Chapter 5

Scalar product and orthogonality

5.1 Scalar product

Recall that the notion of a vector space has been introduced as an abstract version of the properties shared both by \mathbb{R}^n and by $M_{mn}(\mathbb{R})$. Similarly, we have introduced the scalar product on \mathbb{R}^n already in Chapter 1, let us now consider an abstract version of it. For simplicity, we introduce it on real vector spaces, but a slightly more general version will be considered once the complex numbers will be at our disposal.

Definition 5.1.1. A scalar product on a real vector space V is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ such that for any $X, Y, Z \in V$ and $\lambda \in \mathbb{R}$ one has

- (i) $\langle X, Y \rangle = \langle Y, X \rangle$,
- (ii) $\langle X + Y, Z \rangle = \langle X, Z \rangle + \langle Y, Z \rangle$,
- (iii) $\langle \lambda X, Y \rangle = \lambda \langle X, Y \rangle$,
- (iv) $\langle X, X \rangle \geq 0$ and $\langle X, X \rangle = 0$ if and only if $X = \mathbf{0}$.

Example 5.1.2. For $V = \mathbb{R}^n$ and $X, Y \in V$ one sets $\langle X, Y \rangle := X \cdot Y$ and one can check that the four conditions above are satisfied.

Example 5.1.3. For $a, b \in \mathbb{R}$ with a < b one considers $V = C([a, b]; \mathbb{R})$ and for any $f, g \in V$ one defines

$$\langle f, g \rangle := \int_a^b f(x)g(x) dx.$$

It is easily checked that this defines a scalar product on V, see Exercise 5.5. For information, this scalar product extends to the set of L^2 -functions (the set of square integrable functions).

Definition 5.1.4. If V is a real vector space endowed with a scalar product, one says that $X, Y \in V$ are orthogonal if $\langle X, Y \rangle = 0$, and one writes $X \perp Y$. If S is a subset of V, one writes

$$S^{\perp} := \{Y \in V \mid \langle X, Y \rangle = 0 \text{ for all } X \in S\}$$

and call it the orthogonal subspace of S.

One easily shows that S^{\perp} is always a subspace of V.

Definition 5.1.5. For any real vector space V endowed with a scalar product and for any $X \in V$ we set

$$||X|| := \sqrt{\langle X, X \rangle}$$

and call it the norm of X (associated with the scalar product $\langle \cdot, \cdot \rangle$).

Lemma 5.1.6. For any real vector space V endowed with a scalar product, for any $X, Y \in V$ and for $\lambda \in \mathbb{R}$ one has

- $(i) \|\lambda X\| = |\lambda| \|X\|,$
- (ii) $||X + Y||^2 = ||X||^2 + ||Y||^2$ if and only if $X \perp Y$ (Pythagoras theorem)
- (iii) $||X + Y||^2 + ||X Y||^2 = 2||X||^2 + 2||Y||^2$,
- (iv) $||X + Y|| \le ||X|| + ||Y||$.

The proof will be provided in Exercise 5.1. The following statement is a generalization of a property already derived in the context of \mathbb{R}^n .

Lemma 5.1.7. For any real vector space V endowed with a scalar product and for any $X, Y \in V$ one has

$$|\langle X, Y \rangle| \le ||X|| \, ||Y||. \tag{5.1.1}$$

Proof. Let us first consider the trivial case $Y = \mathbf{0}$ for which (5.1.1) is an equality with 0 on both sides.

Now, assume that $Y \neq \mathbf{0}$ and set $c := \frac{\langle X, Y \rangle}{\|Y\|^2}$. Then let us observe that $(X - cY) \perp Y$, since

$$\langle X - cY, Y \rangle = \langle X, Y \rangle - \frac{\langle X, Y \rangle}{\|Y\|^2} \langle Y, Y \rangle = 0.$$

It follows by Pythagoras theorem that

$$||X||^2 = ||(X - cY) + cY||^2 = ||X - cY||^2 + ||cY||^2 = ||X - cY||^2 + c^2||Y||^2,$$

which implies that $||X||^2 \ge c^2 ||Y||$, or equivalently $||X|| \ge |c| ||Y||$. Note that this inequality can also be rewritten as $|c| \le \frac{||X||}{||Y||}$.

By collecting these information one gets

$$|\langle X,Y\rangle| = |c| \, \|Y\|^2 \le \frac{\|X\|}{\|Y\|} \|Y\|^2 = \|X\| \, \|Y\|,$$

which corresponds to the claim.

5.2 Orthogonal bases

Definition 5.2.1. Let V be a real vector space endowed with a scalar product, and let $\{V_1, \ldots, V_n\}$ be a basis for V. The basis is called orthogonal if $\langle V_i, V_j \rangle = 0$ whenever $i, j \in \{1, \ldots, n\}$ and $i \neq j$. If in addition $\langle V_i, V_i \rangle = 1$ for any $i \in \{1, \ldots, n\}$ the basis is called orthonormal.

Example 5.2.2. The standard basis $\{E_1, \ldots, E_n\}$ of \mathbb{R}^n is an orthonormal basis.

The following result is of conceptual importance, and rather well-known.

Theorem 5.2.3 (Graham-Schmidt). Let V be a real vector space of dimension n endowed with a scalar product. Then there exists an orthonormal basis for V.

The proof consists in the explicit construction of an orthonormal basis.

Proof. Let $\{V_1, \ldots, V_n\}$ be an arbitrary basis for V (such a basis exists since otherwise the dimension of V would not be defined), and let us set

$$V_{1}' := \frac{1}{\|V_{1}\|} V_{1}$$

$$V_{2}' := \frac{1}{\|V_{2} - \langle V_{2}, V_{1}' \rangle V_{1}' \|} (V_{2} - \langle V_{2}, V_{1}' \rangle V_{1}')$$

$$\vdots$$

$$V_{n}' := \frac{1}{\|V_{n} - \sum_{i=1}^{n-1} \langle V_{n}, V_{i}' \rangle V_{i}' \|} (V_{n} - \sum_{i=1}^{n-1} \langle V_{n}, V_{i}' \rangle V_{i}'),$$

where the prefactors are chosen such that $||V'_j|| = 1$ (note that $V_j - \sum_{i=1}^{j-1} \langle V_j, V_i' \rangle V_i'$ is always different from **0** since otherwise V_j would be a linear combination of V_1, \ldots, V_{j-1} which is not possible by assumption). Then, it simply remains to observe that $V'_j \perp V'_k$ for any $j \neq k$. As a consequence, the elements V'_j generate an orthonormal basis for V, as expected.

5.3 Bilinear maps

The notion of bilinear maps will be useful for calculus II.

Definition 5.3.1. Let V, W, U be vector spaces over the same field \mathbb{F} . A map $T: V \times W \to U$ is bilinear if it is linear in each argument, namely for any $X, X_1, X_2 \in V$, any $Y, Y_1, Y_2 \in W$ and $\lambda \in \mathbb{F}$ one has

(i)
$$T(X_1 + X_2, Y) = T(X_1, Y) + T(X_2, Y),$$

(ii)
$$T(\lambda X, Y) = \lambda T(X, Y)$$
,

(iii)
$$T(X, Y_1 + Y_2) = T(X, Y_1) + T(X, Y_2),$$

(iv)
$$T(X, \lambda Y) = \lambda T(X, Y)$$
.

Example 5.3.2. The scalar product $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is a bilinear map on the Euclidean space \mathbb{R}^n .

Example 5.3.3. If $A \in M_{mn}(\mathbb{F})$ one can define a bilinear map $F_A : \mathbb{F}^m \times \mathbb{F}^n \to \mathbb{F}$ for any $X \in \mathbb{F}^m$ and $Y \in \mathbb{F}^n$ by

$$F_{\mathcal{A}}(X,Y) = {}^{t}X\mathcal{A}Y \equiv \underbrace{{}^{t}X}_{\in M_{1m}(\mathbb{F})} \underbrace{\mathcal{A}}_{\in M_{mn}(\mathbb{F})} \underbrace{Y}_{\in M_{n1}(\mathbb{F})} \in \mathbb{F}.$$
 (5.3.1)

Note that it is easily checked that F_A is indeed a bilinear map. For example, if $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $X = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $Y = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, then

$$F_{\mathcal{A}}(X,Y) = (1\ 0) \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = (1\ 0) \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 2.$$

More generally, observe that if $A = (a_{ij}), X = {}^{t}(x_1, \ldots, x_m)$ and $Y = {}^{t}(y_1, \ldots, y_n)$ then

$$^{t}XAY = X \cdot (AY) = \sum_{i=1}^{m} x_i (AY)_i = \sum_{i=1}^{m} x_i \sum_{j=1}^{n} a_{ij} y_j = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j.$$

We shall now see that many bilinear maps are of the form presented in the previous example. For that purpose, recall from Section 4.5 that if $\mathcal{V} = \{V_1, \ldots, V_m\}$ is a basis for a vector space V over \mathbb{F} and if $\mathcal{X} \in V$ then the coordinate vector of \mathcal{X} is the element $X = {}^t(x_1, \ldots, x_m) \in \mathbb{F}^m$ such that $\mathcal{X} = x_1V_1 + \cdots + x_mV_m$. One has already introduced the notation $(\mathcal{X})_{\mathcal{V}} = X$. Similarly, for a basis $\mathcal{W} = \{W_1, \ldots, W_n\}$ of a vector space W over \mathbb{F} and for any $\mathcal{Y} \in W$ one sets $(\mathcal{Y})_{\mathcal{W}} = Y = {}^t(y_1, \ldots, y_n) \in \mathbb{F}^n$ for its coordinate vector.

Lemma 5.3.4. Let V, W be vector spaces over a field \mathbb{F} and let $F: V \times W \to \mathbb{F}$ be a bilinear map. If $V = \{V_1, \ldots, V_m\}$ is a basis for V, and if $W = \{W_1, \ldots, W_n\}$ is a basis for W then there exists $A \in M_{mn}(\mathbb{F})$ such that

$$F(\mathcal{X}, \mathcal{Y}) = {}^{t}X\mathcal{A}Y$$

for any $X \in V$, any $Y \in W$ and with $X = (X)_V$ and $Y = (Y)_W$.

Proof. By taking the bilinearity of F into account, one has

$$F(\mathcal{X}, \mathcal{Y}) = F\left(\sum_{i=1}^{m} x_i V_i, \sum_{j=1}^{n} y_j W_j\right) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j F(V_i, W_j).$$

Thus, by setting $a_{ij} = F(V_i, W_j) \in \mathbb{F}$ one deduces that

$$F(\mathcal{X}, \mathcal{Y}) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_i y_j = {}^{t} X \mathcal{A} Y$$

with
$$\mathcal{A} = (a_{ij})$$
.

85

Remark 5.3.5. If V, W, U are vector spaces over the same field \mathbb{F} and if $F_i : V \times W \to U$ are bilinear maps for i = 1, 2, then $F_1 + F_2 : V \times W \to U$ is a bilinear map, and λF_i is also a bilinear map. Thus, the set of bilinear maps from $V \times W$ to U is a vector space.

Let us end this section with two questions:

Question: Let $V = W = \mathbb{R}^n$ and consider the map F defined by the usual scalar product

$$F(X,Y) = X \cdot Y$$
 for any $X, Y \in \mathbb{R}^n$.

In view of Lemma 5.3.4, what is the matrix associated with this bilinear map with respect to the canonical basis of \mathbb{R}^n ?

Question: How does a bilinear map change when one performs a change of bases for the vector spaces V and W?

Exercises 5.4

Exercise 5.1. Let V be a real vector space endowed with a scalar product. Prove the following relations for $X, Y \in V$ and $\lambda \in \mathbb{R}$:

- (i) $\|\lambda X\| = |\lambda| \|X\|$,
- (ii) $||X + Y||^2 = ||X||^2 + ||Y||^2$ if and only if $X \perp Y$,
- (iii) $||X + Y||^2 + ||X Y||^2 = 2||X||^2 + 2||Y||^2$,
- (iv) ||X + Y|| < ||X|| + ||Y||.

Exercise 5.2. Let $\mathcal{A} = (a_{jk}) \in M_n(\mathbb{R})$ and define $\operatorname{Tr}(\mathcal{A}) = \sum_{j=1}^n a_{jj}$, where $\operatorname{Tr}(\mathcal{A})$ is called the trace of A. Show the following properties:

- (i) Tr: $M_n(\mathbb{R}) \to \mathbb{R}$ is a linear map,
- (ii) $\operatorname{Tr}(\mathcal{AB}) = \operatorname{Tr}(\mathcal{BA})$, for any $\mathcal{A}, \mathcal{B} \in M_n(\mathbb{R})$,
- (iii) If $C \in M_n(\mathbb{R})$ is an invertible matrix, then $\operatorname{Tr}(C^{-1}\mathcal{A}C) = \operatorname{Tr}(\mathcal{A})$,
- (iv) If $M_n^s(\mathbb{R})$ denotes the vector space of all $n \times n$ symmetric matrices, then the map

$$M_n^s(\mathbb{R}) \times M_n^s(\mathbb{R}) \ni (\mathcal{A}, \mathcal{B}) \mapsto \operatorname{Tr}(\mathcal{AB}) \in \mathbb{R}$$

defines a scalar product on $M_n^s(\mathbb{R})$. We recall that a matrix \mathcal{A} is symmetric if $\mathcal{A} = {}^{t}\mathcal{A}.$

Exercise 5.3. Find an orthonormal basis for the subspace of \mathbb{R}^4 defined by the three vectors $\begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\-1\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\-2\\0\\0 \end{pmatrix}$.

Exercise 5.4. Find an orthonormal basis for the space of solutions of the following systems:

a)
$$\begin{cases} 2x + y - z &= 0 \\ 2x + y + z &= 0 \end{cases}$$
 b)
$$\begin{cases} x - y + z &= 0 \\ 2x - y + z &= 0 \end{cases}$$
 d)
$$\begin{cases} x + y + z &= 0 \\ x - y &= 0 \\ y + z &= 0 \end{cases}$$

$$d) \begin{cases} x+y+z &= 0 \\ x-y &= 0 \\ y+z &= 0 \end{cases}$$

Exercise 5.5. We consider the real vector space V := C([0,1]) made of continuous real functions on [0,1] and endow it with the map

$$V \times V \ni (f,g) \mapsto \langle f,g \rangle := \int_0^1 f(x) g(x) dx \in \mathbb{R}.$$

Show that

5.4. EXERCISES 87

- (i) $\langle \cdot, \cdot \rangle$ is a scalar product on V,
- (ii) If W is the subspace of V generated by the three functions $x\mapsto 1$ (constant function), $x\mapsto x$ (identity function), and $x\mapsto x^2$, find an orthonormal basis for W

Exercise 5.6. For any symmetric matrix $A = (a_{ij}) \in M_n(\mathbb{R})$, we define the map

$$F_{\mathcal{A}}: \mathbb{R}^n \times \mathbb{R}^n \ni (X, Y) \mapsto F_{\mathcal{A}}(X, Y) := {}^t X \mathcal{A} Y \in \mathbb{R}.$$

- (i) Show that F_A is a bilinear map,
- (ii) Show that $F_A(X,Y) = F_A(Y,X)$ for any $X,Y \in \mathbb{R}^n$.
- (iii) When does F_A define a scalar product?
- (iv) If A is one of the following matrices, does F_A define a scalar product?

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}, \qquad A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}.$$