
Chapter 7

Magnetic systems

In this chapter we shall see how all the previous constructions can be used when a
magnetic field is considered on Rd.

Very briefly, a continuous magnetic field is described by a closed continuous 2-
form B defined on Rd. It is well-known that any such field B may be written as the
differential dA of a 1-forms A called a vector potential, which is highly non-unique (the
gauge ambiguity). By using coordinates, one has

Bjk = ∂jAk − ∂kAj for any j, k ∈ {1, . . . d}.

In the presence of the field B = dA, the prescription (6.1.1) has to be modified. This
topic was very rarely touched in the literature and the following wrong solution appears:
The minimal coupling principle says roughly that the momentum D should be replaced
with the magnetic momentum ΠA = D−A(X). This originated in Lagrangian classical
mechanics and works well also at the quantum level as long as we consider operators
which are polynomials of order less or equal to 2. But if one just replaces in (6.1.1) the
expression f

(
(x + y)/2, η

)
by f

(
(x + y)/2, η − A(x + y)/2

)
one gets a formula which

misses the right gauge covariance. Indeed, let us denote the result of this procedure for
some function f in phase space by OpA(f). If another vector potential A′ is chosen such
that A′ = A +∇ρ with ρ a scalar function, then dA′ = dA. But the expected formula
OpA′(f) = eiρOpA(f)e−iρ is verified for some simple cases (A,A′ linear and f arbitrary,
or f polynomial of order strictly less than 3 in η and A,A′ arbitrary), but it fails in
general.

Thus, the aim of the following sections is two show that the correct solution can
directly be inferred from the formalism constructed before, without the invocation of
a minimal coupling principle. The content of this chapter is borrowed from the three
references [MPR05, MPR07, LMR10].

7.1 Magnetic twisted dynamical systems

From now on, the group G will always be Rd, with its usual action θ by translations. The
2-cocycle will be defined in terms of the magnetic field. More precisely, the magnetic
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field on Rd is a closed continuous 2-form B. Since on Rd we have canonical global
coordinates, we shall speak freely of the components Bjk of B; they are continuous real
functions on Rd satisfying Bkj = −Bjk and (in the distributional sense)

∂jBkl + ∂lBjk + ∂kBlj = 0 ∀j, k, l ∈ {1, . . . , d}.

It is well-known that B = dA for some 1-form A on Rd, called a vector potential,
which is highly non-unique. For simplicity, we shall consider only continuous A; this is
always possible since at least one continuous vector potential always exists, namely the
transversal gauge which is defined by

Aj(x) := −
d∑

k=1

∫ 1

0

Bjk(sx)sxk ds. (7.1.1)

Given a k-form C on Rd and a compact k-surface γ ⊂ Rd, we define

ΓC(γ) :=

∫
γ

C,

this integral having a well-defined parametrization independent meaning. We shall
mainly encounter circulations of 1-forms along linear segments γ = [x, y] and fluxes
of 2-forms through triangles γ = 〈x, y, z〉. In particular, for a continuous magnetic field
B one defines

ωB(q;x, y) := e−iΓ
B(〈q,q+x,q+x+y〉) for all x, y, q ∈ Rd. (7.1.2)

From now on, let us fix a Rd-algebra C , i.e. a C∗-subalgebra of BCu(Rd) which is
invariant under the actions of Rd by translations. Note that in Definition 5.4.1 we have
also assumed that C0(Rd) ⊂ C , but that this additional condition is not necessary here.
By Gelfand representation, we know that C ∼= C0(Ω), with Ω the spectrum of C . In
this setting, the additional assumption C0(Rd) ⊂ C allowed one to identify Rd with a
dense subset of Ω. Let us now consider C(Ω), the set of continuous functions on Ω. If C
is not unital, then such functions can be unbounded. The simplest example is obtained
by considering C = C0(Rd) with Ω equal to Rd. Taking this observation into account,
let us now define a magnetic field which is related to the Rd-algebra C :

Definition 7.1.1. A magnetic field B is of type C with C ∼= C0(Ω) if all its components
{Bjk}dj,k=1 belong to C(Ω;R).

Clearly, if Bjk ∈ C for any j, k ∈ {1, . . . , d}, then B is a magnetic field of type
C . However, the previous definition is more general, and unbounded magnetic field can
be considered in this setting. We recall that the notion of standard twisted system has
been introduced in Definition 5.4.2.

Lemma 7.1.2. If B is a magnetic field of type C , then (C ,Rd, θ, ωB) is a standard
twisted dynamical system.
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Proof. The proof that ωB is a normalized 2-cocyle, i.e. that it satisfies relations (5.1.1)
and (5.1.2), follows easily by direct computations (for the first one use the Stokes
Theorem for the closed 2-form B and the tetrahedron of vertices q, q+ x, q+ x+ y, q+
x+ y + z).

We now show that ωB has the right continuity properties. It should define a mapping

Rd × Rd 3 (x, y)→
[
ωB(x, y)

]
(·) ≡ ωB(·;x, y) ∈ C(Ω;T), (7.1.3)

continuous with respect to the topology of uniform convergence on compact subsets of
Ω. But this is equivalent to the fact that ωB defines un element of C(Ω× Rd × Rd;T).
Note that this type of statement already appeared in the proof of Lemma 5.3.3. Taking
into account obvious properties of the exponential, this amounts to the fact that the
function

ϕB : Rd × Rd × Rd → R, ϕB(q;x, y) := ΓB(〈q, q + x, q + x+ y〉)

can be viewed as a continuous function on Ω× Rd × Rd.
We use the parametrization

ϕB(q;x, y) =
d∑

j,k=1

xj yk

∫ 1

0

∫ 1

0

sBjk(q + sx+ sty)dsdt.

Since the continuous action θ on C defines a continuous mapping θ on Ω, one has the
continuous correspondence Ω × Rd × Rd 3 (q;x, y) → q + sx + sty = θsx+sty(q) ∈ Ω.
Since Bjk is seen as a continuous function from Ω to R, the assertion follows easily.

Exercise 7.1.3. Work out the details of the previous proof, and in particular show that
ωB satisfies the two conditions (5.1.1) and (5.1.2).

From now on, we can call (C ,Rd, θ, ωB) the twisted dynamical system associated
with the abelian algebra C and the magnetic field B. In most of the cases the 2-cocycle
ωB ∈ Z2

(
Rd; U (C )

)
is not trivial. But as Proposition 5.4.3 shows, it is pseudo-trivial.

In fact, its pseudo-trivialization can be achieved by a vector potential. Any continuous
1-form A defines a 1-cochain λA ∈ C1

(
Rd;C(Rd;T)

)
via its circulation:[

λA(x)
]

(q) ≡ λA(q;x) = e−iΓ
A([q,q+x]) = e−ix·

∫ 1
0 A(q+sx)ds. (7.1.4)

As soon as dA = B, we have δ1(λA) = ωB
(
a priori with respect to C(Rd;T)

)
, by a

suitable version of Stokes Lemma. As said above, the transversal gauge offers a contin-
uous vector potential corresponding to a given B. Actually, this is consistent with the
choice (5.3.1) of a pseudo-trivialization of ωB: for q, x ∈ Rd, λ(q;x) := ωB(0; q, x) =
e−iΓ

B(〈0,q,q+x〉) and it follows immediately that ΓB(〈0, q, q + x〉) = ΓA([q, q + x]), with A
given by (7.1.1).

Since specific standard twisted dynamical systems can be constructed based on any
magnetic field of type C , the whole formalism of the preceding chapters is available. In



88 CHAPTER 7. MAGNETIC SYSTEMS

particular, twisted crossed product algebra C oωB

θ,τ Rd, also denoted by C oB
θ,τ Rd and

their Schrödinger representations are at hand. Note that as always, the dependence on
τ is within isomorphism, and that for any continuous B the C∗-algebra C0(Rd) oB

θ,τ Rd

is isomorphic to K (H), the ideal of all compact operators in H = L2(Rd).
Let us close this section with some comments on the magnetic momentum, already

introduced in the preamble of this chapter. The fact that the magnetic 2-cocycle ωB

satisfies
ωB(q; sx, tx) = 1, ∀q, x ∈ Rd and ∀s, t ∈ R (7.1.5)

leads directly to the magnetic momenta. Indeed, let us fix some continuous A such that
dA = B, and thus δ1(λA) = ωB. Then λA satisfies for all q, x ∈ Rd and all s, t ∈ R:
λA(q; sx+ tx) = λA(q; sx)λA(q+sx; tx) (note that in general, if λ is not the exponential
of a circulation this will not be true). We consider then the Schrödinger covariant
representation (H, π, UA) with H = L2(Rd), π(a) = a(X) and UA = UλA defined by

[UA
y u](x) ≡ [UA(y)u](x) = λA(x; y)u(x+ y), x, y ∈ Rd, u ∈ H.

The unitary operators {UA(y)}y∈Rd are called the magnetic translations. They often
appear in the physical literature. One has, by a short computation,

UA(sx+ tx) = UA(sx)UA(tx), ∀x ∈ Rd, ∀s, t ∈ R (7.1.6)

and this also implies UA(−x) = UA(x)−1 = UA(x)∗ for all x ∈ Rd. In fact, the formula

UA(y)UA(z) = π[ωB(y, z)]UA(y + z), y, z ∈ Rd

shows that (7.1.6) is equivalent with (7.1.5). For t ∈ R and x ∈ Rd, let us set UA
t (x) :=

UA(tx). By (7.1.6), we observe that {UA
t (x)}t∈R is a strongly continuous unitary group

in H for any x. Thus, by Stone Theorem (see Theorem 1.7.12), it has a self-adjoint
generator that moreover depends linearly (as a linear operator on H) on the vector x ∈
Rd. Thus we denote it by x·ΠA and call it the projection on x of the magnetic momentum
associated with the vector potential A. For any index j ∈ {1, ..., n} we set ΠA

j := ej ·ΠA

the projection of the magnetic momentum on the j’th vector of the canonical base in
Rd. A direct computation shows that on C∞c (Rd) one has ΠA

j = Dj − Aj(X).
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7.2 Magnetic pseudodifferential calculus

In this section, we adapt the results presented in Section 6.1 when a magnetic field
is also present. Most of the following formulas appeared already in the more general
setting of Section 6.2, but this section can be seen as a useful résumé for the interested
reader.

Let us directly start by introducing the analog of the Weyl system recalled in (6.1.4)
but in the presence of a magnetic field. For the time being, B is any continuous magnetic
field on Rd and A is any corresponding continuous vector potential. Associated with
the Schrödinger covariant representation (H, π, UA) defined above, we can now define
the magnetic Weyl system WA by

Ξ 3 x 7→ WA
(
x) := e−

i
2
x·ξ VξU

A(x) ∈ U (H).

These unitary operators satisfy then the relations

WA(x)WA(y) = e
i
2
σ(x,y)π[ωB(x, y)]WA(x + y)

for any x = (x, ξ) and y = (y, η).

Exercise 7.2.1. Check the above relations

For any f ∈ S(Ξ) we can then write explicitly the operator OpA(f) := Opλ
A

1/2(f) in
H which has been introduced in Proposition 6.2.2, namely

[
OpA(f)u

]
(x) =

1

(2π)d

∫
Rd

∫
R̂d
ei(x−y)·ηe−iΓ

A([x,y])f

(
x+ y

2
, η

)
u(y)dydη.

Note that this formula can be called the magnetic Weyl calculus. Furthermore, it is
easily observed that this is an integral operator with kernel

KA := λ̃AS−1 (1⊗FR̂d)

where λ̃A(x, y) := λA(x; y−x) and
(
S−1h

)
(x, y) = h

(
x+y

2
, x− y

)
. With this formula, we

can now extend the map KA and thus define OpA(F ) for any F ∈ S ′(Ξ) as the integral
operator with kernel KA(F ), defined on S(Rd) with values in S ′(Rd). It seems legitimate
to view the correspondence f → OpA(f) as a functional calculus for the family of self-
adjoint operators X1, . . . , Xd,Π

A
1 , . . . ,Π

A
d . The high degree of non-commutativity of

these 2d operators stays at the origin of the sophistication of the symbolic calculus.
The commutation relations

i[Xj, Xk] = 0, i[ΠA
j , Xk] = δjk, i[ΠA

j ,Π
A
k ] = −Bjk(X), j, k = 1, . . . , d (7.2.1)

collapse for B = 0 to the canonical commutation relations satisfied by X and D,
see Exercise 4.1.3. But they are much more complicated, especially when B is not a
polynomial. The main mathematical miracle that allows, however, a nice treatment is



90 CHAPTER 7. MAGNETIC SYSTEMS

the fact that (7.2.1) can be recast in the form of a covariant representation of a twisted
dynamical system.

Let us stress once more that the functional calculus that we have defined is gauge
covariant, in the sense that it satisfies the property: If A′ = A +∇ϕ with ϕ : Rd → R
continuous, then OpA

′
(f) = eiϕ(X)OpA(f)e−iϕ(X). This gauge covariance property may

be seen as a special instance of Proposition 6.2.2.
The extension of the usual Moyal product has a particular form in the magnetic

setting. More precisely, by adapting the formula obtained in Section 6.2 to the magnetic
2-cocyle and for τ = 1/2, one obtains on S(Ξ) the composition and the involution:

(f ◦B g)(x) =
4d

(2π)d

∫
Ξ

∫
Ξ

e−2iσ(x−y,x−z)e−iΓ
B(〈x−z+y,y−x+z,z−y+x〉)f(y)g(z)dydz, (7.2.2)

with x, y, z ∈ Ξ, and

f ◦
B

(x) = f(x), ∀x ∈ Ξ.

Note that with these formulas, one has (f ◦B g)◦
B

= g◦
B ◦B f ◦B as well as

OpA(f ◦B g) = OpA(f)OpA(g), and OpA(f ◦
B

) = OpA(f)∗.

Exercise 7.2.2. Without relying on the content of the previous sections, check directly
these equalities.

We remark that the involution ◦B and the product ◦B are defined intrinsically,
without any choice of a vector potential. The choice is only needed when we represent
the resulting structures on the Hilbert space L2(Rd). We call (7.2.2) the magnetic Moyal
product. The involution ◦

B
does not depend on B at all. This is no longer true if τ 6= 1/2.

The property ωB(x,−x) = 1, ∀x ∈ Rd, is also used to get the simple form of ◦
B

.
Let us now assume that B is of type C for some Rd-algebra C . The C∗-algebra

Cω
B

C ,1/2, introduced in Section 6.2, will be denoted by CBC . We call it the C∗-algebra of
pseudodifferential symbols of class C associated with B. We recall that it is essentially
a partial Fourier transform of the twisted crossed product C oB

θ,1/2 Rd. The formulas

defining the magnetic Weyl calculus make sense at least on the dense subset (1 ⊗
FRd)L1(Rd; C ), with iterated integrals. The extension of OpA is a faithful representation
of the C∗-algebra CBC for any continuous A with dA = B. If C0(Rd) ⊂ C , then OpA is
irreducible.

We close this section with some arguments about one possible extension for the
product ◦B. Indeed, as already mentioned in the Extension 6.2.4, the integrals defining
f ◦B g are absolutely convergent only for restricted classes of symbols. In order to
deal with more general distributions, an extension by duality was proposed in [MP04]
under an additional smoothness condition on the magnetic field. So let us assume that
the components of the magnetic field are C∞pol(Rd)-functions, i.e. they are indefinitely
derivable and each derivative is polynomially bounded. The duality approach is based
on the observation [MP04, Lem. 14] : For any f, g in the Schwartz space S(Ξ), we have
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f ◦B g ∈ S(Ξ), and∫
Ξ

[f ◦B g](x)dx =

∫
Ξ

[g ◦B f ](x)dx =

∫
Ξ

f(x)g(x)dx = 〈f, g〉 =: (f, g).

As a consequence, by using the associativity of ◦B and the symmetry of (·, ·), one easily
deduces that for f, g, h ∈ S(Ξ), one has

(f ◦B g, h) = (f, g ◦B h) = (g, h ◦B f).

Definition 7.2.3. For any distribution F ∈ S ′(Ξ) and any function f, h ∈ S(Ξ) we
define

(F ◦B f, h) := (F, f ◦B h), (f ◦B F, h) := (F, h ◦B f)

The expressions F ◦B f and f ◦B F are a priori tempered distributions. The Moyal
algebra is precisely the set of elements of S ′(Ξ) that preserves regularity by composition.

Definition 7.2.4. The magnetic Moyal algebra M (Ξ) is defined by

M (Ξ) :=
{
F ∈ S ′(Ξ) | F ◦B f ∈ S(Ξ) and f ◦B F ∈ S(Ξ) for all f ∈ S(Ξ)

}
.

For two distributions F and G in M (Ξ), the magnetic Moyal product can be extended
by

(F ◦B G, h) := (F,G ◦B h) for all h ∈ S(Ξ).

Clearly, the set M (Ξ) with this composition law and the complex conjugation
F 7→ F ◦ is a unital ∗-algebra. An important result [MP04, Prop. 23] concerning the
Moyal algebra is that it contains C∞pol,u(Ξ), the space of infinitely derivable complex
functions on Ξ having uniform polynomial growth at infinity. Finally let us quote a
result linking M (Ξ) with the functional calculus OpA [MP04, Prop. 21] : For any vector
potential A belonging to C∞pol(Rd), OpA is an isomorphism of ∗-algebras between M (Ξ)

and B[S(Rd)]∩B[S ′(Rd)], where B[S(Rd)] and B[S ′(Rd)] are, respectively, the spaces
of linear continuous operators on S(Rd) and S ′(Rd).

Remark 7.2.5. The extension by duality also gives compositions M (Ξ) ◦B S ′(Ξ) ⊂
S ′(Ξ) and S ′(Ξ) ◦B M (Ξ) ⊂ S ′(Ξ). One checks plainly that associativity holds for any
three factors product with two factors belonging to M (Ξ) and one in S ′(Ξ).

7.3 Magnetic Schrödinger operators

From now on, we consider for simplicity a Rd-algebra C which is unital and which
contains C0(Rd). As a consequence, C ∼= C(Ω) with Ω a compactification of Rd. Then,
given a magnetic field B of type C , cf. Definition 7.1.1, a continuous vector potential
A that generates B and a suitable symbol h : R̂d → R, our aim is to show that the
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magnetic Schrödinger operator h(ΠA) (which needs to be carefully defined) defines an
observable affiliated to the C∗-algebra

OpA(CBC ) = RepA
(
C oB

θ,1/2 Rd
)
≡ Repλ

A

1/2

(
C oB

θ,1/2 Rd
)
⊂ B(H),

see Definition 4.3.7 for the precision notion of affiliation. The proof of such a statement
is rather difficult and we shall do it under some smoothness conditions on the magnetic
field B and on the symbol h. We point out that we prove in fact in Theorem 7.3.2 a
stronger result that does not depend on the choice of any particular vector potential.

Definition 7.3.1. (i) For s ∈ R, a function h ∈ C∞(R̂d) is a symbol of type s,
written h ∈ Ss(R̂d), if the following condition is satisfied:

∀α ∈ Nd, ∃cα > 0 such that |(∂αh)(ξ)| ≤ cα〈ξ〉s−|α| for all ξ ∈ R̂d.

(ii) The symbol h is called elliptic if there exist R > 0 and c > 0 such that

c〈ξ〉s ≤ h(ξ) for all ξ ∈ R̂d and |ξ| ≥ R.

We denote by Ssel(R̂d) the family of elliptic symbols of type s, and set S∞el (R̂d) :=

∪sSsel(R̂d). Note that all the classes Ss(R̂d) are naturally contained in C∞pol,u(Ξ), thus in
M (Ξ). For any z ∈ C \ R, we also set rz : R→ C by rz(·) := (· − z)−1.

We are in a position to state the main results about affiliation. The proofs of these
statements are postponed until the next section.

Theorem 7.3.2. Assume that B is a magnetic field whose components belong to C ∩
BC∞(Rd). Then each real h ∈ S∞el (R̂d) defines an observable ΦB

h affiliated to CBC , such
that for any z ∈ C \ R one has

(h− z) ◦B ΦB
h (rz) = 1 = ΦB

h (rz) ◦B (h− z). (7.3.1)

In fact one even has ΦB
h (rz) ∈ F

(
L1(Rd; C )

)
⊂ S ′(Ξ), so the compositions can be

interpreted as M (Ξ)× S ′(Ξ)→ S ′(Ξ) and S ′(Ξ)×M (Ξ)→ S ′(Ξ).

We shall now consider a scalar potential V ∈ C . As seen in Theorem 3.4.5 the
algebra C can be identified with part of the multiplier algebra of F

(
L1(Rd; C )

)
. Then,

a straightforward reformulation of the perturbative argument presented in [ABG96,
p. 365–366] allows one to define the observable ΦB

h,V := ΦB
h + V . Considering now

h+ V ∈ S ′(Ξ) we remark that we can compute the Moyal product

(h+ V − z) ◦B ΦB
h,V (rz) = (h− z) ◦B ΦB

h,V (rz) + V ◦B ΦB
h,V (rz) = 1

by using the explicit formula of ΦB
h,V given in [ABG96, p. 366]. This leads then to the

following statement:
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Corollary 7.3.3. Assume that B is a magnetic field whose components belong to C ∩
BC∞(Rd). Let also V be a real function in C . Then ΦB

h,V is an observable affiliated to
CBC , such that for any z ∈ C \ R one has

(h+ V − z) ◦B ΦB
h,V (rz) = 1 = ΦB

h,V (rz) ◦B (h+ V − z).

These statements are elegant, being abstract, but in applications one also needs the
represented version:

Corollary 7.3.4. Assume that B is a magnetic field whose components belong to C ∩
BC∞(Rd), and let V be a real function in C . Let A be a continuous vector potential that
generates B. Then OpA(h) + V (X) defines a self-adjoint operator in H with domain
given by the image of the operator OpA [(h− z)−1] (which do not depend on z ∈ C\R).
This operator is affiliated to OpA(CBC ).

We finally give a description of the essential spectrum of the observables affiliated
to the C∗-algebra CBC . For the generalized magnetic Schrödinger operators of Theorem
7.3.2, this is expressed in terms of the spectra of so-called asymptotic operators. The
affiliation criterion and the algebraic formalism introduced above play an essential role
in the proof of this result. Note that we shall mimic the approach already used in
Section 4.5 in the absence of a magnetic field, and freely use the notations and concepts
introduced there.

Recall that C ∼= C(Ω) with Ω a compactification of Rd. Then, for any τ ∈ Ω \ Rd,
one sets Oτ for the orbit generated by τ , and Qτ for the corresponding quasi-orbit. In
this setting, for any f ∈ C(Ω), the function x 7→ f

(
θx(τ)

)
is an element of BCu(Rd),

see Exercise 4.5.2 for details. In particular, this construction holds for V and Bjk if
both belong to C .

Theorem 7.3.5. Let B be a magnetic field whose components belong to C ∩BC∞(Rd)
and let V ∈ C be a real function. Assume that {Qτi}i is a covering of ∂Ω by quasi-orbits.
Then for each real h ∈ S∞el (R̂d) one has

σess
[
OpA(h) + V (X)

]
= ∪iσ

[
OpAi(h) + Vi(X)

]
, (7.3.2)

where A, Ai are continuous vector potentials for B, Bi ≡ B|Qτi , and Vi ≡ V |Qτi .

Clearly, the computation of the essential spectrum is first performed at an abstract
level, i.e. without using any representation. This computation is more simple since
no vector potentials are involved. Only for convenience and tradition, the previous
represented version is also stated. Note also that the proof of this theorem is similar to
the one presented in Section 4.5, the 2-cocycles fitting very well with the functoriality
of the crossed products. We do not give any details here and refer to [MPR07, Sec. 3]
for the interested reader.
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7.4 Affiliation in the magnetic case

In this section we provide the proofs of Theorem 7.3.2 and of Corollary 7.3.4. Some
technical arguments are postponed to the end of the section. Throughout the section,
we assume tacitly all the assumptions of Theorem 7.3.2.

The proof of Theorem 7.3.2 will be based on the following strategy: Let M be an
associative algebra with a composition law denoted by ◦ and let h be an element of
M . Our aim is to find the inverse for h. Assume that h′ is another element such that
h ◦ h′ and h′ ◦ h are invertible. These inverses are written (h ◦ h′)(−1) and (h′ ◦ h)(−1)

respectively. Then, the element h′ ◦ (h ◦ h′)(−1) is obviously a right inverse for h and the
element (h′ ◦ h)(−1) ◦ h′ a left inverse for h. Both expressions are thus equal to h(−1).

In the sequel, we shall take for h the strictly positive symbol h + a, with a large
enough, and for h′ its pointwise inverse (h + a)−1. Finding an inverse (h + a)(−1) for
h + a with respect to the composition law ◦B will lead rather easily to an observable.
In the calculations below we shall use tacitly the some approximation procedures. For
several arguments we will be forced to get out of the algebra M = M (Ξ). This will be
easily dealt with by a suitable use of elements of S ′(Ξ).

Note finally that for simplicity, elements of R̂d will be denoted by p, k or l.

Proof of Theorem 7.3.2. (i) Let us consider an elliptic symbol h of order s and fix some
real number a ≥ − inf h + 1. We set ha := h + a, and denote by h−1

a its inverse with
respect to pointwise multiplication, i.e. h−1

a (p) := (h(p) + a)−1 for all p ∈ R̂d. It is clear
that h−1

a is a symbol of type −s. Since both functions ha and h−1
a belong to C∞pol,u(Ξ),

and thus to the Moyal algebra M (Ξ), one can calculate their product. By using (7.2.2)
we obtain(
ha ◦B h−1

a

)
(q, p) =

4d

(2π)d

∫
Rd

dx

∫
R̂d

dk

∫
Rd

dy

∫
R̂d

dl e−2i(k·y−l·x)γB(q; 2x, 2y)
ha(p− k)

ha(p− l)
,

(7.4.1)
with

γB(q; 2x, 2y) := ωB
(
q − x− y; 2x, 2(y − x)

)
. (7.4.2)

The last factor in the integral does not depend on x and y; it can be developed:

ha(p− k)

ha(p− l)
= 1+

d∑
j=1

(lj−kj)
∫ 1

0
dt(∂jh)

(
p− l + t(l − k)

)
h(p− l) + a

=: 1+
d∑
j=1

Fa,j(p; k, l) . (7.4.3)

Moreover, let

γ̃B(q; k, l) ≡ (FγB)(q; k, l) :=
1

(2π)d

∫
Rd

dx

∫
Rd

dy e−ik·y eil·x γB(q;x, y).

Then the following equality holds (in the sense of distributions):∫
R̂d

dk

∫
R̂d

dl γ̃B(q; k, l) = γB(q; 0, 0) = 1. (7.4.4)
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Thus, by inserting (7.4.3) and (7.4.4) into (7.4.1), we obtain

ha ◦B h−1
a = 1 +

d∑
j=1

fa,j,

with

fa,j(q; p) :=

∫
R̂d

dk

∫
R̂d

dl γ̃B(q; k, l)Fa,j(p; k, l) =
〈
(FγB)(q; ·, ·), Fa,j(p; ·, ·)

〉
. (7.4.5)

The last notation is used in order to emphasize the duality between C∞pol,u(R̂d× R̂d) and

its dual. Indeed, for q, p fixed, Lemma 7.4.2 proves that Fa,j(p; ·, ·) ∈ C∞pol,u(R̂d × R̂d),

and Lemma 7.4.1 proves that γB(q; ·, ·) ∈ C∞pol(Rd × Rd), from which one infers that

(FγB)(q; ·, ·) ∈
[
C∞pol,u(R̂d × R̂d)

]′
, see [Sch73, Chap. VII, Thm. XV].

(ii) We are now going to deduce some useful estimates on fa,j. We set 〈Dx〉 ≡ 〈−i∂x〉.
For α, j fixed and m,n integers that we shall choose below, one has

|(∂αp fa,j)(q; p)| ≤ sup
x,y∈Rd

|〈x〉−n〈y〉−n〈Dx〉m〈Dy〉m γB(q;x, y)| ·∥∥〈x〉−d 〈y〉−d∥∥
L2(Rd×Rd)

∥∥〈Dk〉n+d〈Dl〉n+d〈k〉−m〈l〉−m
(
∂αp Fa,j

)
(p; ·, ·)

∥∥
L2(R̂d×R̂d)

.

(7.4.6)

By taking into account (7.4.11), and by some simple computations, one can fix m such
that the last factor of (7.4.6) is dominated by cna

−1/µ 〈p〉s/µ−1−|α|, with µ > max{1, s}.
Then, by using Lemma 7.4.1, one can choose n (depending on m) such that the first
factor on the r.h.s. term of (7.4.6) is bounded. Altogether, one obtains

|(∂αp fa,j)(q; p)| ≤ ca−1/µ 〈p〉s/µ−1−|α|, (7.4.7)

where c depends on α and j but not on p, q or a.
(iii) Let us now show that for each j, F−1(fa,j) is an element of L1(Rd; C ), and thus

belongs to the C∗-algebra CBC .
By taking into account Lemma 7.4.1, the r.h.s. of the equation (7.4.5) can be

rewritten as
〈
γB(q; ·, ·), (F∗Fa,j)(p, ·, ·)

〉
, in which the duality between C∞pol(Rd × Rd)

and
(
C∞pol(Rd×Rd)

)′
= F∗C∞pol,u(R̂d× R̂d) is emphasized. As γB defines a function from

Rd×Rd to C (see Lemma 7.4.1) that is of class C∞pol(Rd×Rd), we can easily prove that

fa,j(·; p) belongs to C , for all p ∈ R̂d (by using partitions of unity on Rd × Rd and by
approximating the duality pairing with finite linear combinations of elements in C ).

This observation together with (7.4.7) imply that the hypotheses of Lemma 7.4.4
are fulfilled for each fa,j, with t = − (1− s/µ) < 0. It follows that F−1(fa,j) belongs to
L1(Rd; C ) and that there exists C > 0 such that

‖F−1(fa,j)‖1 ≤ C a−1/µ.
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Thus, for a large enough, the strict inequality
∥∥∑d

j=1 F
−1(fa,j)

∥∥
1
< 1 holds. It follows

that F−1(1+
∑d

j=1 fa,j) is invertible in L̃1, the minimal unitization of L1(Rd; C ). Equiv-

alently, ha ◦B h−1
a ≡ 1 +

∑d
j=1 fa,j is invertible in F̃(L1), the minimal unitization of

F
(
L1(Rd; C )

)
. Its inverse will be denoted by

(
ha ◦B h−1

a

)(−1)
.

(iv) We recall that h−1
a ∈ S−s(R̂d). Then, by Lemma 7.4.4 we get that h−1

a ∈
F
(
L1(Rd)

)
⊂ F

(
L1(Rd; C )

)
. Thus h−1

a ◦B (ha ◦B h−1
a )(−1) is a well defined element of

F
(
L1(Rd; C )

)
. Moreover, one readily gets ha ◦B [h−1

a ◦B (ha ◦B h−1
a )(−1)] = 1. For this,

just think of ha and h−1
a as elements of the Moyal algebra M (Ξ) and interpret (ha ◦B

h−1
a )(−1) ∈ F̃(L1) as an element of S ′(Ξ). The needed associativity follows easily from

the definition by duality of the composition law as stated in Remark 7.2.5. In the same
way one obtains [(h−1

a ◦B ha)(−1) ◦B h−1
a ] ◦B ha = 1 in M (Ξ). In conclusion, there exists

a0 ≥ − inf h+ 1 such that for any a > a0 the symbol ha possess an inverse with respect
to the Moyal product

h(−1)
a := h−1

a ◦B (ha ◦B h−1
a )(−1) = (h−1

a ◦B ha)(−1) ◦B h−1
a ∈ S ′(Ξ)

that also belongs to F
(
L1(Rd; C )

)
⊂ CBC . The second equality follows from Remark

7.2.5 by straightforward arguments.
(v) We define ΦB

h (rx) := h
(−1)
−x for x < −a0. Then ΦB

h (rx) ∈ F
(
L1(Rd; C )

)
⊂ CBC ∩

S ′(Ξ), its norm is uniformly bounded for x in the given domain and (h−x)◦B ΦB
h (rx) =

ΦB
h (rx) ◦B (h − x) = 1, as shown above. This allows us to obtain an extension to the

half-strip {z = x+ iy | x < −a0, |y| < δ} for some δ > 0 by setting

ΦB
h (rz) := ΦB

h (rx) ◦B {1 + (x− z)ΦB
h (rx)}(−1). (7.4.8)

It follows that

(h− z)◦B ΦB
h (rz) = {(h−x)◦B ΦB

h (rx) + (x− z)ΦB
h (rx)}◦B {1 + (x− z)ΦB

h (rx)}(−1) = 1.

We now prove that the map

{z = x+ iy | x < −a0, |y| < δ} 3 z 7→ ΦB
h (rz) ∈ F

(
L1(Rd; C )

)
satisfies the resolvent equation. Let us choose two complex numbers z and z′ in this
domain and subtract the two equations

(h− z) ◦B ΦB
h (rz) = 1, (h− z′) ◦B ΦB

h (rz′) = 1 (7.4.9)

in order to get (h− z) ◦B {ΦB
h (rz)− ΦB

h (rz′)}+ (z′ − z)ΦB
h (rz′) = 0. By multiplying at

the left with ΦB
h (rz) and by using the associativity, we obtain the resolvent equation

ΦB
h (rz)− ΦB

h (rz′) = (z − z′)ΦB
h (rz) ◦B ΦB

h (rz′).

Now, setting z′ = z = x− iy with y > 0 and taking norms we get

‖ΦB
h (rz)‖F(L1(Rd;C )) ≤ y−1.



7.4. AFFILIATION IN THE MAGNETIC CASE 97

With this estimate and formula (7.4.8), the function z 7→ ΦB
h (rz) can be extended to

the domain C\ [−a0,+∞), preserving the relations (7.4.9). The resolvent equation may
be proved in a similar way to hold on the entire domain C \ [−a0,+∞) and analyticity
of the defined function follows in an evident way.

(vi) Thus we have got an analytic map C\[−a0,+∞) 3 z → ΦB
h (rz) ∈ F

(
L1(Rd; C )

)
satisfying the resolvent equation and the symmetry condition. A general argument
presented in [ABG96, p. 364] allows now to extend in a unique way the map ΦB

h to a
C∗-algebra morphism C0(R)→ CBC .

We can now provide the represented version of our affiliation criterion.

Proof of Corollary 7.3.4. We shall first consider the case V = 0 and then add V as a
bounded perturbation.

Let us denote by Dz the range of the operator OpA[ΦB
h (rz)] ∈ B(H). By the resol-

vent identity it follows immediately that it is a subspace of H that does not depend
on z ∈ C \ R. Thus we set Dz ≡ D. Since h ∈ M (Ξ), one has OpA(h) ∈ B[S(Rd)] ∩
B[S ′(Rd)]. We interpret it as a linear operator in S ′(Rd) and set H(A, 0) := OpA(h)|D.

Now, by applying OpA to (7.3.1) we get

{H(A, 0)− z1}OpA[ΦB
h (rz)] = 1

and
OpA[ΦB

h (rz)]{OpA(h)− z1S(Rd)} = 1S(Rd).

The first identity shows that H(A, 0)D ⊂ H. Straightforwardly it is hermitian. The
second equality implies that S(Rd) ⊂ D and thus D is dense in H. By the first equality
above the ranges of H(A, 0)± i both coincide with H. Thus, by a fundamental criterion
of self-adjointness, H(A, 0) is self-adjoint.

By construction, {OpA[ΦB
h (rz)] | z ∈ C\R} is the resolvent family of H(A, 0), which

is therefore affiliated to OpA
(
CBC
)
.

Then we define the standard operator sum H(A, V ) := H(A, 0)+V : D→ H. Using
the second resolvent equation and the Neumann series the conclusion of the Corollary
follows easily using [MPR05, Prop. 2.6]. A different proof could start from the result of
Corollary 7.3.3.

We can now present several technical lemmas which have already been used in the
previous proofs.

Lemma 7.4.1. Assume that the components of the magnetic field B belong to C ∩
BC∞(Rd). Then γB, defined in (7.4.2), belongs to C∞pol(Rd ×Rd; C ), or more precisely:

(a) for each x, y ∈ Rd, γB(·;x, y) ∈ C ,

(b) for each α, β ∈ Nd, there exist c > 0, s1 ≥ 0 and s2 ≥ 0 such that for all
q, x, y ∈ Rd: ∣∣∂αx ∂βy γB(q;x, y)

∣∣ ≤ c〈x〉s1 〈y〉s2 .
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Proof. We use the explicit parameterized form of γB

γB(q;x, y) = exp
{
− i

d∑
j,k=1

xj yk

∫ 1

0

[ ∫ 1

0

sBjk

(
q − 1

2
x− 1

2
y + sx+ st(y − x)

)
ds
]
dt
}
.

(7.4.10)
A careful examination of (7.4.10) leads directly to the results (a) and (b). See also the
proof of Lemma 4.2 in [MPR05].

For the next statement, recall that Fa,j(·; ·, ·) has been introduced in (7.4.3).

Lemma 7.4.2. For each j ∈ {1, . . . , d}, each α, β, γ ∈ Nd and each µ > max{1, s}
there exists c > 0 such that∣∣∂αp ∂βk ∂γl Fa,j(p; k, l)∣∣ ≤ ca−1/µ 〈p〉s/µ−1−|α| 〈k〉s 〈l〉2s (7.4.11)

for all p, k, l ∈ R̂d and a ≥ − inf h+ 1.

Proof. It is enough to show that the expression

sup
t∈[0,1]

∣∣∣∂αp ∂βk ∂γl [(lj − kj) (∂jh)
(
p+ (t− 1)l − tk

)
h−1
a (p− l)

]∣∣∣ (7.4.12)

is dominated by the r.h.s. term of (7.4.11) with a constant c not depending on p, k, l
and a.

It is easy to see that for any δ ∈ Nd, we have ∂δh−1
a = h−1

a ua,δ, where ua,δ ∈
S−|δ|(R̂d) uniformly in a. By using this, the Leibnitz formula and the inequality 〈x+y〉 ≤√

2〈x〉〈y〉, it follows straightforwardly that (7.4.12) is dominated by

c1h
−1
a (p− l)〈p〉s−1−|α|〈k〉s〈l〉s

for some c1 > 0 independent of p, k, l and a. Furthermore, by using the ellipticity
of h, we see that there exist c2 > 0 and c3 > 0 independent of p, l and a such that
h−1
a (p− l) ≤ c2 〈l〉s[a+ c3 〈p〉s]−1 for all p, l ∈ R̂d. The final step consists in taking into

account the inequality a + c3〈p〉s ≥ µ1/µ (νc3)1/ν a1/µ 〈p〉s/ν , valid for any µ ≥ 1, ν ≥ 1
with µ−1 + ν−1 = 1.

In order to state the next lemma in its full generality, we need the definition:

Definition 7.4.3. For s ∈ R, Ss(R̂d; C ) denotes the set of all functions f : Rd×R̂d → C
that satisfy:

(i) f(·; p) ∈ C for all p ∈ Rd,

(ii) f(q; ·) ∈ C∞(R̂d), ∀q ∈ Rd, and for each α ∈ Nd

sup
q∈Rd
‖f(q; ·)‖s,α := sup

q∈Rd
sup
p∈R̂d

[
〈p〉−s+|α| |∂αp f(q; p)|

]
<∞ .
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It is easily seen that the algebraic tensor product C � Ss(R̂d) is contained in
Ss(R̂d; C ).

Lemma 7.4.4. Let f be an element of St(R̂d; C ) with t < 0. Then its partial Fourier
transform F−1f is an element of L1(Rd; C ) that satisfies for a suitable large integer m

‖F−1f‖L1(Rd;C ) ≤ c max
|α|≤m

sup
q∈Rd
‖f(q; ·)‖t,α . (7.4.13)

Proof. This is a straightforward adaptation of the proof of [ABG96, Prop. 1.3.3] (see
also [ABG96, Prop. 1.3.6]). We decided to present it in order to put into evidence the
explicit bound (7.4.13). Actually, the arguments needed to control the behavior in the
variable q are easy and we leave them to the reader; we take simply f ∈ St(R̂d).

Since the case t ≤ −d is rather simple, we shall concentrate on the more difficult
one: −d < t < 0. Let us first choose a cutoff function χ ∈ C∞c (Rd) that is 1 in a
neighbourhood of 0. One has the estimates (with F the Fourier transform but without
the constant factor):

‖(1− χ)F−1f‖L1 ≤ C
∑
|α|=m

‖|Q|−2m(1− χ)F−1(∂2αf)‖L1

≤ C
(∫

Rd

(
1− χ(x)

)2|x|−4mdx
)1/2 ∑

|α|=m

‖∂2αf‖L2

≤ C ′
(∫

Rd

(
1− χ(x)

)2|x|−4mdx
)1/2 (∫

R̂d
〈p〉2(t−2m) dp

)1/2

max
|α|=2m

‖f‖t,α ,

where we take m ∈ N with 4m > d to make the integrals convergent.
We study now the behavior of F−1f near the origin, a more difficult matter. Let us

fix a second cutoff function ϕ ∈ C∞(R̂d) such that 0 ≤ ϕ ≤ 1, ϕ(p) = 0 for |p| ≤ 1 and
ϕ(p) = 1 for |p| ≥ 2. For b > 0 we set ϕb(p) := ϕ(bp). We have:∣∣{F−1

(
(1− ϕb)f

)}
(y)
∣∣ ≤ ∫

|p|≤2/b

|f(p)|dp ≤ ‖f‖t,0
∫

|p|<2/b

|p|tdp ≤ C ‖f‖t,0 b−d−t.

Moreover, if m ∈ 2N with m ≥ d+ 1, then one has:

|y|m|[F−1(ϕbf)](y)| ≤ C
∑
|α|=m

∣∣[F−1
(
∂α(ϕbf)

)]
(y)
∣∣

≤ C
∑
|α|=m

∑
β≤α

Cβ
α b
|α−β|

∫
R̂d
|(∂α−βϕ)(bp)| |(∂βf)(p)|dp

≤ C ′max
|α|≤m

‖f‖t,α
{ ∫
|p|≥1/b

|p|t−mdp+
∑
|β|<m

bm−|β|
∫

1/b<|p|<2/b

|p|t−|β|dp
}

= C ′′ max
|α|≤m

‖f‖t,α bm−d−t.
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By fixing b := |y|, we get |[F−1(ϕ|y|f)](y)| ≤ C ′′ max
|α|≤m

‖f‖t,α |y|−d−t. The singularity at

the origin is integrable, and putting all the inequalities together we obtain (7.4.13).


