Chapter 5

Scalar product and orthogonality

5.1 Scalar product

Recall that the notion of a vector space has been introduced as an abstract version of the properties shared both by \mathbb{R}^{n} and by $M_{m n}(\mathbb{R})$. Similarly, we have introduced the scalar product on \mathbb{R}^{n} already in Chapter 1, let us now consider an abstract version of it. For simplicity, we introduce it on real vector spaces, but a slightly more general version will be considered once the complex numbers will be at our disposal.

Definition 5.1.1. A scalar product on a real vector space V is a map $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ such that for any $X, Y, Z \in V$ and $\lambda \in \mathbb{R}$ one has
(i) $\langle X, Y\rangle=\langle Y, X\rangle$,
(ii) $\langle X+Y, Z\rangle=\langle X, Z\rangle+\langle Y, Z\rangle$,
(iii) $\langle\lambda X, Y\rangle=\lambda\langle X, Y\rangle$,
(iv) $\langle X, X\rangle \geq 0$ and $\langle X, X\rangle=0$ if and only if $X=\mathbf{0}$.

Example 5.1.2. For $V=\mathbb{R}^{n}$ and $X, Y \in V$ one sets $\langle X, Y\rangle:=X \cdot Y$ and one can check that the four conditions above are satisfied.

Example 5.1.3. For $a, b \in \mathbb{R}$ with $a<b$ one considers $V=C([a, b] ; \mathbb{R})$ and for any $f, g \in V$ one defines

$$
\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) \mathrm{d} x .
$$

It is easily checked that this defines a scalar product on V, see Exercise 5.5. For information, this scalar product extends to the set of L^{2}-functions (the set of square integrable functions).

Definition 5.1.4. If V is a real vector space endowed with a scalar product, one says that $X, Y \in V$ are orthogonal if $\langle X, Y\rangle=0$, and one writes $X \perp Y$. If S is a subset of V, one writes

$$
S^{\perp}:=\{Y \in V \mid\langle X, Y\rangle=0 \text { for all } X \in S\}
$$

and call it the orthogonal subspace of S.
One easily shows that S^{\perp} is always a subspace of V.
Definition 5.1.5. For any real vector space V endowed with a scalar product and for any $X \in V$ we set

$$
\|X\|:=\sqrt{\langle X, X\rangle}
$$

and call it the norm of X (associated with the scalar product $\langle\cdot, \cdot\rangle$).
Lemma 5.1.6. For any real vector space V endowed with a scalar product, for any $X, Y \in V$ and for $\lambda \in \mathbb{R}$ one has
(i) $\|\lambda X\|=|\lambda|\|X\|$,
(ii) $\|X+Y\|^{2}=\|X\|^{2}+\|Y\|^{2}$ if and only if $X \perp Y \quad$ (Pythagoras theorem)
(iii) $\|X+Y\|^{2}+\|X-Y\|^{2}=2\|X\|^{2}+2\|Y\|^{2}$,
(iv) $\|X+Y\| \leq\|X\|+\|Y\|$.

The proof will be provided in Exercise 5.1. The following statement is a generalization of a property already derived in the context of \mathbb{R}^{n}.

Lemma 5.1.7. For any real vector space V endowed with a scalar product and for any $X, Y \in V$ one has

$$
\begin{equation*}
|\langle X, Y\rangle| \leq\|X\|\|Y\| . \tag{5.1.1}
\end{equation*}
$$

Proof. Let us first consider the trivial case $Y=\mathbf{0}$ for which (5.1.1) is an equality with 0 on both sides.

Now, assume that $Y \neq \mathbf{0}$ and set $c:=\frac{\langle X, Y\rangle}{\|Y\|^{2}}$. Then let us observe that $(X-c Y) \perp Y$, since

$$
\langle X-c Y, Y\rangle=\langle X, Y\rangle-\frac{\langle X, Y\rangle}{\|Y\|^{2}}\langle Y, Y\rangle=0 .
$$

It follows by Pythagoras theorem that

$$
\|X\|^{2}=\|(X-c Y)+c Y\|^{2}=\|X-c Y\|^{2}+\|c Y\|^{2}=\|X-c Y\|^{2}+c^{2}\|Y\|^{2},
$$

which implies that $\|X\|^{2} \geq c^{2}\|Y\|$, or equivalently $\|X\| \geq|c|\|Y\|$. Note that this inequality can also be rewritten as $|c| \leq \frac{\|X\|}{\|Y\|}$.

By collecting these information one gets

$$
|\langle X, Y\rangle|=|c|\|Y\|^{2} \leq \frac{\|X\|}{\|Y\|}\|Y\|^{2}=\|X\|\|Y\|
$$

which corresponds to the claim.

5.2 Orthogonal bases

Definition 5.2.1. Let V be a real vector space endowed with a scalar product, and let $\left\{V_{1}, \ldots, V_{n}\right\}$ be a basis for V. The basis is called orthogonal if $\left\langle V_{i}, V_{j}\right\rangle=0$ whenever $i, j \in\{1, \ldots, n\}$ and $i \neq j$. If in addition $\left\langle V_{i}, V_{i}\right\rangle=1$ for any $i \in\{1, \ldots, n\}$ the basis is called orthonormal.

Example 5.2.2. The standard basis $\left\{E_{1}, \ldots, E_{n}\right\}$ of \mathbb{R}^{n} is an orthonormal basis.
The following result is of conceptual importance, and rather well-known.
Theorem 5.2.3 (Graham-Schmidt). Let V be a real vector space of dimension n endowed with a scalar product. Then there exists an orthonormal basis for V.

The proof consists in the explicit construction of an orthonormal basis.
Proof. Let $\left\{V_{1}, \ldots, V_{n}\right\}$ be an arbitrary basis for V (such a basis exists since otherwise the dimension of V would not be defined), and let us set

$$
\begin{aligned}
V_{1}^{\prime} & :=\frac{1}{\left\|V_{1}\right\|} V_{1} \\
V_{2}^{\prime} & :=\frac{1}{\left\|V_{2}-\left\langle V_{2}, V_{1}^{\prime}\right\rangle V_{1}^{\prime}\right\|}\left(V_{2}-\left\langle V_{2}, V_{1}^{\prime}\right\rangle V_{1}^{\prime}\right) \\
& \vdots \\
V_{n}^{\prime} & :=\frac{1}{\left\|V_{n}-\sum_{i=1}^{n-1}\left\langle V_{n}, V_{i}^{\prime}\right\rangle V_{i}^{\prime}\right\|}\left(V_{n}-\sum_{i=1}^{n-1}\left\langle V_{n}, V_{i}^{\prime}\right\rangle V_{i}^{\prime}\right)
\end{aligned}
$$

where the prefactors are chosen such that $\left\|V_{j}^{\prime}\right\|=1$ (note that $V_{j}-\sum_{i=1}^{j-1}\left\langle V_{j}, V_{i}^{\prime}\right\rangle V_{i}^{\prime}$ is always different from $\mathbf{0}$ since otherwise V_{j} would be a linear combination of V_{1}, \ldots, V_{j-1} which is not possible by assumption). Then, it simply remains to observe that $V_{j}^{\prime} \perp V_{k}^{\prime}$ for any $j \neq k$. As a consequence, the elements V_{j}^{\prime} generate an orthonormal basis for V, as expected.

5.3 Bilinear maps

The notion of bilinear maps will be useful for calculus II.
Definition 5.3.1. Let V, W, U be vector spaces over the same field \mathbb{F}. A map T : $V \times W \rightarrow U$ is bilinear if it is linear in each argument, namely for any $X, X_{1}, X_{2} \in V$, any $Y, Y_{1}, Y_{2} \in W$ and $\lambda \in \mathbb{F}$ one has
(i) $\mathrm{T}\left(X_{1}+X_{2}, Y\right)=\mathrm{T}\left(X_{1}, Y\right)+\mathrm{T}\left(X_{2}, Y\right)$,
(ii) $\mathrm{T}(\lambda X, Y)=\lambda \mathrm{T}(X, Y)$,
(iii) $\mathrm{T}\left(X, Y_{1}+Y_{2}\right)=\mathrm{T}\left(X, Y_{1}\right)+\mathrm{T}\left(X, Y_{2}\right)$,
(iv) $\mathrm{T}(X, \lambda Y)=\lambda \mathrm{T}(X, Y)$.

Example 5.3.2. The scalar product $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a bilinear map on the Euclidean space \mathbb{R}^{n}.
Example 5.3.3. If $\mathcal{A} \in M_{m n}(\mathbb{F})$ one can define a bilinear map $\mathrm{F}_{\mathcal{A}}: \mathbb{F}^{m} \times \mathbb{F}^{n} \rightarrow \mathbb{F}$ for any $X \in \mathbb{F}^{m}$ and $Y \in \mathbb{F}^{n}$ by

$$
\begin{equation*}
\mathrm{F}_{\mathcal{A}}(X, Y)={ }^{t} X \mathcal{A} Y \equiv \underbrace{{ }^{t} X}_{\in M_{1 m}(\mathbb{F})} \underbrace{\mathcal{A}}_{\in M_{m n}(\mathbb{F})} \underbrace{Y}_{\in M_{n 1}(\mathbb{F})} \in \mathbb{F} \tag{5.3.1}
\end{equation*}
$$

Note that it is easily checked that $\mathrm{F}_{\mathcal{A}}$ is indeed a bilinear map. For example, if $\mathcal{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, $X=\binom{1}{0}$ and $Y=\binom{0}{1}$, then

$$
\mathrm{F}_{\mathcal{A}}(X, Y)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{0}{1}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{2}{4}=2
$$

More generally, observe that if $\mathcal{A}=\left(a_{i j}\right), X={ }^{t}\left(x_{1}, \ldots, x_{m}\right)$ and $Y={ }^{t}\left(y_{1}, \ldots, y_{n}\right)$ then

$$
{ }^{t} X \mathcal{A} Y=X \cdot(\mathcal{A} Y)=\sum_{i=1}^{m} x_{i}(\mathcal{A} Y)_{i}=\sum_{i=1}^{m} x_{i} \sum_{j=1}^{n} a_{i j} y_{j}=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} x_{i} y_{j} .
$$

We shall now see that many bilinear maps are of the form presented in the previous example. For that purpose, recall from Section 4.5 that if $\mathcal{V}=\left\{V_{1}, \ldots, V_{m}\right\}$ is a basis for a vector space V over \mathbb{F} and if $\mathcal{X} \in V$ then the coordinate vector of \mathcal{X} is the element $X={ }^{t}\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}^{m}$ such that $\mathcal{X}=x_{1} V_{1}+\cdots+x_{m} V_{m}$. One has already introduced the notation $(\mathcal{X})_{\mathcal{V}}=X$. Similarly, for a basis $\mathcal{W}=\left\{W_{1}, \ldots, W_{n}\right\}$ of a vector space W over \mathbb{F} and for any $\mathcal{Y} \in W$ one sets $(\mathcal{Y})_{\mathcal{W}}=Y={ }^{t}\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}^{n}$ for its coordinate vector.

Lemma 5.3.4. Let V, W be vector spaces over a field \mathbb{F} and let $\mathrm{F}: V \times \mathcal{W} \rightarrow \mathbb{F}$ be a bilinear map. If $\mathcal{V}=\left\{V_{1}, \ldots, V_{m}\right\}$ is a basis for V, and if $\mathcal{W}=\left\{W_{1}, \ldots, W_{n}\right\}$ is a basis for W then there exists $\mathcal{A} \in M_{m n}(\mathbb{F})$ such that

$$
\mathrm{F}(\mathcal{X}, \mathcal{Y})={ }^{t} X \mathcal{A} Y
$$

for any $\mathcal{X} \in V$, any $\mathcal{Y} \in W$ and with $X=(\mathcal{X})_{\mathcal{V}}$ and $Y=(\mathcal{Y})_{\mathcal{W}}$.
Proof. By taking the bilinearity of F into account, one has

$$
\mathrm{F}(\mathcal{X}, \mathcal{Y})=\mathrm{F}\left(\sum_{i=1}^{m} x_{i} V_{i}, \sum_{j=1}^{n} y_{j} W_{j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i} y_{j} \mathrm{~F}\left(V_{i}, W_{j}\right) .
$$

Thus, by setting $a_{i j}=\mathrm{F}\left(V_{i}, W_{j}\right) \in \mathbb{F}$ one deduces that

$$
\mathrm{F}(\mathcal{X}, \mathcal{Y})=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} x_{i} y_{j}={ }^{t} X \mathcal{A} Y
$$

with $\mathcal{A}=\left(a_{i j}\right)$.

Remark 5.3.5. If V, W, U are vector spaces over the same field \mathbb{F} and if $\mathrm{F}_{i}: V \times W \rightarrow U$ are bilinear maps for $i=1,2$, then $\mathrm{F}_{1}+\mathrm{F}_{2}: V \times W \rightarrow U$ is a bilinear map, and $\lambda \mathrm{F}_{i}$ is also a bilinear map. Thus, the set of bilinear maps from $V \times W$ to U is a vector space.

Let us end this section with two questions:
Question: Let $V=W=\mathbb{R}^{n}$ and consider the map F defined by the usual scalar product

$$
\mathrm{F}(X, Y)=X \cdot Y \quad \text { for any } X, Y \in \mathbb{R}^{n}
$$

In view of Lemma 5.3.4, what is the matrix associated with this bilinear map with respect to the canonical basis of \mathbb{R}^{n} ?

Question: How does a bilinear map change when one performs a change of bases for the vector spaces V and W ?

5.4 Exercises

Exercise 5.1. Let V be a real vector space endowed with a scalar product. Prove the following relations for $X, Y \in V$ and $\lambda \in \mathbb{R}$:
(i) $\|\lambda X\|=|\lambda|\|X\|$,
(ii) $\|X+Y\|^{2}=\|X\|^{2}+\|Y\|^{2}$ if and only if $X \perp Y$,
(iii) $\|X+Y\|^{2}+\|X-Y\|^{2}=2\|X\|^{2}+2\|Y\|^{2}$,
(iv) $\|X+Y\| \leq\|X\|+\|Y\|$.

Exercise 5.2. Let $\mathcal{A}=\left(a_{j k}\right) \in M_{n}(\mathbb{R})$ and define $\operatorname{Tr}(\mathcal{A})=\sum_{j=1}^{n} a_{j j}$, where $\operatorname{Tr}(\mathcal{A})$ is called the trace of \mathcal{A}. Show the following properties:
(i) $\operatorname{Tr}: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is a linear map,
(ii) $\operatorname{Tr}(\mathcal{A B})=\operatorname{Tr}(\mathcal{B A})$, for any $\mathcal{A}, \mathcal{B} \in M_{n}(\mathbb{R})$,
(iii) If $\mathcal{C} \in M_{n}(\mathbb{R})$ is an invertible matrix, then $\operatorname{Tr}\left(\mathcal{C}^{-1} \mathcal{A C}\right)=\operatorname{Tr}(\mathcal{A})$,
(iv) If $M_{n}^{s}(\mathbb{R})$ denotes the vector space of all $n \times n$ symmetric matrices, then the map

$$
M_{n}^{s}(\mathbb{R}) \times M_{n}^{s}(\mathbb{R}) \ni(\mathcal{A}, \mathcal{B}) \mapsto \operatorname{Tr}(\mathcal{A B}) \in \mathbb{R}
$$

defines a scalar product on $M_{n}^{s}(\mathbb{R})$. We recall that a matrix \mathcal{A} is symmetric if $\mathcal{A}={ }^{t} \mathcal{A}$.

Exercise 5.3. Find an orthonormal basis for the subspace of \mathbb{R}^{4} defined by the three vectors $\left(\begin{array}{c}1 \\ 1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ 0 \\ -1 \\ 2\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -2 \\ 0 \\ 0\end{array}\right)$.
Exercise 5.4. Find an orthonormal basis for the space of solutions of the following systems:

> a) $\left\{\begin{array}{l}2 x+y-z=0 \\ 2 x+y+z=0\end{array}\right.$ b) $\left\{x-y+z=0 \quad\right.$ c) $\left\{\begin{array}{c}4 x+7 y-\pi z=0 \\ 2 x-y+z=0\end{array}\right.$ d) $\left\{\begin{array}{c}x+y+z=0 \\ x-y=0 \\ y+z=\end{array}\right.$

Exercise 5.5. We consider the real vector space $V:=C([0,1])$ made of continuous real functions on $[0,1]$ and endow it with the map

$$
V \times V \ni(f, g) \mapsto\langle f, g\rangle:=\int_{0}^{1} f(x) g(x) \mathrm{d} x \in \mathbb{R}
$$

Show that
(i) $\langle\cdot, \cdot\rangle$ is a scalar product on V,
(ii) If W is the subspace of V generated by the three functions $x \mapsto 1$ (constant function), $x \mapsto x$ (identity function), and $x \mapsto x^{2}$, find an orthonormal basis for W.

Exercise 5.6. For any symmetric matrix $\mathcal{A}=\left(a_{i j}\right) \in M_{n}(\mathbb{R})$, we define the map

$$
\mathrm{F}_{\mathcal{A}}: \mathbb{R}^{n} \times \mathbb{R}^{n} \ni(X, Y) \mapsto \mathrm{F}_{\mathcal{A}}(X, Y):={ }^{t} X \mathcal{A} Y \in \mathbb{R}
$$

(i) Show that $\mathrm{F}_{\mathcal{A}}$ is a bilinear map,
(ii) Show that $\mathrm{F}_{\mathcal{A}}(X, Y)=\mathrm{F}_{\mathcal{A}}(Y, X)$ for any $X, Y \in \mathbb{R}^{n}$.
(iii) When does $\mathrm{F}_{\mathcal{A}}$ define a scalar product?
(iv) If \mathcal{A} is one of the following matrices, does $\mathrm{F}_{\mathcal{A}}$ define a scalar product?

$$
\mathcal{A}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), \quad \mathcal{A}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) .
$$

