.

Let us now come to an important result of this section. For this, we just recall that
for a vector space, its dimension corresponds to the number of elements of any of its
bases. It also corresponds to the maximal number of linearly independent elements of
this vector space.

Theorem 4.3.5. Let T : V → W be a linear map between two vector spaces over the
same field F, and assume that V is of finite dimension. Then

dim
(
Ker(T)

)
+ dim

(
Ran(T)

)
= dim(V ).

Proof. Let {Y1, . . . , Yn} be a basis for Ran(T), and let X1, . . . , Xn ∈ V such that
T(Xj) = Yj for any j ∈ {1, . . . , n}. Let also {K1, . . . , Km} be a basis for Ker(T). Note
that if one shows that {X1, . . . , Xn, K1, . . . , Km} is a basis for V , then the statement is
proved (with dim(V ) = m+ n).

So, let X be an arbitrary element of V . Then there exist λ1, . . . , λn ∈ F such that
T(X) = λ1Y1 + · · ·+ λnXn, since {Y1, . . . , Yn} is a basis for Ran(T). It follows that

0 = T(X)− λ1X1 − · · · − λnYn

= T(X)− λ1T(X1)− · · · − λnT(Xn)

= T
(
X − λ1X1 − · · · − λnXn

)
,

which means that X − λ1X1 − · · · − λnXn belongs to Ker(T). As a consequence, there
exist λ′

1, . . . , λ
′
m ∈ F such that

X − λ1X1 − · · · − λnXn = λ′
1K1 + · · ·+ λ′

mKm,

since {K1, . . . , Km} is a basis for Ker(T). Consequently, one gets

X = λ1X1 + · · ·+ λnXn + λ′
1K1 + · · ·+ λ′

mKm,

or in other words
Vect

(
X1, . . . , Xn, K1, . . . , Km

)
= V.
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Let us now show that these vectors are linearly independent. By contraposition,
assume that

λ1X1 + · · ·+ λnXn + λ′
1K1 + · · ·+ λ′

mKm = 0 (4.3.1)

for some λ1, . . . , λn, λ
′
1, . . . , λ

′
m. Then one infers from (4.3.1) that

0 = T(0)

= T
(
λ1X1 + · · ·+ λnXn + λ′

1K1 + · · ·+ λ′
mKm

)
= T

(
λ1X1 + · · ·+ λnXn

)
+ 0

= λ1T(X1) + · · ·+ λnT(Xn)

= λ1Y1 + · · ·+ λnYn.

Since Y1, . . . , Yn are linearly independent, one already concludes that λj = 0 for any
j ∈ {1, . . . , n}. It then follows from (4.3.1) that λ′

1K1 + · · ·+ λ′
mKm = 0, which implies

that λ′
i = 0 for any i ∈ {1, . . . ,m} since the vectors Ki are linearly independent.

In summary, one has shown that V is generated by the family of linearly independent
elements X1, . . . , Xn, K1, . . . , Km of V . Thus, these elements define a basis, as expected.

4.4 Rank and linear maps

Let us come back to matrices over F. For any A ∈ Mmn(F), recall that we denote by
Aj the jth column of A and by Ak the kth row of A. We also denote by LA : Fn → Fm

the linear map defined by LA(X) = AX. Observe finally that {Ej}nj=1 is a basis of Fn

(note that the 1 at the entry j of Ej is the 1 of the field F). Thus, for any X ∈ Fn one
has

X = t(x1, . . . , xn) = x1E1 + x2E2 + · · ·+ xnEn

and in addition

LA(X) = A
(
x1E1 + x2E2 + · · ·+ xnEn

)
= x1AE1 + x2AE2 + · · ·+ xnAEn

= x1A1 + x2A2 + . . . xnAn.

With such equalities, one directly infers the following statement:

Lemma 4.4.1. The range of LA corresponds to the subspace generated by the columns
of A.

Proof. It is enough to remember the following equality

Ran(LA) =
{
LA(X) | X ∈ Fn

}
and to take into account the computation performed before the statement.
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Considering the dimensions of these spaces one directly gets:

Corollary 4.4.2. The dimension of the range of the linear map LA is equal to the rank
of A, i.e.

dim
(
Ran(LA)

)
= rank(A).

Theorem 4.4.3. Let A ∈ Mmn(F) with rank(A) = r. Then one has dim
(
Ker(LA)

)
=

n− r.

Proof. Since LA : Fn → Fm is a linear map, one has from Theorem 4.3.5

dim
(
Ker(LA)

)
+ dim

(
Ran(LA)

)︸ ︷︷ ︸
=r

= n,

from which the statement follows.

Example 4.4.4. What is the dimension of the space of solutions of the system{
2x1 − x2 + x3 + 2x4 = 0
x1 + x2 − 2x3 − x4 = 0

?

Since this system is equivalent to LA

(
x1
x2
x3
x4

)
= ( 0

0 ) with A =
(
2 −1 1 2
1 1 −2 −1

)
and since

rank(A) = 2, one directly infers from the previous result that dim
(
Ker(LA)

)
= 4−2 = 2.

This corresponds to the dimension of the space of solutions of the homogeneous equation.

One ends up this section with an important result:

Theorem 4.4.5. Let A ∈ Mmn(F) and B ∈ Fm, and consider the equation AX = B
for some X ∈ Fn. If this equation has a solution, then its set of all solutions is of
dimension equal to dim

(
Ker(LA)

)
.

Proof. Assume that Y0 ∈ Fn satisfies AY0 = B. Then if Y ∈ Fn satisfies AY = 0,
one infers that A(Y0 + Y ) = B, which means that Y0 + Y is a solution of the original
problem, for any Y ∈ Ker(LA). Now, if one can show that all solutions of AX = B
are of the form X = Y0 + Y for some Y ∈ Ker(LA), then the statement is proved. For
that purpose, it is sufficient to observe that if X ∈ Fn satisfies AX = B, then one has
A(X − Y0) = B − B = 0, or in other words X − Y0 =: Y for some Y ∈ Ker(LA). As a
consequence, one infers that X = Y0 + Y with Y ∈ Ker(LA), as expected.

4.5 Matrix associated with a linear map

Let us start with a question: If V,W are vector spaces over a field F and if T : V → W
is a linear map, how can one associate with this linear map a matrix ?

In fact, this can be done only once a choice of bases for V and W has been done,
and the resulting matrix will depend on the choice of bases, as we shall see. So, let
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us introduce a new notation: a basis for a vector space V over F will be denoted by
V := {V1, . . . , Vn} with {V1, . . . , Vn} a family of linearly independent elements of V
which generate V . In addition, let us denote by X an arbitrary element of V (which
was simply denoted by X up to now). Then, since V is a basis for V there exists
X := t(x1, . . . , xn) ∈ Fn such that

X = x1V1 + x2V2 + · · ·+ xnVn.

The vector X ∈ Fn is called the coordinate vector of X with respect to the basis V of V ,
and we shall use the notation

(X )V = X

meaning precisely that the coordinates of X with respect to the basis V are X.

Remark 4.5.1. Clearly, if V = Rn and if Vj = Ej, one just says that X are the
coordinates of X and one uses to identify X and X. This is what we have done until
now since we have only considered the usual basis {Ej}nj=1 on Rn. However, if one needs
to consider different bases on Rn, the above notations are necessary. Note for example
that X exists without any choice of a particular basis, while X depends on such a choice.

Now, if Y is another element of V with (Y)V = Y = t(y1, . . . , yn), let us observe
that

(X + Y)V = X + Y and (λX )V = λX (4.5.1)

for any λ ∈ F. Indeed, this follows from the equalities

X + Y = x1V1 + · · ·+ xnVn + y1V1 + · · ·+ ynVn

= (x1 + y1)V1 + · · ·+ (xn + yn)Vn

and
λX = λ(x1V1 + · · ·+ xnVn) = (λx1)V1 + · · ·+ (λxn)Vn.

Thus, choosing a basis V for V allows one to identity any point of V with an element
of Fn via its coordinate vector. By taking (4.5.1) into account, one also observes that
V allows one to define a linear map (·)V : V → Fn.

We also consider a vector spaceW over F endowed with a basisW := {W1, . . . ,Wm}.
In this case, for any Z ∈ W we set (Z)W = Z = t(z1, . . . , zm) ∈ Fm for the coordinate
vector of Z with respect to the basis W of W . Thus, if T : V → W is a linear map,
there exists T := (tij) ∈ Mmn(F), called the matrix associated with T with respect to
the basis V of V and W of W defined by

T(Vj) =
m∑
i=1

tijWi =
m∑
i=1

ttjiWi (4.5.2)

for any j ∈ {1, . . . , n}. On the other hand, we shall show just below that the following
equality also holds (

T(X )
)
W = T (X )V . (4.5.3)
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In other words, the action of T on a basis of V is given in terms of tT by relation
(4.5.2), while the action of T on the coordinate vectors is given in terms of T by
relation (4.5.3). Note that this is related to the more general notion of covariant or
contravariant transformations.

For the proof of (4.5.3) it is enough to observe that one has

T(X ) = T
( n∑

j=1

xjVj

)
=

n∑
j=1

xjT(Vj)

=
n∑

j=1

xj

m∑
i=1

tijWi =
m∑
i=1

( n∑
j=1

tij xj

)
Wi =

m∑
i=1

(T X)iWi,

which implies that (
T(X )

)
W = T X = T (X )V . (4.5.4)

Example 4.5.2. If V = Rn, W = Rm and Vj = Ej while Wi = Ei for any j ∈
{1, . . . , n} and j ∈ {1, . . . ,m}, and if T is a linear map from Rn to Rm then one
deduces from (4.5.2) that

T(Ej) =
m∑
i=1

tijEi =


t1j
t2j
...

tmj

 = T j

where T j corresponds to the jth column of the matrix T . In other words one has

T =
(
T(E1) T(E2) . . . T(En)

)
.

Example 4.5.3. If V is a real vector space with basis V = {V1, V2, V3} and if T : V → V
is the linear map such that

T(V1) = 2V1 − V2, T(V2) = V1 + V2 − 4V3, T(V3) = 5V1 + 4V2 + 2V3,

then the matrix associated with T with respect to the basis V is given by

T =

 2 1 5
−1 1 4
0 −4 2

 .

Let us still consider the notion of a change of basis. Indeed, given the matrix associ-
ated to a linear map in a prescribed basis, it is natural to wonder about the matrix asso-
ciated to the same linear map but with respect to another basis. So, let V = {V1, . . . , Vn}
and V ′ = {V ′

1 , . . . , V
′
n} be two basis of the same vector space V . Let B = (bij) ∈ Mn(F)

be the matrix defined by

V ′
j =

n∑
i=1

bijVi ≡
n∑

i=1

tbjiVi.
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It is easily observed that the matrix B is invertible. Then, for any X ∈ V withX = (X )V
and X ′ = (X )V ′ , one has

n∑
i=1

xiVi = X =
n∑

j=1

x′
jV

′
j =

n∑
j=1

x′
j

n∑
i=1

bijVi =
n∑

i=1

( n∑
j=1

bijx
′
j

)
Vi.

Since the vectors V1, . . . , Vn are linearly independent, this implies that

X = BX ′ or equivalently (X )V = B(X )V ′ . (4.5.5)

Let us now consider a linear map T : V → V , and let T be the matrix associated
with T with respect to the basis V , and let T ′ be the matrix associated to T with
respect to the basis V ′. The original question corresponds then to the link between T
and T ′ ? In order to answer this question, observe that for any X ∈ V one gets by
equations (4.5.4) and (4.5.5) that

T BX ′ = T X =
(
T(X )

)
V = B

(
T(X )

)
V ′ = BT ′X ′.

Since X ′ is arbitrary, one infers that T B = BT ′, or equivalently

T ′ = B−1T B. (4.5.6)

One deduces in particular that the matrix T and T ′ are similar, see Definition 2.1.16.
Note that a similar (but slightly more complicated) computation can be realized

for a linear map between two vector spaces V and W over the same field F endowed
with two different bases V ,V ′ and W ,W ′.

4.6 Composition of linear maps

Let us now consider three sets U, V,W and let F : U → V and G : V → W be maps.
Then the map

G ◦ F : U → W,

defined by
(
G ◦ F

)
(X) = G

(
F(X)

)
for any X ∈ U , is called the composition map of F

with G. Notice that if W ̸⊂ U the composition map F ◦G has simply no meaning.

Examples 4.6.1. (i) Let U = V = W = R and F,G be two real functions defined
on R. Then G ◦ F just corresponds to the composition of functions.

(ii) If U = Rn, V = Rm, W = Rp, A ∈ Mmn(R) and B ∈ Mpm(R), then for any
X ∈ Rn one has(

LB ◦ LA
)
(X) = LB

(
LA(X)

)
= BAX = (BA)X = LBA(X). (4.6.1)
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Let us now observe an important property of the composition of maps, namely the
associativity. Indeed, If U, V,W, S are sets and F : U → V , G : V → W and H : W → S
are maps, one has

(H ◦G) ◦ F = H ◦ (G ◦ F).

Indeed, for any X ∈ U one has[
(H ◦G) ◦ F

]
(X) =

(
H ◦G

)
(F(X)) = H

(
G(F(X))

)
and [

H ◦ (G ◦ F)
]
(X) = H

(
(G ◦ F)(X)

)
= H

(
G(F(X))

)
,

and the equality of the two right hand sides implies the statement.

Lemma 4.6.2. Let U, V,W be vector spaces over a field F, and let G : U → V ,
G′ : U → V , H : V → W and H′ : V → W be linear maps. Then

(i) H ◦G : U → W is a linear map,

(ii) (H + H′) ◦G = H ◦G+H′ ◦G,

(iii) H ◦ (G + G′) = H ◦G+H ◦G′,

(iv) (λH) ◦G = H ◦ (λG) = λ(H ◦G), for all λ ∈ F.

The proof will be provided in Exercise 4.17.

Remark 4.6.3. If V is a vector space and if T : V → V is a linear map, then Tn =
T ◦ T · · · ◦ T︸ ︷︷ ︸

n terms

is a linear map from V to V . By convention, one sets T0 = 1, and observes

that Tr+s = Tr ◦ Ts = Ts ◦ Tr.

4.7 Inverse of a linear map

Definition 4.7.1. For a map F : V → W between two sets V and W , one says that F
has an inverse if there exists G : W → V such that G ◦ F = 1V and F ◦ G = 1W . In
this case, one also says that F is invertible and write F−1 for this inverse.

Example 4.7.2. If A ∈ Mn(R) is invertible, then the linear map LA : Rn → Rn is
invertible, with inverse LA−1. This follows from equation (4.6.1), or more precisely

LA ◦ LA−1 = LAA−1 = 1 = LA−1A = LA−1 ◦ LA.

Due to the following lemma, there is no ambiguity in speaking about the inverse
(and not only about an inverse) of a invertible map.

Lemma 4.7.3. Let F : V → W be an invertible map between two sets V et W . Then
this inverse is unique.
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Proof. Let us assume that there exists G : W → V and G′ : W → V such that
G ◦ F = 1V , F ◦G = 1W , G′ ◦ F = 1V , and F ◦G′ = 1W . Then one gets

G = 1V ◦G = (G′ ◦ F) ◦G = G′ ◦ (F ◦G) = G′ ◦ 1W = G′

from which the result follows.

Let us now come to two more refined notions related to a maps, linear or not.

Definition 4.7.4. A map F : V → W between two sets is injective or one-to-one if
F(X1) ̸= F(X2) whenever X1, X2 ∈ V with X1 ̸= X2. The map F is called surjective
if for any Y ∈ W there exists at least one X ∈ V such that F(X) = Y . The map F is
bijective if it is both injective and surjective.

The following result links the notions of invertibility and of bijectivity.

Theorem 4.7.5. A map F : V → W between two sets is invertible if and only if F is
bijective.

Proof. (i) Assume first that F is bijective. In particular, since F is surjective, for any
Y ∈ W , there exists X ∈ V such that F(X) = Y . Note that X is unique because F is
also injective. Thus if one sets F−1(Y ) := X then one has

(F−1 ◦ F
)
(X) = F−1

(
F(X)

)
= F−1(Y ) = X

which implies that F−1 ◦ F = 1V , and similarly(
F ◦ F−1

)
(Y ) = F

(
F−1(Y )

)
= F(X) = Y

which implies that F ◦ F−1 = 1W . One has thus define an inverse for F.
(ii) Let us now assume that F is invertible, with inverse denoted by F−1. Let first

X1, X2 ∈ V with F(X1) = F(X2). One then deduces that

X1 = 1VX1 =
(
F−1 ◦ F

)
X1 = F−1

(
F(X1)

)
= F−1

(
F(X2)

)
=
(
F−1 ◦ F

)
(X2) = X2,

and thus F is injective. Secondly, let Y ∈ W , and observe that

Y = 1WY =
(
F ◦ F−1

)
(Y ) = F

(
F−1(Y )

)
which implies that Y = F(X) for X given by F−1(X). Thus F is surjective. Since F is
both injective and surjective, F is bijective.

For linear maps the general theory simplifies a lot, as we shall see now.

Theorem 4.7.6. Let V,W be two vector spaces over the same field F, and let T : V →
W be an invertible linear map. Then its inverse T−1 : W → V is also a linear map.
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Proof. Let Y1, Y2 ∈ W and set X1 := T−1(Y1) and X2 := T−1(X2). Since T ◦T−1 = 1W

one has for j ∈ {1, 2}

Yj =
(
T ◦ T−1

)
(Yj) = T

(
T−1(Yj)

)
= T(Xj).

Then, one infers that

T−1
(
Y1 + Y2

)
= T−1

(
T(X1) + T(X2)

)
=︸︷︷︸

linearity

T−1
(
T(X1 +X2)

)
= T−1 ◦ T(X1 +X2) = X1 +X2 = T−1(Y1) + T−1(Y2). (4.7.1)

Similarly one has for any λ ∈ F and Y ∈ W (with Y := T(X))

T−1(λY ) = T−1
(
λT(X)

)
=︸︷︷︸

linearity

T−1
(
T(λX)

)
=
(
T−1 ◦ T

)
(λX) = λX = λT−1(Y ). (4.7.2)

It is then sufficient to observe that (4.7.1) and (4.7.2) correspond to the linearity con-
ditions for T−1.

In the next statement we give an equivalent property for the injectivity of a linear
map.

Lemma 4.7.7. A linear map T : V → W between two vector spaces over the same field
is injective if and only if Ker(T) = {0}.

Proof. (i) The first part of the proof is a contraposition argument: instead of proving
A ⇒ B we show equivalently that B̄ ⇒ Ā. Thus, let us assume first that Ker(T) ̸= {0},
then there exists X0 ̸= 0 such that T(X0) = 0. In addition, for any X ∈ V one has

T(X +X0) = T(X) + T(X0) = T(X) + 0 = T(X).

Since X ̸= X +X0 but T(X) = T(X +X0), one concludes that T is not injective. By
contraposition, one has shown that T injective implies that Ker(T) = {0}.

(ii) Assume now that Ker(T) = {0}, and consider X1, X2 ∈ V with X1 ̸= X2. Then
one has

T(X1)− T(X2) = T(X1 −X2) ̸= 0

since X1 −X2 ̸= 0. As a consequence, T(X1) ̸= T(X2).

Let us provide a final theorem for this section, which is useful in many situations.

Theorem 4.7.8. Let T : V → W be a linear map between the vector spaces V and W ,
and assume that dim(V ) = dim(W ) < ∞. Then the following assertions are equivalent:

(i) Ker(T) = {0},

(ii) T is invertible,
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(iii) T is surjective.

Proof. The implication (ii) ⇒ (i) and (ii) ⇒ (iii) are direct consequences of Theorem
4.7.5 and Lemma 4.7.7.

Assume now (i), and recall from Lemma 4.7.7 that this condition corresponds to T
injective. Then from Theorem 4.3.5 and more precisely from the equality

dim
(
Ker(T)

)︸ ︷︷ ︸
0

+dim
(
Ran(T)

)
= dim(V )

one deduces that dim
(
Ran(T)

)
= dim(V ) = dim(W ), where the assumption about the

dimension has been taken into account. It is enough then to observe that

dim
(
Ran(T)

)
= dim(W )

means that T is surjective. Since T is also injective, it follows that T is bijective. Since
bijectivity corresponds to invertibility by Theorem 4.7.5, one infers that (ii) holds.

Assume now that (iii) holds. By taking again Theorem 4.3.5 into account, one
deduces that from the equality

dim
(
Ran(T)

)
= dim(W ) = dim(V )

that dim
(
Ker(T)

)
= 0, meaning that T is injective. Again, it implies that T is bijective,

and thus invertible, and thus that (ii) holds.

Corollary 4.7.9. For any A ∈ Mn(F), the following statements are equivalent:

(i) There exists B ∈ Mn(F) such that BA = 1n,

(ii) There exists C ∈ Mn(F) such that AC = 1n.

In addition, whenever (i) or (ii) holds, then B = C, and A is invertible with A−1 =
B = C.
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4.8 Exercises

Exercise 4.1. Let F : R2 → R2 be the map defined by F ( x
y ) =

(
2x
3y

)
for any ( x

y ) ∈ R2.
Describe the image by F of the points lying on the unit circle centered at 0, i.e.

{
( x
y ) ∈

R2 | x2 + y2 = 1
}
.

Exercise 4.2. Let F : R2 → R2 be the map defined by F ( x
y ) = ( xy

y ) for any ( x
y ) ∈ R2.

Describe the image by F of the line {( x
y ) ∈ R2 | x = 2}.

Exercise 4.3. Let V be a vector space of dimension n, and let {X1, . . . , Xn} be a basis
for V . Let F be a linear map from V into itself. Show that F is uniquely defined if one
knows F(Xj) for j ∈ {1, . . . , n}. Is it also true if F is an arbitrary map from V into
itself ?

Exercise 4.4. Let V,W be vector spaces over the same field, and let T : V → W be a
linear map. Show that the following set is a subspace of V :

{X ∈ V | T(X) = 0}.

This subspace is called the kernel of T.

Exercise 4.5. Show that the image of a convex set under a linear map is a convex set.

Exercise 4.6. Determine which of the following maps are linear:

a) F : R3 → R2 defined by F
(

x
y
z

)
= ( x

z ),

b) F : R4 → R4 defined by F(X) = −X for all X ∈ R4,

c) F : R3 → R3 defined by F(X) = X +
(

0
−1
0

)
for all X ∈ R3,

d) F : R2 → R2 defined by F ( x
y ) =

(
2x
y−x

)
,

e) F : R2 → R2 defined by F ( x
y ) = ( y

x ),

f) F : R2 → R defined by F ( x
y ) = xy.

Exercise 4.7. Determine the kernel and the range of the maps defined in the previous
exercise.

Exercise 4.8. Consider the subset of Rn consisting of all vectors t(x1, . . . , xn) such that
x1 + x2 + · · ·+ xn = 0. Is it a subspace of Rn ? If so, what is its dimension ?

Exercise 4.9. Let P : Mn(R) → Mn(R) be the map defined for any A ∈ Mn(R) by

P(A) =
1

2

(
A+ tA

)
.

1. Show that P is a linear map.
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2. Show that the kernel of P consists in the vector space of all skew-symmetric ma-
trices.

3. Show that the range of P consists in the vector space of all symmetric matrices.

4. What is the dimension of the vector space of all symmetric matrices, and the
dimension of the vector space of all skew-symmetric matrices ?

Exercise 4.10. Let C∞(R) be the vector space of all real functions on R which admit
derivatives of all orders. Let D : C∞(R) → C∞(R) be the map which associates to any
f ∈ C∞(R) its derivative, i.e. Df = f ′.

1. Is D a linear map ?

2. What is the kernel of D ?

3. What is the kernel of Dn, for any n ∈ N, and what is the dimension of this vector
space ?

Exercise 4.11. Consider the map F : R3 → R4 defined by

F

x
y
z

 =


x

x− y
x− z

x− y − z

 .

1. Is F a linear map ? (Justify your answer)

2. Determine the kernel of F.

3. Determine the range of F.

Exercise 4.12. What is the dimension of the space of solutions of the following systems
of linear equations ? In each case, find a basis for the space of solutions.

a)

{
2x+ y − z = 0
2x+ y + z = 0

b)
{
x− y + z = 0 c)

{
4x+ 7y − πz = 0
2x− y + z = 0

and

d)


x+ y + z = 0
x− y = 0
y + z = 0

Exercise 4.13. Let A be the matrix given by A =
(

0 1 3 −2
2 1 −4 3
2 3 2 −1

)
and consider the linear

map LA : R4 → R3 defined by LAX = AX for all X ∈ R4.

1. Determine the rank of A and the dimension of the range of LA.
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2. Deduce the dimension of the kernel of LA, and exhibit a basis for the kernel of LA.

3. Find the set of all solutions of the equation AX =
(

0
2
2

)
.

Exercise 4.14. Let F : R3 → R2 be the map indicated below. What is the matrix
associated with F in the canonical bases of R3 and R2 ?

a) F(E1) =

(
1
−3

)
, F(E2) =

(
−4
2

)
, F(E3) =

(
3
1

)
and

b) F

x1

x2

x3

 =

(
3x1 − 2x2 + x3

4x1 − x2 + 5x3

)
.

Exercise 4.15. Let L : R3 → R3 be a linear map which associated matrix has the form(
1 0 0
0 2 0
0 0 3

)
with respect to the canonical basis of R3. What is the matrix associated with L

in the basis generated by the three vectors V1 =

(
1/

√
2

1/
√
2

0

)
, V2 =

(
−1/

√
2

1/
√
2

0

)
, V3 =

(
0
0
−1

)
Exercise 4.16. For any A,B ∈ Mn(R), one says that A and B commute if AB = BA.

a) Show that the set of all matrices which commute with A is a subspace of Mn(R),

b) If A = ( 0 1
2 3 ), exhibit a basis of the subspace of all matrices which commute with

A.

Exercise 4.17. Let U, V,W be vector spaces over a field F, and let G : U → V ,
G′ : U → V , H : V → W and H′ : V → W be linear maps. Show that

(i) H ◦G : U → W is a linear map,

(ii) (H + H′) ◦G = H ◦G+H′ ◦G,

(iii) H ◦ (G + G′) = H ◦G+H ◦G′,

(iv) (λH) ◦G = H ◦ (λG) = λ(H ◦G), for all λ ∈ F.

Exercise 4.18. Let V be a real vector space, and let P : V → V be a linear map
satisfying P2 = P. Such a linear map is called a projection.

(i) Show that 1− P is also a projection, and that (1− P)P = P(1− P) = 0,

(ii) Show that V = Ker(P) + Ran(P),

(iii) Show that the intersection of Ker(P) and Ran(P) is {0}.
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Exercise 4.19. Let L : R2 → R2 be the linear map defined by L ( x
y ) =

(
x+y
x−y

)
. Show that

L is invertible and find its inverse. Same question with the map L : R3 → R3 defined by

L
(

x
y
z

)
=
(

x−y
x+z

x+y+3z

)
.

Exercise 4.20. Let F,G be invertible linear maps from a vector space into itself. Show
that (G ◦ F)−1 = F−1 ◦G−1.

Exercise 4.21. Show that the matrix B : Rn → Rn defining a change of basis in Rn is
always invertible.

Exercise 4.22. Let V be the set of all infinite sequences of real numbers (x1, x2, x3, . . . ).
We endow V with the pointwise addition and multiplication, i.e.

(x1, x2, x3, . . . ) + (x′
1, x

′
2, x

′
3, . . . ) = (x1 + x′

1, x2 + x′
2, x3 + x′

3, . . . )

and λ(x1, x2, x3, . . . ) = (λx1, λx2, λx3, . . . ), which make V an infinite dimensional vec-
tor space.

Define the map F : V → V , called shift operator, by

F(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . ).

(i) Is F a linear map ?

(ii) Is F injective, and what is the kernel of F ?

(iii) Is F surjective ?

(iv) Show that there is a linear map G : V → V such that G ◦ F = 1.

(v) Does the map G have the property that F ◦G = 1 ?

(vi) What is different from the finite dimensional case, i.e. when V is of finite dimen-
sion ?

Exercise 4.23. Consider the matrices

A =

(
2 0
0 2

)
, B =

(
1 0
0 0

)
, C =

(
−1 0
0 1

)
, D =

(
0 1
−1 0

)
,

E =

(
1 0.2
0 1

)
, F =

(
1 −1
1 1

)
,

and show their effect on the letter L defined by the three points ( 0
2 ) , (

0
0 ) , (

1
0 ) of R2.

Exercise 4.24. Let N = ( n1
n2 ) be a vector in R2 with ∥N∥ = 1, and let ℓ be the line in

R2 passing trough 0 ∈ R2 and parallel to N . Then any vector X ∈ R2 can be written
uniquely as X = X∥ + X⊥, where X∥ is a vector parallel to ℓ and X⊥ is a vector
perpendicular to ℓ. Show that there exists a projection P ∈ M2(R) such that X∥ = PX,
and express P in terms of n1 and n2.
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Exercise 4.25. 1) Do the same exercise in R3 with N given by
(

n1
n2
n3

)
.

2) Show that there also exists a projection Q such that X⊥ = QX. If H0,N is the
plane passing through 0 ∈ R3 and perpendicular to N , show that X⊥ ∈ H0,N .

Exercise 4.26. In the framework of the previous exercise, a reflection of X about H0,N

is defined by the vector Xref := X⊥ − X∥. Show that ∥Xref∥ = ∥X∥, and provide the
expression for the linear map transforming X into Xref .

Exercise 4.27. Prove Corollary 4.7.9.

Exercise 4.28. Block matrices are matrices which are partitioned into rectangular sub-
matrices called blocks. For example, let A ∈ Mn+m(R) be the block matrix

A =

(
A11 A12

A21 A22

)
with A11 ∈ Mn(R), A22(R) ∈ Mm(R), A12 ∈ Mn×m(R), and A21 ∈ Mm×n(R). Such
matrices can be multiplied as if every blocks where scalars (with the usual multiplication
of matrices), as long as the products are well defined. For example, check this statement
by computing the product AB in two different ways with the following matrices: A =(
A11 A12

)
with A11 = ( 0 1

1 0 ) and A12 = ( −1
1 ), and B =

( B11 B12
B21 B22

)
with B11 = ( 1 2

4 5 ),

B12 = ( 3
6 ), B21 =

(
7 8

)
, and B22 =

(
9
)
.

Exercise 4.29. Let A ∈ Mn+m(R) be the block matrix

A =

(
A11 A12

O A22

)
with A11 ∈ Mn(R), A22(R) ∈ Mm(R) and A12 ∈ Mn×m(R).

(i) For which choice of A11, A12 and A22 is A invertible ?

(ii) If A is invertible, what is A−1, in terms of A11, A12 and A22 ?



Chapter 5

Scalar product and orthogonality

5.1 Scalar product

Recall that the notion of a vector space has been introduced as an abstract version of
the properties shared both by Rn and by Mmn(R). Similarly, we have introduced the
scalar product on Rn already in Chapter 1, let us now consider an abstract version of it.
For simplicity, we introduce it on real vector spaces, but a slightly more general version
will be considered once the complex numbers will be at our disposal.

Definition 5.1.1. A scalar product on a real vector space V is a map ⟨·, ·⟩ : V ×V → R
such that for any X,Y, Z ∈ V and λ ∈ R one has

(i) ⟨X, Y ⟩ = ⟨Y,X⟩,

(ii) ⟨X + Y, Z⟩ = ⟨X,Z⟩+ ⟨Y, Z⟩,

(iii) ⟨λX, Y ⟩ = λ⟨X,Y ⟩,

(iv) ⟨X,X⟩ ≥ 0 and ⟨X,X⟩ = 0 if and only if X = 0.

Example 5.1.2. For V = Rn and X,Y ∈ V one sets ⟨X, Y ⟩ := X · Y and one can
check that the four conditions above are satisfied.

Example 5.1.3. For a, b ∈ R with a < b one considers V = C
(
[a, b];R

)
and for any

f, g ∈ V one defines

⟨f, g⟩ :=
∫ b

a

f(x)g(x)dx.

It is easily checked that this defines a scalar product on V , see Exercise 5.5. For informa-
tion, this scalar product extends to the set of L2-functions (the set of square integrable
functions).

Definition 5.1.4. If V is a real vector space endowed with a scalar product, one says
that X, Y ∈ V are orthogonal if ⟨X,Y ⟩ = 0, and one writes X⊥Y . If S is a subset of
V , one writes

S⊥ := {Y ∈ V | ⟨X,Y ⟩ = 0 for all X ∈ S}

81
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and call it the orthogonal subspace of S.

One easily shows that S⊥ is always a subspace of V .

Definition 5.1.5. For any real vector space V endowed with a scalar product and for
any X ∈ V we set

∥X∥ :=
√

⟨X,X⟩

and call it the norm of X (associated with the scalar product ⟨·, ·⟩).

Lemma 5.1.6. For any real vector space V endowed with a scalar product, for any
X, Y ∈ V and for λ ∈ R one has

(i) ∥λX∥ = |λ|∥X∥,

(ii) ∥X + Y ∥2 = ∥X∥2 + ∥Y ∥2 if and only if X⊥Y (Pythagoras theorem)

(iii) ∥X + Y ∥2 + ∥X − Y ∥2 = 2∥X∥2 + 2∥Y ∥2,

(iv) ∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥.

The proof will be provided in Exercise 5.1. The following statement is a generaliza-
tion of a property already derived in the context of Rn.

Lemma 5.1.7. For any real vector space V endowed with a scalar product and for any
X, Y ∈ V one has

|⟨X, Y ⟩| ≤ ∥X∥∥Y ∥. (5.1.1)

Proof. Let us first consider the trivial case Y = 0 for which (5.1.1) is an equality with
0 on both sides.

Now, assume that Y ̸= 0 and set c := ⟨X,Y ⟩
∥Y ∥2 . Then let us observe that (X− cY )⊥Y ,

since

⟨X − cY, Y ⟩ = ⟨X, Y ⟩ − ⟨X,Y ⟩
∥Y ∥2

⟨Y, Y ⟩ = 0.

It follows by Pythagoras theorem that

∥X∥2 = ∥(X − cY ) + cY ∥2 = ∥X − cY ∥2 + ∥cY ∥2 = ∥X − cY ∥2 + c2∥Y ∥2,

which implies that ∥X∥2 ≥ c2∥Y ∥, or equivalently ∥X∥ ≥ |c| ∥Y ∥. Note that this

inequality can also be rewritten as |c| ≤ ∥X∥
∥Y ∥ .

By collecting these information one gets

|⟨X, Y ⟩| = |c|∥Y ∥2 ≤ ∥X∥
∥Y ∥

∥Y ∥2 = ∥X∥∥Y ∥,

which corresponds to the claim.
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5.2 Orthogonal bases

Definition 5.2.1. Let V be a real vector space endowed with a scalar product, and let
{V1, . . . , Vn} be a basis for V . The basis is called orthogonal if ⟨Vi, Vj⟩ = 0 whenever
i, j ∈ {1, . . . , n} and i ̸= j. If in addition ⟨Vi, Vi⟩ = 1 for any i ∈ {1, . . . , n} the basis is
called orthonormal.

Example 5.2.2. The standard basis {E1, . . . , En} of Rn is an orthonormal basis.

The following result is of conceptual importance, and rather well-known.

Theorem 5.2.3 (Graham-Schmidt). Let V be a real vector space of dimension n en-
dowed with a scalar product. Then there exists an orthonormal basis for V .

The proof consists in the explicit construction of an orthonormal basis.

Proof. Let {V1, . . . , Vn} be an arbitrary basis for V (such a basis exists since otherwise
the dimension of V would not be defined), and let us set

V ′
1 :=

1

∥V1∥
V1

V ′
2 :=

1

∥V2 − ⟨V2, V ′
1⟩V ′

1∥
(
V2 − ⟨V2, V

′
1⟩V ′

1

)
...

V ′
n :=

1∥∥Vn −
∑n−1

i=1 ⟨Vn, V ′
i ⟩V ′

i

∥∥(Vn −
n−1∑
i=1

⟨Vn, V
′
i ⟩V ′

i

)
,

where the prefactors are chosen such that ∥V ′
j ∥ = 1 (note that Vj −

∑j−1
i=1 ⟨Vj, V

′
i ⟩V ′

i is
always different from 0 since otherwise Vj would be a linear combination of V1, . . . , Vj−1

which is not possible by assumption). Then, it simply remains to observe that V ′
j⊥V ′

k

for any j ̸= k. As a consequence, the elements V ′
j generate an orthonormal basis for V ,

as expected.

5.3 Bilinear maps

The notion of bilinear maps will be useful for calculus II.

Definition 5.3.1. Let V,W,U be vector spaces over the same field F. A map T :
V ×W → U is bilinear if it is linear in each argument, namely for any X,X1, X2 ∈ V ,
any Y, Y1, Y2 ∈ W and λ ∈ F one has

(i) T(X1 +X2, Y ) = T(X1, Y ) + T(X2, Y ),

(ii) T(λX, Y ) = λT(X,Y ),
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(iii) T(X, Y1 + Y2) = T(X, Y1) + T(X, Y2),

(iv) T(X,λY ) = λT(X,Y ).

Example 5.3.2. The scalar product ⟨·, ·⟩ : Rn × Rn → R is a bilinear map on the
Euclidean space Rn.

Example 5.3.3. If A ∈ Mmn(F) one can define a bilinear map FA : Fm × Fn → F for
any X ∈ Fm and Y ∈ Fn by

FA(X,Y ) = tXAY ≡ tX︸︷︷︸
∈M1m(F)

A︸︷︷︸
∈Mmn(F)

Y︸︷︷︸
∈Mn1(F)

∈ F. (5.3.1)

Note that it is easily checked that FA is indeed a bilinear map. For example, if A = ( 1 2
3 4 ),

X = ( 1
0 ) and Y = ( 0

1 ), then

FA(X, Y ) = (1 0)

(
1 2
3 4

)(
0
1

)
= (1 0)

(
2
4

)
= 2.

More generally, observe that if A = (aij), X = t(x1, . . . , xm) and Y = t(y1, . . . , yn) then

tXAY = X · (AY ) =
m∑
i=1

xi(AY )i =
m∑
i=1

xi

n∑
j=1

aij yj =
m∑
i=1

n∑
j=1

aij xi yj.

We shall now see that many bilinear maps are of the form presented in the previous
example. For that purpose, recall from Section 4.5 that if V = {V1, . . . , Vm} is a basis
for a vector space V over F and if X ∈ V then the coordinate vector of X is the element
X = t(x1, . . . , xm) ∈ Fm such that X = x1V1 + · · ·+ xmVm. One has already introduced
the notation (X )V = X. Similarly, for a basis W = {W1, . . . ,Wn} of a vector space W
over F and for any Y ∈ W one sets (Y)W = Y = t(y1, . . . , yn) ∈ Fn for its coordinate
vector.

Lemma 5.3.4. Let V,W be vector spaces over a field F and let F : V ×W → F be a
bilinear map. If V = {V1, . . . , Vm} is a basis for V , and if W = {W1, . . . ,Wn} is a basis
for W then there exists A ∈ Mmn(F) such that

F(X ,Y) = tXAY

for any X ∈ V , any Y ∈ W and with X = (X )V and Y = (Y)W .

Proof. By taking the bilinearity of F into account, one has

F(X ,Y) = F
( m∑

i=1

xiVi,
n∑

j=1

yjWj

)
=

m∑
i=1

n∑
j=1

xi yjF(Vi,Wj).

Thus, by setting aij = F(Vi,Wj) ∈ F one deduces that

F(X ,Y) =
m∑
i=1

n∑
j=1

aij xi yj =
tXAY

with A = (aij).
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Remark 5.3.5. If V,W,U are vector spaces over the same field F and if Fi : V ×W → U
are bilinear maps for i = 1, 2, then F1 +F2 : V ×W → U is a bilinear map, and λFi is
also a bilinear map. Thus, the set of bilinear maps from V ×W to U is a vector space.

Let us end this section with two questions:

Question: Let V = W = Rn and consider the map F defined by the usual scalar
product

F(X,Y ) = X · Y for any X,Y ∈ Rn.

In view of Lemma 5.3.4, what is the matrix associated with this bilinear map with
respect to the canonical basis of Rn ?

Question: How does a bilinear map change when one performs a change of bases for
the vector spaces V and W ?
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5.4 Exercises

Exercise 5.1. Let V be a real vector space endowed with a scalar product. Prove the
following relations for X,Y ∈ V and λ ∈ R:

(i) ∥λX∥ = |λ|∥X∥,

(ii) ∥X + Y ∥2 = ∥X∥2 + ∥Y ∥2 if and only if X⊥Y ,

(iii) ∥X + Y ∥2 + ∥X − Y ∥2 = 2∥X∥2 + 2∥Y ∥2,

(iv) ∥X + Y ∥ ≤ ∥X∥+ ∥Y ∥.

Exercise 5.2. Let A = (ajk) ∈ Mn(R) and define Tr(A) =
∑n

j=1 ajj, where Tr(A) is
called the trace of A. Show the following properties:

(i) Tr : Mn(R) → R is a linear map,

(ii) Tr(AB) = Tr(BA), for any A,B ∈ Mn(R),

(iii) If C ∈ Mn(R) is an invertible matrix, then Tr(C−1AC) = Tr(A),

(iv) If M s
n(R) denotes the vector space of all n× n symmetric matrices, then the map

M s
n(R)×M s

n(R) ∋ (A,B) 7→ Tr(AB) ∈ R

defines a scalar product on M s
n(R). We recall that a matrix A is symmetric if

A = tA.

Exercise 5.3. Find an orthonormal basis for the subspace of R4 defined by the three

vectors

(
1
1
0
1

)
,

(
1
0
−1
2

)
and

(
1
−2
0
0

)
.

Exercise 5.4. Find an orthonormal basis for the space of solutions of the following
systems:

a)

{
2x+ y − z = 0
2x+ y + z = 0

b)
{
x− y + z = 0 c)

{
4x+ 7y − πz = 0
2x− y + z = 0

d)


x+ y + z = 0
x− y = 0
y + z = 0

Exercise 5.5. We consider the real vector space V := C([0, 1]) made of continuous real
functions on [0, 1] and endow it with the map

V × V ∋ (f, g) 7→ ⟨f, g⟩ :=
∫ 1

0

f(x)g(x)dx ∈ R.

Show that
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(i) ⟨·, ·⟩ is a scalar product on V ,

(ii) If W is the subspace of V generated by the three functions x 7→ 1 (constant
function), x 7→ x (identity function), and x 7→ x2, find an orthonormal basis for
W .

Exercise 5.6. For any symmetric matrix A = (aij) ∈ Mn(R), we define the map

FA : Rn × Rn ∋ (X, Y ) 7→ FA(X, Y ) := tXAY ∈ R.

(i) Show that FA is a bilinear map,

(ii) Show that FA(X, Y ) = FA(Y,X) for any X, Y ∈ Rn.

(iii) When does FA define a scalar product ?

(iv) If A is one of the following matrices, does FA define a scalar product ?

A =

(
1 2
2 1

)
, A =

 2 −1 0
−1 2 −1
0 −1 2

 .
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Chapter 6

The determinant

6.1 Multilinear maps

In this first section, we generalize the notions of linear maps and bilinear maps.

Definition 6.1.1. Let V be a vector space over a field F, and let n ∈ N. A map

T : V × V × · · · × V︸ ︷︷ ︸
n terms

→ F

is n-linear if it is linear in each argument, i.e.

T(X1, X2, . . . , Xj +X ′
j, . . . , Xn)

= T(X1, X2, . . . , Xj, . . . , Xn) + T(X1, X2, . . . , X
′
j, . . . , Xn)

and
T(X1, X2, . . . , λXj, . . . , Xn) = λT(X1, X2, . . . , Xj, . . . , Xn)

for any X1, . . . , Xj, X
′
j, . . . , Xn ∈ V , λ ∈ F and j ∈ {1, . . . , n}. The set of all n-linear

maps is denoted by Multn(V ).

Note that if n = 1 one speaks about a linear map, while n = 2 corresponds to
a bilinear map. Without difficulty one can show that the set of Multn(V ) is a vector
space.

Definition 6.1.2. An element T ∈ Multn(V ) is alternating if

T(X1, . . . , Xi, . . . , Xj, . . . , Xn) = 0

whenever Xi = Xj for some i, j ∈ {1, . . . , n} with i ̸= j.

Example 6.1.3. If A = ( 0 1
−1 0 ), then the bilinear map FA : R2 × R2 → R defined in

(5.3.1) is alternating. Indeed, if X = ( x
y ) for any x, y ∈ R, then one has

FA(X,X) = (x y)

(
0 1
−1 0

)(
x
y

)
= (x y) ( y

−x ) = xy − yx = 0.

89
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On the other hand, observe also that if X = ( a
b ) and Y = ( c

d ), then

FA(X,Y ) = (a b)

(
0 1
−1 0

)(
c
d

)
= ad− bc.

Lemma 6.1.4. Let V be a vector space, and let T ∈ Multn(V ) be alternating. If
X1, . . . , Xn ∈ V is a linearly dependent family, then T(X1, . . . , Xn) = 0.

Proof. Since the vectors are linearly dependent, it means that one of them, let’s say
X1, is a linear combination of the others: X1 =

∑n
i=2 λiXi for some scalars λi. Then

one has

T(X1, X2, . . . , Xn) = T
( n∑

i=2

λiXi, X2 . . . , Xn

)
=

n∑
i=2

λiT(Xi, X2, . . . , Xn) =
n∑

i=2

λi 0 = 0.

Note that a simple consequence of this lemma is that if dim(V ) = m and if T ∈
Multn(V ) for some n > m one must have T(X1, . . . , Xn) = 0 whenever T is alternating.
Indeed, there does not exist a family of n linearly independent vectors in a vector space
of dimension m < n.

Lemma 6.1.5. Let V be a vector space, and let T ∈ Multn(V ) be alternating. For any
X1, . . . , Xn ∈ V one has

T(X1, . . . , Xj, . . . , Xk, . . . , Xn) = −T(X1, . . . , Xk, . . . , Xj, . . . , Xn),

or in other words T changes its sign when two arguments are exchanged.

Proof. One has by linearity and since T is alternating:

0 =T(X1, . . . , Xj +Xk, . . . , Xj +Xk, . . . , Xn)

=T(X1, . . . , Xj, . . . , Xj, . . . , Xn) + T(X1, . . . , Xk, . . . , Xk, . . . , Xn)

+ T(X1, . . . , Xj, . . . , Xk, . . . , Xn) + T(X1, . . . , Xk, . . . , Xj, . . . , Xn)

=0 + 0 + T(X1, . . . , Xj, . . . , Xk, . . . , Xn) + T(X1, . . . , Xk, . . . , Xj, . . . , Xn)

from which the statement follows directly.

Let us finally state two useful properties of alternating maps which follow almost
directly from the definition.

Lemma 6.1.6. Let V be a vector space over a field F, and let T ∈ Multn(V ) be
alternating. Then for any X1, . . . , Xn ∈ V and any λ, λi ∈ F one has
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(i)
T(X1, . . . , λXj, . . . , Xn) = λT(X1, . . . , Xj, . . . , Xn),

(ii)

T
(
X1 +

n∑
i=2

λiXi, X2, . . . , Xn

)
= T(X1, X2, . . . , Xn),

and such linear combination can be performed at any entry.

Proof. The first statement is nothing but the linearity of T in its jth-argument. The
second statement is a consequence of the alternating property of T.

6.2 The determinant

Let F be a field, and recall that a map

T : Fn × · · · × Fn︸ ︷︷ ︸
m terms

→ F

is multlinear alternating if T is linear in each of its m arguments and if

T(X1, . . . , Xi, . . . , Xj, . . . , Xm) = 0

whenever Xi = Xj for some i ̸= j. In the special case m = n, a very strong statement
holds. For this, recall that the standard basis {Ej}nj=1 of Fn is given by (Ej)i = 1 if
i = j and (Ej)i = 0 if i ̸= j.

Theorem 6.2.1. For any field F there exists a unique T ∈ Multn(Fn) alternating such
that

T(E1, E2, . . . , En) = 1.

In order to prove this statement, we need to introduce one more notation. For any
indices i1, i2, . . . , in with ij ∈ {1, 2, . . . , n} we define the number εi1i2...in by

εi1i2...in = 0 if two of the indices are equal,

εi1i2...in = (−1)m if {i1, . . . , in} = {1, . . . , n} and if m is the number of transpo-

sitions (exchanges) needed to reorder i1i2 . . . in into 12 . . . n.

Note that the equality {i1, . . . , in} = {1, . . . , n} has to be understood as an equality
between sets, without any consideration about the order. For example, {1, 2} = {2, 1}
because both sets contain the same elements.

Example 6.2.2.

ε12 = 1, ε21 = −1, ε11 = 0 = ε22

ε123 = 1 = ε231 = ε312, ε132 = −1 = ε321 = ε213, ε122 = 0 = ε111 = · · ·
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Proof of Theorem 6.2.1. Let X1, . . . , Xn ∈ Fn, and let λij ∈ F for i, j ∈ {1, . . . , n} such
that Xj =

∑n
i=1 λjiEi. Thus, if T is any multilinear map one has

T(X1, . . . , Xn) = T
( n∑

i1=1

λ1i1Ei1 , . . . ,
n∑

in=1

λninEin

)
=

n∑
i1=1

· · ·
n∑

in=1

λ1i1 . . . λninT(Ei1 , . . . , Ein). (6.2.1)

In addition, if T is alternating as well, then T(Ei1 , . . . , Ein) = 0 unless {i1, . . . , in} =
{1, . . . , n} and in this case one has

T(Ei1 , . . . , Ein) = εi1i2...inT(E1, E2, . . . , En).

Finally, by imposing T(E1, E2, . . . , En) = 1 one gets from (6.2.1) that

T(X1, . . . , Xn) =
∑

{i1,...,in}={1,...,n}

λ1i1 . . . λnin εi1i2...in

=
∑

{i1,...,in}={1,...,n}

εi1i2...in λ1i1 . . . λnin . (6.2.2)

Note that the summation has to be performed on the set of all permutations of the
n numbers 1, 2, . . . , n. One concludes by observing that the r.h.s. of (6.2.2) does not
depend on T, showing that there exists only one T satisfying the stated conditions.

Corollary 6.2.3. There exists a unique map Det : Mn(F) → F which is n-linear
alternating as a function of the columns, and which is equal to 1 for the identity matrix
1n. This map is called the determinant.

Proof. It is sufficient to identify a matrix A ∈ Mn(F) with its n columns Aj, each one
belonging to Fn, and to use the previous theorem.

Note that the following two notations are used for the determinant of a matrix A:
either Det(A) or |A|. In the next statement, we simply adapt the properties proved for
n-linear maps to the determinant.

Lemma 6.2.4. Let A ∈ Mn(F) with A = (A1 A2 . . .An). Then

(i) Det(A) = 0 if the n columns of A are linearly dependent,

(ii)
Det(A1 . . .Aj . . .Ak . . .An) = −Det(A1 . . .Ak . . .Aj . . .An),

or in other words the sign of the determinant changes whenever two columns of
the matrix are exchanged,

(iii)
Det(A1 . . . λAj . . .An) = λDet(A1 . . .Aj . . .An),
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(iv) Det(A) is not changed if one adds to a column a linear combination of the other
columns.

Let us also state two formulas for the computation of the determinant (see also
Exercise 6.5). For this purpose, we introduce one more notation: For a matrix A ∈
Mn(F) and for i, j ∈ {1, . . . , n} we denote by A(i, j) ∈ Mn−1(F) the matrix obtained
by disregarding the row i and the column j of A. Then the following formulas hold: for
any A = (aij) one has

Det(A) =
n∑

j=1

(−1)i+j aijDet
(
A(i, j)

)
for any fixed i ∈ {1, . . . , n}, (6.2.3)

or

Det(A) =
n∑

i=1

(−1)i+j aijDet
(
A(i, j)

)
for any fixed j ∈ {1, . . . , n}. (6.2.4)

Note that formula (6.2.3) corresponds to a development of the determinant with respect
to the row i of A, while (6.2.4) corresponds to the development of the determinant with
respect to the column j of A.

Examples 6.2.5. (i) If A ∈ M1(F), i.e. A = (a) ∈ F, then Det(A) = a,

(ii) In A ∈ M2(F) with A = ( a11 a12
a21 a22 ), then

Det(A) = (−1)2a11Det
(
A(1, 1)

)
+ (−1)3a12Det

(
A(1, 2)

)
= a11a22 − a12a21

= a11a22 − a21a12,

(iii) If A ∈ M3(F) with A =
(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)
, then

Det(A)

=(−1)2a11Det
(
A(1, 1)

)
+ (−1)3a12Det

(
A(1, 2)

)
+ (−1)4a13Det

(
A(1, 3)

)
=a11(a22a33 − a32a23)− a12(a21a33 − a31a23) + a13(a21a32 − a31a22)

=a11a22a33 − a11a32a23 − a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22.

Remark that in the above examples, we have performed the development with
respect to the first row, but the same result would have been obtained if the development
was performed with respect to any other row or column.

In the sequel, we shall obtain various additional properties of the determinant.

Lemma 6.2.6. Let A ∈ Mn(F), then Det(A) = Det(tA).
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Proof. The proof is performed by induction. Clearly, for n = 1 the statement is true
since the matrix just corresponds to a single scalar. So we can assume that the statement
is true for any matrix inMn−1(F) and prove it for any element ofMn(F). LetA = (aij) ∈
Mn(F) and let us set B = (bij) with B = tA. Then, by the formula (6.2.3) with i = 1
one gets

Det(A) = a11Det
(
A(1, 1)

)
− a12Det

(
A(1, 2)

)
+ · · ·+ (−1)n+1a1nDet

(
A(1, n)

)
(6.2.5)

and by formula (6.2.4) with j = 1 one gets

Det(B) = b11Det
(
B(1, 1)

)
− b21Det

(
B(2, 1)

)
+ · · ·+ (−1)n+1bn1Det

(
B(n, 1)

)
. (6.2.6)

Now, observe that a1j = bj1 because B is the transpose of A, and similarly B(j, 1) =
tA(1, j) ∈ Mn−1(F). Since by assumption one has

Det
(
A(1, j)

)
= Det

(
tA(1, j)

)
= Det

(
B(j, 1)

)
one directly infers from (6.2.5) and (6.2.6) that Det(A) = Det(B), which corresponds
to the statement.

Corollary 6.2.7. All the properties of Det(A) with respect to the columns of A also
hold with respect to the rows of A.

In order to state an important result linking Det(A) and the invertibility of A, let
us recall some results of Chapter 2 but in the general framework of an arbitrary field
F.

1) Recall that the elementary matrices have been introduced in Definition 2.5.1 and
that their definition holds for any field. One shows in Exercise 6.4 that

(i) Det(1n − Irr + cIrr) = c, for c ∈ F with c ̸= 0,

(ii) Det(1n + Irs + Isr − Irr − Iss) = −1, for r ̸= s,

(iii) Det(1n + cIrs) = 1, for r ̸= s and any c ∈ F.

In addition, one also observes that for any A ∈ Mn(F) and any elementary matrix
B ∈ Mn(F) one has

Det(BA) = Det(B)Det(A). (6.2.7)

Note that this property can be inferred from the general property of the determinant
and from the action of an elementary matrix on A, as seen in Exercise 2.14.

2) For any A ∈ Mn(F), let us recall that there exist a family of elementary matrices
B1,B2, . . . ,Bp ∈ Mn(F) such that A′ := BpBp−1 . . .B1A is a matrix in the standard
form, see Corollary 2.4.10 and the subsequent definition. In particular, it has been
shown in Theorem 2.5.4 that A′ = 1n if and only if A is invertible. Equivalently, A is
not invertible if and only if A′ contains some 0 on its diagonal.

3) One easily observes that Det(A′) = 1 if A′ = 1n and that Det(A′) = 0 if A′

contains some 0 on its diagonal.
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Proposition 6.2.8. For any field F and any A ∈ Mn(F), the following statements are
equivalent:

(i) Det(A) ̸= 0,

(ii) A is invertible,

(iii) The columns A1,A2, . . . ,An of A are linearly independent,

(iv) The rows A1,A2, . . . ,An of A are linearly independent.

Proof. Since there exist elementary matrices Bj such that A′ := BpBp−1 . . .B1A with
A′ in the standard form, one gets from (6.2.7) that

Det(A′) = Det
(
BpBp−1 . . .B1A

)
= Det(Bp)Det

(
Bp−1 . . .B1A

)
= . . .

= Det(Bp)Det(Bp−1) . . .Det(B1)︸ ︷︷ ︸
̸=0

Det(A).

Thus, one infers that Det(A) ̸= 0 if and only if Det(A′) ̸= 0. Since by the above
observations 2) and 3) one already knows that Det(A′) ̸= 0 if and only if A is invertible,
one then concludes that Det(A) ̸= 0 if and only if A is invertible. This corresponds to
the equivalence between (i) and (ii).

For the second equivalence, consider LA : Fn → Fn be the linear map defined
by LAX = AX for any X ∈ Fn. By definition of the rank, A1, . . . ,An are linearly
independent if and only if rank(A) = n. However, by Corollary 4.4.2, Theorem 4.3.5
and Lemma 4.7.8 one has

rank(A) = n ⇔ dim
(
Ran(LA)

)
= n ⇔ dim

(
Ker(LA)

)
= 0 ⇔ LA is invertible.

Finally, from Example 4.7.2 one also infers that LA is invertible if and only if A is
invertible. Summing up these information, one has obtained that A1, . . . ,An are linearly
independent if and only if A is invertible, which corresponds to the equivalence between
(ii) and (iii).

The equivalence between (iii) and (iv) corresponds to a reformulation of Corollary
6.2.7.

Corollary 6.2.9. Let F be any field and let X1, . . . , Xn be n elements of Fn. Then
X1, . . . , Xn are linearly independent if and only if Det(X1X2 . . . Xn) ̸= 0.

Let us now prove an extension of (6.2.7) valid for arbitrary matrices.

Proposition 6.2.10. For any field F and any A, C ∈ Mn(F) one has

Det(AC) = Det(A)Det(C). (6.2.8)
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Proof. Since there exist elementary matrices Bj such that A := B−1
1 B−1

2 . . .B−1
p A′ with

A′ in the standard form, one gets from (6.2.7) that

Det(AC) = Det
(
B−1
1 B−1

2 . . .B−1
p A′C

)
= Det(B−1

1 )Det
(
B−1
2 . . .B−1

p A′C
)

= . . .

= Det(B−1
1 )Det(B−1

2 ) . . .Det(B−1
p )︸ ︷︷ ︸

̸=0

Det(A′C).

Thus, if A′ = 1n, one deduces that

Det(AC) = Det(B−1
1 )Det(B−1

2 ) . . .Det(B−1
p )︸ ︷︷ ︸

=Det(A)

Det(C) = Det(A)Det(C).

On the other hand, if A′ ̸= 1n, then the last row of A′ is filled with 0 and one has
Det(A′) = 0 = Det(A), where we have used an argument from the previous proof for
the last equality. However, one also deduces from the formula (2.2.4) on the product of
two matrices that the last row of A′C is also filled only with 0, and this implies that
Det(A′C) = 0 as well. As a consequence, one has both

Det(AC) = Det(B−1
1 )Det(B−1

2 ) . . .Det(B−1
p )Det(A′C) = 0

and Det(A)Det(C) = 0Det(C) = 0. Again, the equality (6.2.8) holds.

6.3 Cramer’s rule and the inverse of a matrix

The next proposition is usually referred as Cramer’s rule.

Proposition 6.3.1. Let A ∈ Mn(F) with Det(A) ̸= 0, and consider the system of

equations AX = B with B ∈ Fn. Then its solution X =

( x1

...
xn

)
∈ Fn is given by

xj =
1

Det(A)
Det
(
A1A2 . . . B . . .An

)
,

where B is replacing the column Aj.

The proof of this statement is provided in Exercise 6.12.

Corollary 6.3.2. If A ∈ Mn(F) is invertible, then its inverse is given by the following
formula

(A−1)ij = (−1)i+jDet
(
A(j, i)

)
Det(A)

.
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Proof. For fixed j ∈ {1, . . . , n}, consider the equation AX = Ej with X =

( x1

...
xn

)
∈ Fn

and with Ej ∈ Fn the vector consisting in 1 at the position j and 0 everywhere else.
Since A is invertible this equation is equivalent to A−1Ej = X, or more precisely
xi =

∑n
k=1(A−1)ik(Ej)k for any i ∈ {1, . . . , n}. Since (Ej)k = 0 whenever j ̸= k one

gets xi = (A−1)ij.
On the other hand, from the previous proposition with B = Ej one also gets

xi =
1

Det(A)
Det
(
A1A2 . . . Ej . . .An

)
=

1

Det(A)
(−1)i+jDet

(
A(j, i)

)
where formula (6.2.4) with respect to the column i has been used. By identifying the
two expressions for xi one gets the stated equality.
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6.4 Exercises

Exercise 6.1. Let us define the map F : Mn(R)× · · · ×Mn(R)︸ ︷︷ ︸
m arguments

→ R by

F
(
A1, . . . ,Am

)
= Tr

(
A1 . . .Am

)
.

Show that F is a m-linear map.

Exercise 6.2. Show that the the cross product in R3 is a bilinear alternating map.

Exercise 6.3. Exhibit 3 different alternating bilinear maps on R3.

Exercise 6.4. For r ∈ {1, . . . ,m} and s ∈ {1, . . . ,m}, let Irs ∈ Mm(F) be the matrix
whose rs-component is 1 and all the other ones are equal to 0. For c ̸= 0, consider the
following 3 types of elementary matrices :

1. 1m − Irr + cIrr, the matrix obtained from the identity matrix by multiplying the
r-th diagonal component by c,

2. For r ̸= s, (1m+Irs+Isr−Irr−Iss), the matrix obtained from the identity matrix
by interchanging the r-th row with the s-th row,

3. For r ̸= s, (1m+ cIrs), the matrix having the rs-th component equal to c, all other
components 0 except the diagonal components which are equal to 1.

Compute the determinant of these elementary matrices.

Exercise 6.5. For an arbitrary field F let A = (aij) ∈ Mn(F) and recall the formula:

Det(A) =
n∑

i=1

(−1)i+j aijDet
(
A(i, j)

)
for any fixed j ∈ {1, . . . , n}

=
n∑

j=1

(−1)i+j aijDet
(
A(i, j)

)
for any fixed i ∈ {1, . . . , n}.

Show that Det(1n) = 1 for any n. For n = 2, show that

(i) the determinant is linear as a function of the columns of A,

(ii) the determinant is alternating as a function of the columns of A.

Can you do it for n = 3? For arbitrary n (a proof by induction over the dimension n is
recommended).

Exercise 6.6. Compute the determinant of the following matrices:

a)

4 −1 1
2 0 0
1 5 7

 , b)

1 4 6
0 0 1
0 0 8

 c)

3 1 1
2 5 5
8 7 7

 d)


1 0 −2 0
0 1 0 3
0 −1 1 0
3 0 0 5


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Exercise 6.7. Let A = (ajk) ∈ Mn(R) be an upper triangular matrix. Compute Det(A).

Exercise 6.8. Show that two similar square matrices share the same determinant.

Exercise 6.9. Show that if A ∈ Mn(F) is invertible then the following equality holds:

Det
(
A−1

)
=

1

Det(A)
.

Exercise 6.10. Compute the determinant of the matrix
(
x+1 x−1
x 2x+5

)
.

Exercise 6.11. Consider the matrix A =
(

λ 1 1
−1 λ 1
1 1 λ

)
with λ ∈ R.

(i) Compute the determinant of A,

(ii) For which values of λ is A invertible ?

Exercise 6.12. Prove Cramer’s rule, i.e. show that if A ∈ Mn(F) is invertible and if
X ∈ Fn satisfies AX = B for some B ∈ Fn, then

xj =
1

Det(A)
Det
(
A1A2 . . . B . . .An

)
,

where B is replacing the column Aj. For that purpose, one should first recall that AX =
B is equivalent to x1A1 + x2A2 + · · ·+ xnAn = B, and insert this equality in the term
Det
(
A1A2 . . . B . . .An

)
.

Exercise 6.13. By using determinants, find the inverse for the following matrices :

a)

1 2 −1
0 1 1
0 2 7

 b)

2 1 2
0 3 −1
4 1 1


Exercise 6.14. By using determinants, solve the following systems of equations :

a)


x+ 2y − z = 1

y + z = 1
2y + 7z = 1

b)


2x+ y + 2z = 0

3y − z = 1
4x+ y + z = 2

Exercise 6.15. Let X,Y be two vectors in R2. Check that the area of the paralle-
logram spanned by X and Y is equal to the absolute value of the determinant of the
matrix (X Y ) ∈ M2(R). More generally, if X1, . . . , Xn are n vectors of Rn, one writes
Vol(X1, . . . , Xn) for the volume of the n-dimensional box spanned by X1, . . . , Xn. Why
is it natural to have

Vol(X1, . . . , Xn) = |Det(X1 . . . Xn)| ?
Exercise 6.16. Let {V1, . . . , Vn} and {V ′

1 , . . . , V
′
n} be two bases of Rn, and let B ∈

Mn(R) be the matrix of change of bases, i.e. V ′
j = BVj for any j = 1, 2, . . . , n. What is

the geometric interpretation of |Det(B)| in this setting ? For that purpose, one should
first check that if (V1 V2 . . . Vn) denotes the matrix with columns Vj and (V ′

1 V ′
2 . . . V

′
n)

denotes the matrix with columns V ′
j , then one has

(V ′
1 V ′

2 . . . V
′
n) = (BV1 BV2 . . .BVn) = B(V1 V2 . . . Vn).
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Chapter 7

Eigenvectors and eigenvalues

7.1 Eigenvalues and eigenvectors

We start with the main definition of this chapter.

Definition 7.1.1. Let V be a vector space over a field F, and let L : V → V be a linear
map. An element λ ∈ F is an eigenvalue of L if there exists X ∈ V with X ̸= 0 such
that

L(X) = λX.

In such a case, X is called an eigenvector or an eigenfunction associated with the
eigenvalue λ.

Examples 7.1.2. (i) Consider LA : R2 → R2 with A = ( 1 2
4 3 ). Then one observes

that

LA

(
1
2

)
=

(
1 2
4 3

)(
1
2

)
=

(
5
10

)
= 5

(
1
2

)
.

Thus, ( 1
2 ) is an eigenvector of LA associated with the eigenvalue 5. Similarly, one

can check that ( 1
−1 ) is an eigenvector of LA associated with the eigenvalue −1.

(ii) If A =

( a11 0 ... 0
0 a22 ... 0
...

...
...

...
0 0 ... amn

)
, then Ej is an eigenvector of LA associated with the

eigenvalue ajj.

(iii) If V = C1(R) and if L = d
dx
, then any λ ∈ R is an eigenvalue of L since the

function x 7→ eλx belongs to C1(R) and satisfies[
L
(
eλ·
)]
(x) =

(
eλ·
)′
(x) = λeλx.

Thus this function is an eigenvector associated with the eigenvalue λ.

101
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Remark 7.1.3. An eigenvector is never unique. Indeed, if X is an eigenvector asso-
ciated with the eigenvalue λ of L, then for any c ∈ F with c ̸= 0 the element cX ∈ V
is also an eigenvector of L associated with the eigenvalue λ. Indeed, one only has to
observe that

L(cX) = cL(X) = cλX = λ(cX).

More generally one has:

Lemma 7.1.4. The set of eigenvectors associated with the eigenvalue λ of L is a sub-
space of V .

This vector space is called the eigenspace associated with the eigenvalue λ of L.

Proof. We have just seen that if X is an eigenvector of L associated with the eigenvalue
λ, then cX is an eigenvector associated with the same eigenvalue. This corresponds to
the second condition of the definition of a subspace of V , see Definition 3.1.5.

For the first condition of the same definition, observe that if X1, X2 satisfy L(X1) =
λX1 and L(X2) = λX2, then one has

L(X1 +X2) = L(X1) + L(X2) = λX1 + λX2 = λ(X1 +X2),

which corresponds to this condition.

Example 7.1.5. Let A =
(

0 0 0
0 3 0
0 0 3

)
∈ M3(R) and consider the corresponding map LA :

R3 → R3. Then 0 and 3 are eigenvalues of LA, with E1 an eigenvector associated with
the eigenvalue 0, and any cE2 + dE3, with c, d ∈ R, an eigenvector associated with the
eigenvalue 3. Note that the eigenspace associated with the eigenvalue 0 is of dimension
1 while the eigenspace associated with the eigenvalue 3 is of dimension 2.

The following result is important, especially in relation with quantum mechanics.

Theorem 7.1.6. Let λ1, . . . , λm be eigenvalues of L, and let X1, . . . , Xm be correspond-
ing eigenvectors. If λi ̸= λj for any i ̸= j, then the vectors X1, . . . , Xm are linearly
independent.

Proof. This proof is a proof by induction. Clearly, if m = 1 then the only eigenvector
X1 ̸= 0 is linearly independent. So, let us assume that the statement is true for a certain
m−1 ≥ 1, and let us prove it for m. Thus, let us assume that X1, . . . , Xm−1 are linearly
independent, and show that X1, . . . Xm are also linearly independent. For this purpose,
consider the linear combination

c1X1 + c2X2 + · · ·+ cmXm = 0, (7.1.1)

for some coefficients cj ∈ F. By multiplying this equality by λm one gets

c1λmX1 + c2λmX2 + · · ·+ cmλmXm = 0. (7.1.2)
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On the other hand, by applying L to (7.1.1) one gets

c1L(X1) + c2L(X2) + · · ·+ cmL(Xm) = c1λ1X1 + c2λ2X2 + · · ·+ cmλmXm = 0. (7.1.3)

Finally, by subtracting (7.1.3) to (7.1.2) one obtains

c1 (λm − λ1)︸ ︷︷ ︸
̸=0

X1 + c2 (λm − λ2)︸ ︷︷ ︸
̸=0

X2 + · · ·+ cm−1 (λm − λm−1)︸ ︷︷ ︸
̸=0

Xm−1 = 0.

Since X1, . . . , Xm−1 are linearly independent, it follows that c1 = c2 = · · · = cm−1 = 0.
We then conclude from (7.1.1) that cm = 0 as well, meaning thatX1, . . . , Xm are linearly
independent.

Corollary 7.1.7. If A ∈ Mn(F), then the linear map LA : Fn → Fn can have at most
n distinct eigenvalues.

Proof. If LA had m > n eigenvalues, then the eigenvectors X1, . . . , Xm would be a
family of m linearly independent elements of Fn, which is impossible.

7.2 The characteristic polynomial

If V is a vector space over a field F, and if L : V → V is a linear map, how can one find
out the set of eigenvalues of L ? In this section, we shall answer this question.

Theorem 7.2.1. Assume that V is a finite dimensional vector space over F, and let
L : V → V be linear. Then λ ∈ F is an eigenvalue of L if and only if L − λ1 is not
invertible.

Proof. If λ is an eigenvalue of L, with X ∈ V an associated eigenvector, then

[L− λ1](X) = L(X)− λX = λX − λX = 0,

and thereforeX ∈ Ker(L−λ1). By Theorem 4.7.8, it follows that L−λ1 is not invertible.
Reciprocally, if L−λ1 is not invertible, it follows from the same theorem that there

exists X ∈ Ker(L − λ1) with X ̸= 0. In other words, there exists X ∈ V with X ̸= 0
such that L(X)− λX = 0, which means that L(X) = λX. Thus, λ is an eigenvalue of
L and X is an associated eigenvector.

Let us consider a special case of the previous statement. If V = Fn and L = LA for
some A ∈ Mn(F) one infers that λ ∈ F is an eigenvalue of LA if and only if LA − λ1 is
not invertible, i.e. if and only if A− λ1n is not invertible. However, we have seen that
this holds if and only if Det(A− λ1n) = 0. We have thus proved:

Corollary 7.2.2. Let F be an arbitrary field, and let A ∈ Mn(F). Then λ is an eigen-
value of LA if and only if Det(A− λ1n) = 0.
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Definition 7.2.3. For any A ∈ Mn(F) and λ ∈ F, one sets

PA(λ) := Det(A− λ1n)

and call it the characteristic polynomial associated with A.

Note that some authors use the following definition: PA(λ) = Det(λ1n −A) which
is equal to ±Det(A−λ1n), depending if n is even or odd. Note also that if A ∈ Mn(F),
then PA is a polynomial of degree n. As a consequence of the previous corollary, one
has obtained:

Proposition 7.2.4. For any A ∈ Mn(F), the scalar λ ∈ F is an eigenvalue of LA if
and only if PA(λ) = 0.

Examples 7.2.5. (i) Let A = ( 1 2
4 3 ), then

PA(λ) = Det(A−λ12) = Det

(
1− λ 2
4 3− λ

)
= (1−λ)(3−λ)−8 = (λ−5)(λ+1).

Thus, the eigenvalues of LA are −1 and 5.

(ii) For A =
(

1 1 2
0 5 −1
0 0 7

)
one has

PA(λ) = Det

1− λ 1 2
0 5− λ −1
0 0 7− λ

 = (1− λ)(5− λ)(7− λ),

and the eigenvalues of LA are 1, 5 and 7.

(iii) For ( 0 1
1 0 ) one has PA(λ) = (1− λ)(1 + λ), and the eigenvalues are −1 and 1.

(iv) For ( 0 1
−1 0 ) one has PA(λ) = λ2 + 1 and the eigenvalues are... ?

Note that once the eigenvalues have been determined, it is possible to find the
eigenvectors (or the eigenspaces) by solving a linear system. Indeed, if λ is an eigenvalue
of LA one looks for some X ∈ Fn such that AX = λX ⇔ (A− λ1n)X = 0.

Examples 7.2.6. (i) For A = ( 1 2
4 3 ) and λ = 5, one has to solve[(

1 2
4 3

)
−
(
5 0
0 5

)](
x
y

)
=

(
−4 2
4 −2

)(
x
y

)
=

(
0
0

)
which is equivalent to{

−4x+ 2y = 0
4x− 2y = 0

⇔
{

x arbitrary
y = 2x

.

Thus, the eigenspace associated with the eigenvalue 5 is given by {( x
2x ) | x ∈ R}

or equivalently {x ( 1
2 ) | x ∈ R}.



7.2. THE CHARACTERISTIC POLYNOMIAL 105

(ii) For ( 0 1
1 0 ) and the eigenvalue λ = 1 one has to solve(

−1 1
1 −1

)(
x
y

)
=

(
0
0

)
which is equivalent to the single equation −x + y = 0, or equivalently to x = y.
Thus, the eigenspace associated with the eigenvalue 1 is {x ( 1

1 ) | x ∈ R}.

Let us now come back to the matrix ( 0 1
−1 0 ) with PA(λ) = λ2 + 1. Assume for a

while that there exists λ, solution of λ2+1 = 0, or equivalently λ2 = −1. One can then
wonder about the corresponding eigenspace ? For that purpose, consider[(

0 1
−1 0

)
− λ

(
1 0
0 1

)](
x
y

)
=

(
−λ 1
−1 −λ

)(
x
y

)
=

(
0
0

)
,

which is equivalent to{
−λx+ y = 0
−x− λy = 0

⇔
{

y + λ2y = 0
x = −λy

⇔
{

y(1 + λ2) = 0
x = −λy

.

Since 1 + λ2 = 0, the element y can be chosen arbitrarily, and then one can define
x by the relation x = −λy. Thus, the eigenspace associated with the eigenvalue λ is
{y ( −λ

1 ) | y ∈ R} which is a one dimensional vector space. Everything looks fine, except
that there is no λ ∈ R satisfying λ2 + 1 = 0 ! At this point, it is necessary to introduce
the notion of complex numbers, which will be done in the last chapter.

As a final example, one can consider the matrix A =
(

2 1 0
0 1 −1
0 2 4

)
with corresponding

characteristic polynomial PA(λ) = (2 − λ)2(3 − λ). Thus, the eigenvalues of LA are 2
and 3. It is good exercise to check this characteristic polynomial, and to determine the
eigenspace corresponding to these eigenvalues, see Exercise 7.8.

We can now define an important set related to each linear map.

Definition 7.2.7. Let V be a finite dimensional vector space, and let L : V → V be a
linear map. The set of all eigenvalues of L is called the spectrum of L and is denoted
by σ(L), i.e. σ(L) = {λ1, λ2, . . . } with each λj an eigenvalue of L.

Before the next statement, let us remind that if B is an invertible matrix, then one
has

1 = Det(1n) = Det
(
BB−1

)
= Det(B)Det

(
B−1

)
which means that Det(B−1) = Det(B)−1.

Lemma 7.2.8. Let A ∈ Mn(F) and consider LA : Fn → Fn the associated linear map.
Let B ∈ Mn(F) be invertible. Then

σ
(
LBAB−1

)
= σ

(
LA
)
.
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Proof. One has

Det
(
BAB−1 − λ1n

)
= Det

(
BAB−1 − λB1nB−1

)
= Det

(
B(A− λ1n)B−1

)
= Det(B)Det(A− λ1n)Det(B−1) = Det(A− λ1n).

Thus, λ is an eigenvalue of LA if and only if λ is an eigenvalue of LBAB−1 .

Lemma 7.2.9. For any A ∈ Mn(F), λ ∈ F is an eigenvalue of LA if and only if λ is
an eigenvalue of LtA.

Proof. It is sufficient to observe that (tA − λ1n) = t(A − λ1n) and to recall that
Det(B) = Det(tB) for any B ∈ Mn(F), see Lemma 6.2.6.

7.3 Eigenvalues and eigenfunctions for symmetric

matrices

The aim of this section is to show that if A ∈ Mn(R) is symmetric, i.e. tA = A, then
the corresponding linear map LA has n eigenvalues λ1, . . . , λn (some of them can be
equal) and n mutually orthogonal eigenvectors. In fact, we shall prove a slightly more
general statement, valid for more general linear maps.

First of all, recall that if tA = A, then the corresponding bilinear map FA : Rn ×
Rn → R and defined by FA(X, Y ) = tXAY is symmetric. In other word, it means that
FA(X,Y ) = FA(Y,X), see Exercise 5.6.

Lemma 7.3.1. If A ∈ Mn(R) is symmetric, and if λ1, λ2 ∈ R are eigenvalues of LA
with λ1 ̸= λ2, then any associated eigenvectors X1 and X2 satisfy X1⊥X2.

Proof. One has

FA(X1, X2) =
tX1AX2 =

tX1(λ2X2) = λ2
tX1X2 = λ2(X1 ·X2)

since AX2 = λ2X2. Here (X1 · X2) means the scalar product between the two vectors
X1 and X2. However, since FA is symmetric one also has

FA(X1, X2) = FA(X2, X1) =
tX2AX1 =

tX2(λ1X1) = λ1
tX2X1 = λ1(X2 ·X1)

since AX1 = λ1X1. By comparing these expressions, one has thus obtained that

λ2(X1 ·X2) = λ1(X2 ·X1).

However, since X1 · X2 = X2 · X1 and since λ1 ̸= λ2 one concludes that X1 · X2 = 0,
which means that the two vectors are orthogonal.
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Let us now observe that if A ∈ Mn(R) and if λ is an eigenvalue of LA with the
corresponding eigenspace of dimension m, then one can always choose m mutually
orthogonal elementsX1, . . . , Xm which satisfy LA(Xj) = λXj for j ∈ {1, . . . ,m}. Indeed,
if we denote by Vλ the eigenspace associated with the eigenvalue λ, we can apply
Graham-Schmidt to this subspace and obtain a basis of Vλ containing m elements.
Each of these elements still satisfies LA(Xj) = λXj. Note that the dimension of the
eigenspace Vλ is called the geometric multiplicity of the eigenvalue λ.

Theorem 7.3.2. Let A ∈ Mn(R), and assume that there exists X1, . . . , Xn ∈ Rn, with
Xj ̸= 0 and such that LA(Xj) = λjXj for some λj ∈ R and all j ∈ {1, . . . , n}. Assume
also that Vect(X1, . . . , Xn) = Rn. Then if one defines the matrix B with the column Bj

given by Bj = Xj, it follows that B is invertible and that

B−1AB = diag(λ1, . . . , λn),

where diag(λ1, . . . , λn) corresponds to the diagonal matrix with entries λ1, . . . , λn on its
diagonal.

Remark 7.3.3. (i) We shall prove subsequently that the assumptions of this theorem
are satisfied whenever A is symmetric. The assumptions are also satisfied if A is
arbitrary but LA has n distinct eigenvalues, see Theorem 7.1.6.

(ii) If we consider B as a change of bases, then the statement means that in the basis
defined by the vectors X1, . . . , Xn, the linear map LB−1AB is diagonal.

Proof. Since X1, . . . , Xn are linearly independent, it follows that Det(B) ̸= 0 and thus
that B is invertible, with inverse denoted by B−1.

Let us now compute

B−1AB = B−1A
(
X1 X2 . . . Xn

)
= B−1

(
AX1 AX2 . . . AXn

)
= B−1

(
λ1X1 λ2X2 . . . λnXn

)
= B−1B diag(λ1, . . . , λn) = diag(λ1, . . . , λn).

Indeed, observe that(
(X1 X2 . . . Xn) diag(λ1, . . . , λn)

)
ij
=

n∑
k=1

(X1 X2 . . . Xn)ik diag(λ1, . . . , λn)kj

= (X1 X2 . . . Xn)ij λj

= (λ1X1 λ2X2 . . . λnXn)ij

since diag(λ1, . . . , λn)kj = λj if k = j and 0 otherwise.

From now on, we shall establish a link between the eigenvalues/eigenvectors and a
geometric construction. For that purpose and for any symmetric matrix A ∈ Mn(R) let
us define fA : Rn → R by

fA(X) := FA(X,X) = tXAX,

and call it the quadratic form associated with A.
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Examples 7.3.4. (i) If A =
(

3 −1
−1 3

)
, then

fA

(
x1

x2

)
= (x1 x2)

(
3 −1
−1 3

)(
x1

x2

)
= 3x2

1 − 2x1x2 + 3x2
2.

(ii) More generally, if A = (aij) ∈ Mn(R) with A symmetric, then

fA

x1
...
xn

 = (x1 . . . xn)

a11 . . . a1n
...

. . .
...

an1 . . . ann


x1

...
xn

 =
n∑

i,j=1

aij xi xj.

Let us now consider the unit sphere Sn−1 ⊂ Rn, i.e.

Sn−1 = {X ∈ Rn | ∥X∥ = 1},

and for a symmetric matrix A ∈ Mn(R) we consider fA(X) with X ∈ Sn−1.

Definition 7.3.5. A point X ∈ Sn−1 is a maximum for fA on Sn−1 if fA(X) ≥ fA(Y )
for any Y ∈ Sn−1.

Note that such a maximum always exists, but it can be non-unique. For example if
A = 1n, then

fA(X) = f1n(X) = tX1nX = X ·X = ∥X∥2 = 1

and thus f1n is constant on the sphere. It means that any X ∈ Sn−1 is a maximum for
f1n on Sn−1.

The following result establishes a link between the eigenvalues of LA and the max-
imum points of fA.

Theorem 7.3.6. If A ∈ Mn(R) is symmetric and if X is a maximum for fA on Sn−1,
then the value fA(X) is an eigenvalue for LA with a corresponding eigenvector X, i.e.

LA(X) = AX = fA(X)X.

Proof. Let H0,X = {Y ∈ Rn | Y · X = 0} be the hyperplane perpendicular to X, of
dimension n − 1, and let us choose any Y ∈ H0,X with ∥Y ∥ = 1. For any t ∈ R, one
sets

C(t) := cos(t)X + sin(t)Y ∈ Rn.

Observe that since X · Y = 0 one has

∥C(t)∥2 = ∥ cos(t)X∥2+∥ sin(t)Y ∥2 = cos2(t)∥X∥2+sin2(t)∥Y ∥ = cos2(t)+sin2(t) = 1.

It follows that for any t ∈ R the point C(t) belongs to Sn−1, and in addition one has
C(0) = X. In more precise words, the map

R ∋ t 7→ C(t) ∈ Sn−1
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is a curve on Sn−1 passing through X for t = 0. Let us also observe that

C ′(t) = − sin(t)X + cos(t)Y

and that C ′(0) = Y . Note that this latter quantity corresponds to the direction of the
curve at t = 0

Consider now the map R ∋ t 7→ fA
(
C(t)

)
≡ tC(t)AC(t) ∈ R. Since fA(X) is

maximal and since C(0) = X, this map t 7→ fA
(
C(t)

)
is (locally) maximal at t = 0,

and thus fA
(
C(t)

)′∣∣
t=0

= 0. Since one has

d

dt

(
tC(t)AC(t)

)∣∣
t=0

=
(
tC ′(t)AC(t) + tC(t)AC ′(t)

)∣∣
t=0

= tYAX + tXAY

= 2tYAX,

where we have used that tYAX = tXAY (see Exercise 5.6), it follows that tYAX = 0
for any Y ∈ H0,Y . In addition, since tYAX = Y · (AX), one infers that AX ∈ H⊥

0,X ,
and consequently that AX = λX for some λ ∈ R (recall that H0,X is of dimension n−1
and thus that only Vect(X) is perpendicular to it).

Finally, one observes that since ∥X∥ = 1 one has

fA(X) = tXAX = X · (AX) = X · (λX) = λ∥X∥2 = λ

which means that LA(X) = AX = fA(X)X, as expected.

Let us observe that by using the notation introduced in Chapter 5 one has

fA(X) = tXAX = X · (AX) = ⟨X,AX⟩ = ⟨X,LA(X)⟩

and that

H0,X = {Y ∈ Rn | Y ·X = 0} = {Y ∈ Rn | ⟨Y,X⟩ = 0}.

Thus, what really matters in the previous statement and its proof is the existence of a
scalar product, and that ⟨Y,LA(X)⟩ = ⟨LA(Y ), X⟩ (which is a more general formulation
of the equality tYAX = tXAY ). By using this observation, one can easily generalize
the previous proof and statement. For that purpose, let us first provide a new definition.

Definition 7.3.7. Let V be a vector space and let ⟨·, ·⟩ be a scalar product on V . A
linear map L : V → V is symmetric with respect to the scalar product if it satisfies

⟨Y,L(X)⟩ = ⟨L(Y ), X⟩ ∀X,Y ∈ V.

Theorem 7.3.8. Let V be a finite dimensional vector space endowed with a scalar
product, and let L : V → V be a linear map which is symmetric with respect to the
scalar product. Then L possess an eigenvalue, with eigenvector X ̸= 0.
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Definition 7.3.9. Let V be a vector space and L : V → V be a linear map. A subspace
W ⊂ V is stable for L if L(W ) ⊂ W , i.e. if whenever X ∈ W then L(X) ∈ W .

Examples 7.3.10. (i) {0} and V are always stable for any linear map L : V → V ,

(ii) Ker(L) is stable since for any X ∈ Ker(L) one has L(X) = 0 ∈ Ker(L),

(iii) If W is the eigenspace associated with an eigenvalue λ of L, then W is stable.

For the next statement, recall that if W is a subspace of a vector space V endowed
with a scalar product, then

W⊥ = {Y ∈ V | ⟨Y,X⟩ = 0 ∀X ∈ W}.

Lemma 7.3.11. Let V be a finite dimensional vector space and let ⟨·, ·⟩ be a scalar
product on V . Let L : V → V be a linear map which is symmetric with respect to the
scalar product. If W is stable for L, then W⊥ is stable for L.

Proof. Let Y ∈ W⊥ and X ∈ W , then ⟨L(Y ), X⟩ = ⟨Y,L(X)⟩ = 0 since L(X) ∈ W .
Thus L(Y ) ∈ W⊥ for any Y ∈ W⊥, which means precisely that W⊥ is stable.

We can now state and prove the most important result of this section.

Theorem 7.3.12. Let V be a vector space of dimension n and endowed with a scalar
product ⟨·, ·⟩. Let L : V → V be a linear map which is symmetric with respect to the
scalar product. Then V possesses an orthonormal basis of eigenvectors of L. In other
words there exist Y1, . . . , Yn mutually orthogonal and with ∥Yj∥2 = ⟨Yj, Yj⟩ = 1 such
that V = Vect(Y1, . . . , Yn) and such that L(Yj) = λjYj for some λj.

Proof. By Theorem 7.3.8 there exists X1 ̸= 0 such that L(X1) = λ1X1 for some λ1. If
one sets W1 = Vect(X1), then W is stable for L, and the same property holds for W⊥

1 .
Thus W⊥

1 is a subspace of V of dimension n − 1, and L is a symmetric linear map in
W⊥

1 (endowed with the scalar product inherited from V ). Thus, we can again apply
the previous theorem in W⊥

1 instead of in V , and there exists X2 ∈ W⊥
1 with X2 ̸= 0,

such that L(X2) = λ2X2. Then, by defining W2 := Vect(X2), one obtains that W
⊥
2 (the

subspace orthogonal to W2 in W1) is of dimension n− 2, and is stable for L. Since L is
a symmetric linear map in W⊥

2 one can go on iteratively in the procedure, up to Wn.

Finally, by fixing Yj := Xj/∥Xj∥ one gets that Yj ∈ Wj, that ∥Yj∥ = 1 and by
construction Yj is orthogonal to Yk whenever j ̸= k. One has thus obtained a basis of
V which satisfies the stated properties.

Remark 7.3.13. In the basis {Y1, . . . , Yk} the linear map L is diagonal. Whenever
there exists a basis such that a linear map L is diagonal is this basis, one says that L is
diagonalizable.
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Let us summarize our findings: One has obtained that in a vector space of finite
dimension and endowed with a scalar product, any symmetric linear map is diagonaliz-
able. Equivalently, if A ∈ Mn(R) is symmetric, then the linear map LA is diagonalizable.
In particular it means that if A ∈ Mn(R) is symmetric, then there exists λ1, . . . λn ∈ R
such that

PA(λ) = (λ1 − λ)(λ2 − λ) . . . (λn − λ). (7.3.1)

Note that all λj need not be different. For example, one could have λ2 = λ1 but
λ3 ̸= λ1. The number of times a value λj appears in this decomposition is called the
algebraic multiplicity of the eigenvalue λj. What the previous theorem says is that if
A is symmetric, the algebraic multiplicity of an eigenvalue is equal to the geometric
multiplicity of this eigenvalue (i.e. to the dimension of the corresponding eigenspace).
Note that this equality holds for symmetric matrices, but it is not true in general.

7.4 Complex vector spaces

In Chapter 9, the field C of complex numbers is recalled. Thus, one can speak about
complex vector spaces, as for example Cn, which is of dimension n. One can also freely
speak about Mn(C), i.e. matrices with each entry in C.

For any A ∈ Mn(C), let us consider LA : Cn → Cn defined by LA(X) = AX which
is obviously a linear map. Then, the fundamental theorem of algebra says that there
exist λ1, . . . , λn ∈ C such that

PA(λ) = Det(A− λ1n) = (λ1 − λ)(λ2 − λ) . . . (λn − λ).

Note that we have already seen such a factorization in equation (7.3.1), but it was only
for symmetric matrices. Here, there is no restriction on A, but the eigenvalues λj can
be complex. In other words, this fundamental theorem of algebra claims that counting
multiplicity there always exist n solutions to the equation PA(λ) = 0. However, be
careful that this factorization does not imply that any matrix A is diagonalizable, even
on Cn. For example, for the matrix ( 0 1

0 0 ), one has PA(λ) = λ2 (which means that
λ1 = λ2 = 0), but this matrix can not be diagonalized in any basis.

Another natural question when dealing with Cn is how to endow it with a scalar
product ? Let us recall that a scalar product was used for defining a norm by the
relation ∥X∥2 =

√
⟨X,X⟩, see Definition 5.1.5. For example, if x ∈ R, it is necessary

that ⟨x, x⟩ ≥ 0. Thus, let us consider two complex numbers z1, z2 and set

⟨z1, z2⟩ := z1 z2. (7.4.1)

Then one observes that if z = x+ iy with x, y ∈ R one has

⟨z, z⟩ = (x+ iy)(x+ iy) = (x+ iy)(x− iy) = x2 + y2 ≥ 0.
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In fact, this corresponds to the (square of the) norm of z when one identifies C with
the plane R2. Similarly, if Z = t(z1, . . . , zn) ∈ Cn and Z ′ = t(z′1, . . . , z

′
n) ∈ Cn, one sets

⟨Z,Z ′⟩ :=
n∑

j=1

zj z′j (7.4.2)

and observes again that ⟨Z,Z⟩ ≥ 0.
In Chapter 5, the abstract notion of a scalar product was defined for real vector

space. Let us complement this definition in the case of a complex vector space (but
observe that the real scalar product is a special case of the following definition).

Definition 7.4.1. A scalar product on a complex vector space V is a map ⟨·, ·⟩ :
V × V → C such that for any X,Y, Z ∈ V and λ ∈ C one has

(i) ⟨X, Y ⟩ = ⟨Y,X⟩,

(ii) ⟨X + Y, Z⟩ = ⟨X,Z⟩+ ⟨Y, Z⟩,

(iii) ⟨λX, Y ⟩ = λ⟨X,Y ⟩ = ⟨X,λy⟩,

(iv) ⟨X,X⟩ ≥ 0 and ⟨X,X⟩ = 0 if and only if X = 0.

It is then easily observed that the definition provided in (7.4.1) and in (7.4.2) are
indeed scalar product on C and Cn respectively.

Let us now consider A = (aij) ∈ Mn(C) and let Z,Z ′ ∈ Cn. Then one has

⟨LA(Z), Z ′⟩ = ⟨AZ,Z ′⟩ =
n∑

j=1

(AZ)jZ ′
j =

n∑
j=1

n∑
k=1

ajkZkZ ′
j

=
n∑

k=1

n∑
j=1

Zk
takjZ ′

j =
n∑

k=1

Zk

( n∑
j=1

takjZ ′
j

)
= ⟨Z, tAZ ′⟩

= ⟨Z,LtA(Z
′)⟩.

For simplicity, let us set A∗ := tA. We have thus shown that ⟨LA(Z), Z ′⟩ = ⟨Z,LA∗(Z ′)⟩.
In the next statement, we rephrase in this more precise setting what has already

been obtained in Theorem 7.3.12.

Theorem 7.4.2. If A ∈ Mn(C) satisfies A∗ = A, then LA is diagonalizable, with n real
eigenvalues λj.

For completeness, let us check that the eigenvalues of LA are real, provided A∗ = A.
Thus, assume that λj is an eigenvalue of LA with corresponding eigenvector Xj ̸= 0 and
observe that

λj∥Xj∥2 = ⟨λjXj, Xj⟩ = ⟨LA(Xj), Xj⟩ = ⟨Xj, LA(Xj)⟩
= ⟨Xj, λjXj⟩ = λj⟨Xj, Xj⟩ = λj∥Xj∥2.

Since ∥Xj∥ ≠ 0 it follows that λj = λj, which implies that λj is real.
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Example 7.4.3. If A = ( 0 i
−i 0 ) ∈ M2(C), then A∗ = A and one observes that PA(λ) =

Det
( −λ i

−i −λ

)
= (λ+1)(λ−1). Thus the eigenvalue of A are real, even so A looks rather

complex !

Remark 7.4.4. Let us stress that Theorem 7.4.2 is at the root of quantum mechanics.
Indeed, in a suitable framework it says that ”the observables have real spectrum”.



114 CHAPTER 7. EIGENVECTORS AND EIGENVALUES

7.5 Exercises

Exercise 7.1. Let P : V → V be a linear map on a vector space V and assume that P
is a projection. Show that P can only have two possible eigenvalues, namely 0 and 1.

Exercise 7.2. For any θ ∈ [0, 2π), consider the matrix A(θ) :=

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
and

show that the corresponding linear map LA(θ) : R2 → R2 always admits the eigenvalue 1.

Exercise 7.3. Consider the matrix A :=

(
2 0
3 4

)
and show that 2 and 4 are eigenvalues

of the associated linear map LA. What are all corresponding eigenvectors ? Similarly,

consider the matrix B =

1 1 2
0 5 −1
0 0 7

 and show that 1, 5 and 7 are eigenvalues of the

associated linear map. Determine the corresponding eigenspaces.

Exercise 7.4. Let A ∈ Mn(R) be invertible, and assume that λ ∈ R is an eigenvalue
of LA with X ∈ Rn a corresponding eigenvector.

1. Is X an eigenvector of LA3 ? If so, what is the corresponding eigenvalue ?

2. Is X an eigenvector of the linear map associated with A+21n ? If so, what is the
corresponding eigenvalue ?

3. Is X an eigenvector of L4A ? If so, what is the corresponding eigenvalue ?

4. Can λ be equal to 0 ?

5. Is X an eigenvector of LA−1 ? If so, what is the corresponding eigenvalue ?

6. What can you say about Ker(LA − λ1) ?

7. What can you say about Det(A− λ1n) ?

Exercise 7.5. For any A ∈ M2(R), show the following equality

PA(λ) = λ2 − λTr(A) + Det(A).

Exercise 7.6. Let A ∈ Mn(R) and assume that A has n eigenvalues λ1, . . . , λn. Then,
show the following equalities:

(i) Det(A) = λ1λ2 . . . λn (product of the eigenvalues)

(ii) Tr(A) = λ1 + λ2 + · · ·+ λn (sum of the eigenvalues)

Exercise 7.7. Let A =
(

1 1 2
0 5 −1
0 0 7

)
, and consider the associated linear map LA : R3 → R3.

Determine the eigenvalues of LA and the corresponding eigenspaces.
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Exercise 7.8. Let A =
(

2 1 0
0 1 −1
0 2 4

)
, and consider the associated linear map LA : R3 → R3.

Determine the eigenvalues of LA and the corresponding eigenspaces.

Exercise 7.9. Let A = ( 1 2
4 3 ), and consider the associated linear map LA : R2 → R2.

Determine the eigenvalues of LA and the corresponding eigenspaces. Consider then the
matrix B = ( 1 1

2 −1 ) and compute the product B−1AB. What do you observe, and how do
you understand your result ?

Exercise 7.10. Let A = ( −2 −7
1 2 ), and consider the associated linear map LA : R2 → R2.

Determine the eigenvalues of LA and the corresponding eigenspaces.

Exercise 7.11. Let A ∈ Mn(R) and consider the linear maps LA and LtA. Show that
these linear maps have the same eigenvalues.

Exercise 7.12. Show that if A ∈ Mn(R) is orthogonal (i.e. tA = A−1), then the (real)
eigenvalues of LA can only be 1 or −1.

Exercise 7.13. For A =
(

1 1 1
1 1 1
1 1 1

)
consider the associated linear map LA : R3 → R3.

Determine the eigenvalues of LA and the corresponding eigenspaces. Find the change of
bases such that in the corresponding new basis this linear map becomes diagonal.

Exercise 7.14. Let A ∈ Mn(R) be symmetric. Show that there exists B ∈ Mn(R) such
that B3 = A.

Exercise 7.15. For a symmetric matrix A ∈ Mn(R), one says that A is positive
definite if ⟨AX,X⟩ > 0 for any X ∈ Rn with X ̸= 0. In fact, this is precisely the
condition which makes the bilinear map FA define a scalar product, see Exercise 5.6. If
A is symmetric and positive definite, show that

1. All eigenvalues of LA are strictly positive,

2. A2 is symmetric and positive definite,

3. A−1 is symmetric and positive definite.

Exercise 7.16. Let A =
(

1
5

2
5

4
5

3
5

)
, and consider the associated linear map LA : R2 → R2.

Compute An for n = 2, n = 3, n = 25 and n = ∞. You are allowed to use the result of
Exercise 7.9.

Exercise 7.17. Let A = ( 0 i
−i 0 ), and consider the associated linear map LA : C2 → C2.

Determine the eigenvalues of LA and the corresponding eigenspaces. Show that these
eigenspaces are orthogonal.

Exercise 7.18. Do there exist A,B ∈ Mn(R) such that AB − BA = 1n ? Justify your
answer. Note that the notion of trace can be useful for this exercise.
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Chapter 8

Applications

In this chapter, we provide two examples of applications of the various concepts and
results we have developed in the previous chapters.

8.1 Discrete dynamical systems

8.1.1 Coyotes and roadrunners

Let us consider two species in a desert: coyotes and roadrunners. We denote by c(n) the
population of coyotes at year n, and by r(n) the population of roadrunners at year n.
The following equation models the transformation of the system, as a function of the
year: {

c(n+ 1) = 0.86c(n) + 0.08r(n)
r(n+ 1) = −0.12c(n) + 1.14r(n)

(8.1.1)

Note that each of these coefficients has an interpretation: 0.86 and 1.14 correspond
to the birth rate of the coyotes and or the roadrunners, respectively. The coefficient
0.08 can be interpreted as a favorable factor on the population of coyotes whenever
roadrunners can be eaten, while −0.12 corresponds to the decrease in the population

of roadrunners due to coyotes’ appetite. Now, if one sets X(n) =
(

c(n)
r(n)

)
one can then

rewrite this system as

X(n+ 1) =

(
0.86 0.08
−0.12 1.14

)
X(n).

For later use, we set A := ( 0.86 0.08
−0.12 1.14 ).

Question: If at year n = 0 we observe the populations X(0) =
(

c(0)
r(0)

)
, what about

the populations X(n) for large n, i.e. in the far future ?
For example, it X(0) = ( 100

100 ), then X(1) = AX(0) = ( 96
102 ), X(2) = A2X(0) =

AX(1), and X(10) = A10X(0) ∼= ( 80
170 ). Here the computations are rather lengthy. On

117
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the other hand, if X(0) = ( 100
300 ), then X(1) = ( 110

330 ) = 1.1X(0), X(2) = A2X(0) =
AX(1) = A

(
1.1X(0)

)
= 1.12X(0), and thus X(10) = 1.110X(0). In such a case, the

computations are easier, but note that the populations are continuously increasing
(there is no correlation between these two facts). Note also that a similar computation
shows that if X(0) = ( 200

100 ), then one has X(n) → ( 0
0 ) as n tends to infinity.

Now, a natural question is how can one organize these information more systemat-
ically ? In fact, this is possible with the help of the eigenvalues and the eigenvectors of
the matrix A. For that purpose, let us first observe that

PA(λ) = λ2 − 2λ+ 0.99 = (λ− 1.1)(λ− 0.9).

Thus, the eigenvalues of A are 1.1 and 0.9. Moreover, if X1 and X2 are eigenvectors of
A associated with the eigenvalues 1.1 and 0.9 respectively, recall that we can define an
invertible matrix B by B =

(
X1 X2

)
, and then that

B−1AB =

(
1.1 0
0 0.9

)
or equivalently A = B

(
1.1 0
0 0.9

)
B−1.

With this rather simple information at hands, some computations simplify a lot. For
example, one directly obtains that

An = B
(
1.1n 0
0 0.9n

)
B−1

which requires much less efforts than multiplying n times A by itself.
Alternatively, since {X1, X2} generate a basis of R2, any initial condition X(0)

can be decomposed with respect to this basis and one has X(0) = c1X1 + c2X2, with
c1, c2 ∈ R. Then, one has

AnX(0) = An(c1X1 + c2X2) = c1AnX1 + c2AnX2

= c1(1.1)
nX1 + c2(0.9)

nX2 = 1.1nc1X1 + 0.9nc2X2.

Thus, knowing the eigenvalues of A, one can better understand why, depending on the
initial populations, the populations can either increase as n tends to infinity (due to
the eigenvalue 1.1), or vanish as n tends to infinity (due to the eigenvalue 0.9).

Question: Can one find X(0) such that both populations remain constant as n goes
to infinity ?

8.1.2 Discrete dynamical systems with real eigenvalues

More generally, suppose that we consider discrete evolution system given by the equa-
tion X(n+1) = AX(n) for some A ∈ Mm(R). Assume in addition that A is diagonaliz-
able, with its m eigenvalues real, i.e. there exists an invertible matrix B ∈ Mm(R) such
that A = B diag(λ1, . . . , λm) B−1, with λj ∈ R for any j ∈ {1, . . . ,m}. Then, the family
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of eigenvectors associated with the eigenvalues of A generates a basis of Rm and any
initial state X(0) can be decomposed with respect to this basis. Thus, if Xj denotes an
eigenvector associated with the eigenvalue λj one has X(0) = c1X1 + · · · + cmXm for
some cj ∈ R, and again

AnX(0) = λn
1c1X1 + λn

2c2X2 + · · ·+ λn
mcmXm.

Then, depending on λj, the large n behavior of the system can be predicted. Note that
in the following description, the index j is an arbitrary element of {1, . . . ,m}.

(i) If λj > 1, the corresponding part of the system grows infinitely,

(ii) If λj = 1, the corresponding part of the system remains the same forever,

(iii) If 0 < λj < 1, the corresponding part of the system tends to vanish as n tends to
infinity,

(iv) If λj = 0, the corresponding part of the system disappears already for n = 1 (this
part of the system belongs to the kernel of A),

(v) If −1 < λj < 0, the corresponding part of the system tends to vanish as n tends
to infinity, but its sign is alternating for n even or n odd,

(vi) If λj = −1, the corresponding part of the system alternates between two states
with a different sign,

(vii) If λj < −1, the corresponding grows infinitely in norm, but its sign is alternating
for n even or n odd.

8.1.3 Discrete dynamical systems with complex eigenvalues

Let us now consider a discrete evolution system given by the equationX(n+1) = AX(n)
with A ∈ M2(R), but with PA(λ) = (λ1 − λ)(λ2 − λ) and λ1 = x + iy, λ2 = x − iy
and y ̸= 0. In such a case, there again exists an invertible matrix B such that A =

B
(
x+ iy 0

0 x− iy

)
B−1 and therefore

An = B
(
(x+ iy)n 0

0 (x− iy)n

)
B−1.

In order to compute (x± iy)n, let us first observe that

x± iy = |x± iy| x± iy

|x± iy|
=
√

x2 + y2
( x√

x2 + y2
± i

y√
x2 + y2

)
.

As a consequence, one can write x+ iy =
√
x2 + y2

(
cos(2πθ)+ i sin(2πθ)

)
for a unique

θ ∈ [0, 1). Then, by using de Moivre’s formula, as shown in Exercise 9.6, one gets that

(x+ iy)n = (x2 + y2)n/2
(
cos(2πnθ) + i sin(2πnθ)

)
.
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Note that a similar formula holds for (x − iy) and for (x − iy)n. Then, depending if√
x2 + y2 is bigger, equal or smaller than 0, and depending if θ is rational or irrational

(i.e. if θ = p/q for some p, q ∈ Z or not), the asymptotic behavior of (x+ iy)n changes
drastically. For example, if

√
x2 + y2 > 1, the |(x + iy)n| goes to infinity as n goes

to infinity, while if
√
x2 + y2 < 1, then |(x + iy)n| goes to 0 as n tends to infinity. If√

x2 + y2 = 1 and if θ = p/q for some p, q ∈ Z, then (x+ iy)n is periodic, with a period
depending on p and q, while if θ ̸= p/q for any p, q ∈ Z, then (x + iy)n takes different
values for any n. A notion of aperiodicity appears in fact in such a situation. Note that
an enumeration of all possible behaviors as in the previous subsection could also be
established in the present setting.

8.2 The $ 25’000’000’000 eigenvector

This section is inspired from the paper ”The $25’000’000’000 eigenvector: the linear
algebra behind Google”1, which gives an another opportunity to use the concepts in-
troduced in the previous chapters.

Let us first list what a search engine for internet has to do:

(i) Locate all web pages with public access,

(ii) Index these data with keywords,

(iii) Rate the importance of each page.

Question: How can one define and quantify the ”importance” of a web page ?
We shall call the importance score or simply the score such a quantitative rating.

The main idea behind Google page ranking is derived from the links to that page (called
backlinks). For example, let us look at the world wide web which contains only 4 pages
as represented in the following figure. Each arrow A −→ B represents a link from A to

1 3

2 4

B (a backlink for B) Let us also set xk ≥ 0 for the importance of the page k, with the
convention that xj > xk means that the page j is more important than the page k.

1Kurt Bryan, Tanya Leise, The $25’000’000’000 eigenvector: the linear algebra behind Google, SIAM
REVIEW, Vol. 48, No. 3, pp. 569–581.
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A first idea for the ranking could be to assign for xk the number of backlinks. In
this case, one would obtain x1 = 2, x2 = 1, x3 = 3 and x4 = 2, and the page 3 would
then be the most important one. However, one also would like that a link to page j
from an important page boosts the score of page j more than a link to page j from an
unimportant page. For example, a link from BBC.com to your web page is certainly
more important than a link from the web page of your neighbour to your web page.
Thus, a more refined way to compute the score should be implemented.

A second idea for the ranking could be to score the page j with the sum of the
score of the pages linking to page j. With this approach, an important page with a
link to page j would boost the score of page j. Of course, the procedure becomes more
complicated because it is self-referential. In addition, a single page should not gain any
importance by containing too many links. For that purpose, we shall impose that each
page has a total vote of 1, as in a democracy.

Taking these remarks into account, let us set

xj :=
∑

pages k linking to j

xk

nk

where nk is the number of links emerging from page k. Note that if a page has a link
to itself, this link is ignored. For the example shown above, we then obtain

x1

x2

x3

x4

 =


0 0 1 1/2
1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0



x1

x2

x3

x4


which is equivalent to X = AX with X = t(x1, x2, x3, x4) and A the matrix shown
above. In other words, computing the scores xj corresponds to finding an eigenvector
X for the linear map LA associated with the eigenvalue 1, if such an eigenvalue exists.
In this setting, the matrix A is called the link matrix for a given web.

Note that in the example shown above, any multiple of the vector t(12, 4, 9, 6) is
an eigenvector of LA associated with the eigenvalue 1. In we impose in addition that∑

j xj = 1, then we get x1 = 12/31 ∼= 0.387, x2 = 4/31 ∼= 0.129, x3 = 9/31 ∼= 0.290
and x4 = 6/31 ∼= 0.194. Let us observe that page 3 is no more the most important one.
Indeed, this important page has only one link to page 1, and this single link boosts the
score of page 1 which then becomes the most important one.

Let us now try to think a little bit more generally. Assume that the web has no page
with 0 outgoing link, which means that nk ̸= 0 for any k. With such an assumption,
the entries of any column of a link matrix sum up to 1. Indeed, each page j gives 1

nj
of

its vote to nj different pages. With this observation, let’s come back to mathematics.

Lemma 8.2.1. If nk ̸= 0 for any k, then the linear map associated with any link matrix
possesses the eigenvalue 1.



122 CHAPTER 8. APPLICATIONS

Proof. Observe that 1 is an eigenvalue of LtA with eigenvector t(1, 1, . . . 1). Indeed, the
entries in each row of tA sum to 1, and therefore

tA

1
...
1

 = 1

1
...
1

 .

Since LtA and LA share the same spectrum (see Lemma 7.2.9), it follows that 1 also
belongs to the spectrum of LA.

Since the spectrum of the linear map associated with any link matrix contains
the value 1, let us denote by V1 the corresponding eigenspace. We can then wonder if
this eigenspace is of dimension one (in which case the ranking is unique) or if it is of
dimension higher than one (in which case there exist different rankings which can not be
distinguished with our criteria) ? Another question is how to get rid of the assumption
nk ̸= 0, since this assumption is not always satisfied (there exist interesting web pages
without any outgoing link) ?

Let us now observe that the non-uniqueness of the ranking is possible if the web is
disconnected. For example, consider the link matrix

A =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 1/2
0 0 1 0 1/2
0 0 0 0 0


associated with the following world wide web Such a disconnected web gives rise to a

1

2

3

4

5

matrix A which is block diagonal, see Exercises 4.28 and 4.29. In the above example,
and more generally in any situation with a link matrix which is block diagonal, it is not
difficult to see that the eigenspace associated with the eigenvalue 1 is of dimension 2 or
higher.

One way to solve this problem is to replace the link matrix A by a slightly improved
version of it. More precisely, consider the matrix

Am = (1−m)A+m

1/n . . . 1/n
...

. . .
...

1/n . . . 1/n


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for some m ∈ [0, 1] and with n the number of web pages of the world wide web. Then,
for any m ∈ (0, 1] the matrix Am is no more block diagonal. In fact, this procedure
corresponds to adding artificial links between each web pages on the web, which becomes
no more disconnected. If m = 1, all pages are rated equally. At a certain time, Google
used the value m = 0.15. In this setting the following statement can then be proved.

Proposition 8.2.2. If nk ̸= 0 for any k, and if m ∈ (0, 1], then the dimension of the
eigenspace associated with the eigenvalue 1 of LAm is of dimension 1.

The proof of this statement as well as much more information on how Google ranks
the web pages of the world wide web are available in the paper of Kurt Bryan and
Tanya Leise. Updated and more precise information are also available on internet. Just
use Google to find them !
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Chapter 9

Complex numbers

9.1 Basic introduction

The aim of this chapter is to provide a very short introduction to complex numbers.
One use of complex numbers is to find solutions of the equations x2 = −1, or more
generally to find solutions of the equation ax2 + bx+ c = 0 for arbitrary a, b, c ∈ R.

The first step in the construction is based on an analogy with R2. Note that for
simplicity we shall denote the elements of R2 by (x, y) instead of t(x, y). Let us consider
R2 endowed with the usual addition: (x, y)+ (x′, y′) = (x+x′, y+ y′) for any (x, y) and
(x′, y′) in R2. We now define a complex multiplication ∗ for these two elements:

(x, y) ∗ (x′, y′) = (xx′ − yy′, xy′ + yx′) ∈ R2 (9.1.1)

Let us stress that up to now, we had not defined any product of elements of R2: the
scalar product is also taking two elements of R2 but the result of the scalar product is
an element of R, not of R2 !

Since (9.1.1) is rather complicated to remember, let us introduce a symbol i with
the only rule that

i i = i2 = −1. (9.1.2)

We also rewrite (x, y) as x + iy. Then, one can again multiply x + iy and x′ + iy′ by
using the common rule of multiplication. One gets

(x+ iy)(x′ + iy′) = xx′ + (iy)x′ + x(iy′) + (iy)(iy′)

= xx′ + i2yy′ + ixy′ + iyx′

= (xx′ − yy′) + i(xy′ + yx′). (9.1.3)

Note that by comparing (9.1.1) with (9.1.3), one observes that the same result is ob-
tained, but (9.1.3) is certainly easier to remember since only usual multiplications are
involved. The key point in the construction is the equality mentioned in (9.1.2). Let us
mention that the notation z2 is also used for z z (the product of z by itself), and that
with this notation, the usual addition can be rewritten as

(x+ iy) + (x′ + iy′) = (x+ x′) + i(y + y′). (9.1.4)
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We are now ready for introducing the set of complex numbers:

Definition 9.1.1. One defines

C := {z = x+ iy | x, y ∈ R}

endowed with the addition recalled in (9.1.4) and with the multiplication introduced in
(9.1.3). This set is called the set of complex numbers.

Let us stress that we write indifferently x+ iy or x+ yi.

Example 9.1.2. 1+1i, 7−2i, −3+ i, 3, 2i are elements of C, where we have identified
3 with 3 + 0i, 2i with 0 + 2i and −3 + i with −3 + 1i.

By taking into account the identification of x with x + 0i, it is clear that R is
included in C. It corresponds to the elements on the horizontal axis in the mentioned
analogy of C with R2.

Let us still add some examples of multiplications or additions:

Examples 9.1.3. (i) (3 + 2i) + (1 + 1i) = 4 + 3i,

(ii) (3 + 2i) + (1− 3i) = 4− 1i,

(iii) (2 + 2i)(1 + 3i) = 2 + 2i+ 6i− 6 = −4 + 8i,

(iv) (1 + 2i)(−3− 2i) = −3− 6i− 2i+ 4 = 1− 8i.

Let us now prove an important result about complex numbers. We recall that the
notion of a field has been introduced in Definition 3.1.1.

Theorem 9.1.4. C is a field.

Proof. The proof consists in checking the various properties mentioned in Definition
3.1.1. For that purpose, let us set z = x+ iy and zj = xj + iyj for j ∈ {1, 2, 3} and with
x, y, xj, yj ∈ R. Then one has

(i) z1 + z2 ∈ C and z1 z2 ∈ C, which means that these operations are internal,

(ii) (z1+z2)+z3 = z1+(z2+z3) and (z1 z2)z3 = z1(z2 z3), as shown in Exercise 9.1. This
corresponds to the associativity of the addition and of the complex multiplication

(iii) z1 + z2 = z2 + z1 and z1 z2 = z2 z1, as shown in Exercise 9.2. This means that the
addition and the complex multiplication are commutative,

(iv) Let us set 0 ≡ 0 + 0i and 1 ≡ 1 + 0i, which correspond to the usual 0 and 1
of R. Then it is easily observed that z + 0 = z and that 1 z = z. This property
corresponds to the existence of identity elements for the addition and for the
complex multiplication,
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(v) Observe that if z = x + iy ∈ C, then −x − iy also belongs to C and one has
(x + iy) + (−x− iy) = 0. Thus −x− iy is the inverse of x + iy for the addition.
For the inverse of x+ iy with respect to the addition, let us assume that x+ iy ̸=
0, which means that (x, y) ̸= (0, 0), and let us consider the complex number

x
x2+y2

− i y
x2+y2

C. This element is well defined since its denominator is different
from 0. Then one observes that

(x+ iy)
( x

x2 + y2
− i

y

x2 + y2

)
=

x2 + y2

x2 + y2
+ i

−xy + xy

x2 + y2
= 1

Thus one has (x + iy)−1 = x
x2+y2

− i y
x2+y2

, when the inverse with respect to the
complex multiplication is considered.

(vi) The distributivity of complex multiplication with respect to the addition of com-
plex numbers is shown in Exercise 9.1.

In addition to R we have thus a second field at our disposal, the field C of complex
numbers. The corresponding complex vector spaces and linear maps on complex vector
spaces are briefly studied in Section 7.4. Let us still emphasize one formula which has
been derived in the previous proof: for any z = x+ iy ∈ C with z ̸= 0 one has

(x+ iy)−1 =
x

x2 + y2
− i

y

x2 + y2
. (9.1.5)

Let us now introduce some notations. For any z = x + iy ∈ C, one sets ℜ(z) := x
and ℑ(z) := y for the real part and the imaginary part of z. We also introduce the
complex conjugate z of z by

z = x+ iy := x− iy.

Note that in the mentioned analogy of C with R2, it corresponds to taking the image of z
by a symmetry along the horizontal axis. Then, with this concept of complex conjugate,
it is easily observed that

ℜ(z) = z + z

2
and ℑ(z) = z − z

2
.

For any complex number z = x+ iy we also define |z| :=
√

x2 + y2 and set

z = r
(
cos(θ) + i sin(θ)

)
with r = |z|, x = r cos(θ) and y = r sin(θ). This is called the polar coordinate represen-
tation of the complex number z. The number r ≡ |z| is called the norm or the modulus
of z, and θ its argument, i.e. θ = arg(z). We also introduce the notation

ez = ex+iy := ex
(
cos(y) + i sin(y)

)
.

These notations will be used in the Exercises, and they are very useful tools for complex
numbers.
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Remark 9.1.5. Let us emphasize that C has no ordering. Indeed, even if R has a
ordering (one says for example that −2 < 4), it is impossible to compare two complex
numbers as for example 3− 2i and 4 + i.

Let us now provide one of the basic result for complex numbers, which is part of
the motivation for introducing them.

Proposition 9.1.6. For any a+ ib ∈ C, there exists z1, z2 ∈ C with z1 ̸= z2 (except if
a + ib = 0) such that z21 = z22 = a + ib. In other words, every complex number has two
distinct square roots.

Proof. Let us first observe that for any a, b ∈ R, one has

a+
√
a2 + b2 ≥ 0 and − a+

√
a2 + b2 ≥ 0.

Thus, one can define x :=
√

a+
√
a2+b2

2
with the usual square root of positive numbers,

and also y :=
√

−a+
√
a2+b2

2
with the usual square root. We then set

z1 := x+ iµy and z2 := −x− iµy

with µ = 1 if b ≥ 0 and µ = −1 if b < 0. It only remains to check with the definition of
the complex multiplication that z21 = a+ ib and that z22 = a+ ib as well.

By using the well-known formula for the solutions of a second degree equation, one
infers that:

Corollary 9.1.7. The equation az2 + bz + c = 0 has always two solutions in C.

Let us finally mention that this corollary is at the root of the fundamental theorem
of algebra asserting that any polynomial of degree n has n solutions in C.
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9.2 Exercises

Exercise 9.1. Let z1, z2, z3 be three complex numbers. Show that

(z1 + z2) + z3 = z1 + (z2 + z3)

and that
(z1z2)z3 = z1(z2z3).

These properties correspond to the associativity of the addition and of the complex
multiplication. In addition, check that z1(z2+z3) = z1z2+z1z3. This property corresponds
to the distributivity of the complex multiplication with respect to the addition of complex
numbers.

Exercise 9.2. For z1, z2 ∈ C, show that z1 + z2 = z2 + z1 and that z1 z2 = z2 z1.
These properties correspond to the commutativity of the addition and of the complex
multiplication.

Exercise 9.3. Compute the real part and the imaginary part of the number 3+2i
2−3i

. Same

question with the number 1
i
+ 3

1+i
and the number

√
1 + i.

Exercise 9.4. Find all solutions of the equation z4 = −1.

Exercise 9.5. For any z1, z2 ∈ C, show that |z1z2| = |z1||z2| and that

arg(z1z2) = arg(z1) + arg(z2).

Exercise 9.6. Deduce from the previous exercise de Moivre’s formula: for any n ∈ N
and for z = r

(
cos(θ) + i sin(θ)

)
one has

zn = rn
(
cos(nθ) + i sin(nθ)

)
.

Exercise 9.7. Deduce that for any complex number z = r
(
cos(θ) + i sin(θ)

)
, the n-th

roots of z are given by

zj :=
n
√
r
[
cos
(θ + 2πj

n

)
+ i sin

(θ + 2πj

n

)]
for j ∈ {0, 1, . . . , n− 1}.

Exercise 9.8. Show the following properties:

1. z1 + z2 = z1 + z2,

2. z1z2 = z1 z2,

3. z z = |z|2,

4. z−1 = z/|z|2 whenever z ̸= 0,
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5. ℜ(z) = (z + z)/2 and ℑ(z) = (z − z)/(2i), where ℜ(z) and ℑ(z) are the real and
the imaginary part of z.

Exercise 9.9. Show also that |z| = |z| and that arg(z) = − arg(z).

Exercise 9.10. Show the following properties:

1. ez1+z2 = ez1 ez2 for any z1, z2 ∈ C,

2. ez is never equal to 0,

3. |ex+iy| = ex,

4. eiπ = −1 (Euler’s identity, and “one of the most beautiful formula in mathemat-
ics”).


