Chapter 5

Scalar product and orthogonality

5.1 Scalar product

Recall that the notion of a vector space has been introduced as an abstract version of
the properties shared both by R™ and by M,,,(R). Similarly, we have introduced the
scalar product on R™ already in Chapter 1, let us now consider an abstract version of it.
For simplicity, we introduce it on real vector spaces, but a slightly more general version
will be considered once the complex numbers will be at our disposal.

Definition 5.1.1. A scalar product on a real vector space V is a map (-,-) : VxV — R
such that for any X, Y, Z €V and A\ € R one has

(i) (X,Y) = (Y, X),
(ii) (X +Y,Z) = (X,2) + (Y, Z),
(iii) (AX,Y) = MX,Y),
(iv) (X,X) >0 and (X, X) =0 if and only if X = 0.

Example 5.1.2. For V = R" and X,Y € V one sets (X,Y) := X - Y and one can
check that the four conditions above are satisfied.

Example 5.1.3. For a,b € R with a < b one considers V = C([a, b];R) and for any
f,g €'V one defines

b
(f,9) 1:/ f(x)g(x)dz.

It is easily checked that this defines a scalar product on'V', see Ezxercise 5.5. For informa-
tion, this scalar product extends to the set of L*-functions (the set of square integrable
functions).

Definition 5.1.4. If V is a real vector space endowed with a scalar product, one says
that X,Y € V are orthogonal if (X,Y) =0, and one writes X LY. If S is a subset of
V', one writes

St={Y eV |(X,Y)=0 for all X € S}
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and call it the orthogonal subspace of S.
One easily shows that S+ is always a subspace of V.

Definition 5.1.5. For any real vector space V' endowed with a scalar product and for
any X € V we set
[ X = V({X, X)

and call it the norm of X (associated with the scalar product (-,-)).

Lemma 5.1.6. For any real vector space V' endowed with a scalar product, for any
X, Y €V and for A\ € R one has

(1) XX = [A[l[XT],

(ii) |X +Y|? = || X||?>+ [Y||* if and only if X LY  (Pythagoras theorem)
(iii) | X +Y[* + |X = Y| = 2| X[ + 2]Y]]%,

(iv) | X + Y[ < [IX]| + Y]]

The proof will be provided in Exercise 5.1. The following statement is a generaliza-
tion of a property already derived in the context of R™.

Lemma 5.1.7. For any real vector space V endowed with a scalar product and for any
X, Y €V one has
(XY < [IXHY (5.1.1)

Proof. Let us first consider the trivial case Y = 0 for which (5.1.1) is an equality with
0 on both sides.

Now, assume that Y # 0 and set ¢ := <”);’ﬁ;>. Then let us observe that (X —cY) LY,
since

(X,Y)

(X —eY,Y)=(X,Y) — T

(YY) =0.
It follows by Pythagoras theorem that
X[ = [[(X = ¥) + Y |? = | X = V[P + [|eY [P = | X — ¥ ||* + Y,

which implies that || X]|> > ¢?||Y||, or equivalently || X]|| > |c| ||[Y||. Note that this

inequality can also be rewritten as |c| < H

By collecting these information one gets

1XT]
(X, V)] = [l IY]]* < MIIYII2 = [IXI[YII;

which corresponds to the claim. O
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5.2 Orthogonal bases

Definition 5.2.1. Let V' be a real vector space endowed with a scalar product, and let
{Vi,...,V,} be a basis for V. The basis is called orthogonal if (V;,V;) = 0 whenever
i,j€{l,...,n} and i # j. If in addition (V;,V;) =1 for anyi € {1,...,n} the basis is
called orthonormal.

Example 5.2.2. The standard basis {E\, ..., E,} of R™ is an orthonormal basis.
The following result is of conceptual importance, and rather well-known.

Theorem 5.2.3 (Graham-Schmidt). Let V' be a real vector space of dimension n en-
dowed with a scalar product. Then there exists an orthonormal basis for V.

The proof consists in the explicit construction of an orthonormal basis.

Proof. Let {Vi,...,V,} be an arbitrary basis for V' (such a basis exists since otherwise
the dimension of V' would not be defined), and let us set

1
—V
Vil
1
Vo — (Vo, VIOV ||

Vi =

V)= (Va — (Va, V)VY)

n—

1
V= S, V) )

=1

V= L (
[V = S5 (Va, VOV

where the prefactors are chosen such that |[V/|| = 1 (note that V; — SNV, VOV s
always different from 0 since otherwise V; would be a linear combmatlon of Vi,..., V1
which is not possible by assumption). Then, it simply remains to observe that V; LV}
for any j # k. As a consequence, the elements V/ generate an orthonormal basis for V/,
as expected. O

5.3 Bilinear maps
The notion of bilinear maps will be useful for calculus II.

Definition 5.3.1. Let V. W, U be vector spaces over the same field F. A map T :
V xW — U is bilinear if it is linear in each argument, namely for any X, X1, X, € V,
any Y, Y1, Yo € W and X\ € F one has

(i) T(X1+X2,Y) =T(X1,Y) + T(X2,Y),
(i) TAX,Y) = AT(X,Y),
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(iii) T(X,Y: + Ys) = T(X, Y1) + T(X,Y),
(i) T(X,\Y) = A\T(X,Y).

Example 5.3.2. The scalar product {-,-) : R" x R® — R is a bilinear map on the
FEuclidean space R™.

Example 5.3.3. If A € M,,,,(F) one can define a bilinear map Fq : F™ x F* — T for
any X € F™ and Y € F™ by

FA(X,Y)="XAY = 'X A Y €F. (5.3.1)
EMlm(F) Gan(IF) EMnl(]F)

Note that it is easily checked that F 4 is indeed a bilinear map. For example, if A= (12%),
X =(}) andY = (9), then

FA(X,Y) = (10) (; Z) (?) — (10) (i) _ 9.

More generally, observe that if A= (a;;), X ="(x1,...,2m) andY ="(y1,...,yn) then

m

tXAY:X Z.Z‘ AY ZIZZCLUy] iialjxiyj.

i=1 j=1

We shall now see that many bilinear maps are of the form presented in the previous
example. For that purpose, recall from Section 4.5 that if V = {Vi,...,V,} is a basis
for a vector space V over F and if X € V then the coordinate vector of X is the element
X =%xy,...,2,) € F™ such that X = 2V} + - - - + 2, V;,. One has already introduced
the notation (X)y = X. Similarly, for a basis W = {Wy,..., W, } of a vector space W
over F and for any ) € W one sets (V) =Y =*(y1,...,y,) € F" for its coordinate
vector.

Lemma 5.3.4. Let V., W be vector spaces over a field F and let F : V x W — F be a
bilinear map. If V = {V1,..., Vi, } is a basis for V, and if W = {Wh, ..., W, } is a basis
for W then there exists A € M, (F) such that

F(X,Y) ="XAY
forany X €V, any Y € W and with X = (X)y and Y = (Y)w.
Proof. By taking the bilinearity of F into account, one has
= F(Z%VQ,Z%VVJ szzya (Vi, Wj).
i=1 j=1 i=1 j=1
Thus, by setting a;; = F(V;, W,) € F one deduces that

Z Z aijriy; ="' XAY

=1 j=1
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Remark 5.3.5. If V., W, U are vector spaces over the same field F and if ¥; : VxW — U
are bilinear maps for i =1,2, then F1 +Fo : V. X W — U 1is a bilinear map, and \F; is
also a bilinear map. Thus, the set of bilinear maps from V- x W to U 1is a vector space.

Let us end this section with two questions:

Question: Let V = W = R” and consider the map F defined by the usual scalar

product
FX,)Y)=X-Y for any X,Y € R".

In view of Lemma 5.3.4, what is the matrix associated with this bilinear map with

respect to the canonical basis of R™ ?

Question: How does a bilinear map change when one performs a change of bases for
the vector spaces V and W 7
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5.4 Exercises

Exercise 5.1. Let V' be a real vector space endowed with a scalar product. Prove the
following relations for X, Y € V and A € R:

(i) |AX]| = [A]X]],

(it) | X +Y|* = || X||*+ [|[Y||* if and only if X LY,
(i) | X + Y[+ | X = Y|* = 2] X|* + 2[|Y]?,
() | X + Y[ <X+ Y]

Exercise 5.2. Let A = (aj;) € M,(R) and define Tr(A) = 77, aj;, where Tr(A) is
called the trace of A. Show the following properties:

(1) Tr: M,(R) — R is a linear map,
(i) Tr(AB) = Tr(BA), for any A, B € M,(R),
(iii) If C € M, (R) is an invertible matriz, then Tr(C~1AC) = Tr(A),
(iv) If M3(R) denotes the vector space of all n X n symmetric matrices, then the map
M;(R) x M (R) > (A,B) — Tr(AB) e R

defines a scalar product on MZ(R). We recall that a matriz A is symmetric if

A="A.
Exercise 5.3. Find an orthonormal basis for the subspace of R* defined by the three
1 1 1
vectors ((1)), (_01) and (02>.
1 2 0

Exercise 5.4. Find an orthonormal basis for the space of solutions of the following
systems:

0) {2a:+y—z = 8 b) {x—y—i—z — 0 o {4J:+7y—7rz =0

r+y+z = 0
d) r—y =0
y+z =0

Exercise 5.5. We consider the real vector space V := C([0,1]) made of continuous real
functions on [0,1] and endow it with the map

VXV (fg) s (frg) = / f(#)g(x)dz €R

Show that
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(i) (-,-) is a scalar product on V,

(i1) If W is the subspace of V' generated by the three functions x +— 1 (constant
function), x w— x (identity function), and x — 2, find an orthonormal basis for
W.

Exercise 5.6. For any symmetric matrivc A = (a;;) € M,(R), we define the map
Fu:R" x R" S (X,Y) = F4(X,Y) = X AY € R.
(1) Show that F4 is a bilinear map,
(11) Show that F4(X,Y) = F4(Y, X) for any X,Y € R".
(iii) When does ¥4 define a scalar product ¢
(i) If A is one of the following matrices, does ¥4 define a scalar product ?

2 -1 0
A:G f) A={-1 2 -1
0o —1 2
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