
Chapter 5

Twisted crossed product
C∗-algebras

This chapter is mainly dedicated to a brief introduction on twisted C∗-dynamical sys-
tems, twisted crossed products and on their representations. We mainly follow the
survey article [MPR05] which is based on the standard references [BS70, Pac94, PR89,
PR90]. To simplify, we undertake various hypotheses which are not needed for part
of the arguments. Primarily, we assume that an abelian locally compact group acts
upon an abelian C∗-algebra. This will allow us to use the Fourier transform and the
Gelfand theory. Note that the general framework can easily be guessed from Section 3.1
on locally compact groups and from Section 3.4 on crossed product C∗-algebras. Note
also that from now on, the additive notation will be used for the group, since in the
applications we shall mainly consider the group Rd.

To make the transition towards pseudodifferential operators and the magnetic case,
we introduce at the end of the chapter a special type of twisted crossed products,
in which the algebra is composed of continuous functions defined on the group. It is
preceded and prepared by some considerations in group cohomology.

5.1 Twisted C∗-dynamical systems

Let us directly start with the definition of twisted dynamical systems. This definition
corresponds to a generalization of Definition 3.3.1 in which no twist was introduced.

Definition 5.1.1. An (abelian) twisted C∗-dynamical system consists in a quadruplet
(C , G, θ, ω), where C is an abelian C∗-algebra, G is a locally compact abelian group, θ :
G→ Aut(C ) is a continuous homomorphism from G to the group of ∗-automorphisms
of C (endowed with the pointwise convergence topology), and ω is a strictly continuous
normalized 2-cocycle on G with values in the unitary group of the multiplier algebra of
C .

Note that the pair (θ, ω) is often called a twisted action of G on C . Very often, we
shall use the shorter expression twisted dynamical system for the quadruplet (C , G, θ, ω).
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Remark 5.1.2. (i) Almost everything in this section would be true, with only some
minor modifications, without assuming C and G to be abelian. However, our main
interest lies in the connection between twisted dynamical systems and pseudodif-
ferential theories. And for this purpose commutativity is extremely useful, almost
essential. Therefore we do assume it from the very beginning.

(ii) A strictly continuous 2-cocycle is a function ω : G × G → U (C ) (the unitary
group in the multiplier algebra M (C ) of C ), continuous with respect to the strict
topology on U (C ), and such that for all x, y, z ∈ G :

ω(x+ y, z)ω(x, y) = θx[ω(y, z)]ω(x, y + z). (5.1.1)

We shall also assume it to be normalized:

ω(x, 0) = ω(0, x) = 1, for all x ∈ G. (5.1.2)

It is known that any automorphism of C extends uniquely to a ∗-automorphism of
M (C ) and, obviously, leaves U (C ) invariant. By applying this fact to θx and by
denoting the extension with the same symbol, one gives a sense to (5.1.1). Actually,
by suitable particularizations in (5.1.1), we get θ−x[ω(x, 0)] = ω(0, 0) = ω(0, x),
∀x ∈ G, hence for normalization it suffices to ask ω(0, 0) = 1. The required
continuity (see Definition 2.5.14) can be rephrased in this abelian setting by saying
that for any ϕ ∈ C , the map

G×G 3 (x, y) 7→ ϕω(x, y) ∈ C

is continuous. In fact Borel conditions could be imposed instead of continuity for
most of the constructions and results; we do not pursue this here.

(iii) Since C is abelian, we know by Gelfand theory that there exists a locally compact
space Ω such that C is isometrically ∗-isomorphic to C0(Ω), i.e. C ∼= C0(Ω). If
the C∗-algebra C0(Ω) is not unital, then Cb(Ω), the C∗-algebra of all bounded and
continuous complex functions on Ω, surely is. It contains C0(Ω) as an essential
ideal. In fact Cb(Ω) can be identified with the multiplier algebra M (C ) of C . Thus
the unitary group of C is identified with C(Ω;T), the family of all continuous
functions on Ω taking values in the group T of complex numbers of modulus 1.
Moreover, the strict topology on C(Ω;T) coincides with the topology of uniform
convergence on compact subsets of Ω.

We can now go on with covariant representations, by slightly adapting Definition
3.3.4.

Definition 5.1.3. A covariant representation of an (abelian) twisted C∗-dynamical
system (C , G, θ, ω) consists in a triple (H, π, U), where

(i) (H, π) is a (non-degenerate) representation of C ,
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(ii) (H, U) is a strongly continuous map from G to U (H) which satisfies

UxUy = π
(
w(x, y)

)
Ux+y ∀x, y ∈ G, (5.1.3)

(iii) the following compatibility condition holds

π
(
θx(ϕ)

)
= Uxπ(ϕ)U∗x x ∈ G,ϕ ∈ C . (5.1.4)

One observes that in this framework U is a sort of generalized projective represen-
tation of G. The usual notion of projective representation corresponds to the case in
which for all x, y ∈ G, ω(x, y) ∈ T, i.e. ω(x, y) is a constant function on the spectrum
Ω of C .

For twisted C∗-dynamical systems, regular representations also exist, see Exam-
ple 3.3.6 in the context of dynamical systems without twist. We present below the
construction borrowed from Definition 3.10 of [PR89] (note that the conventions are
slightly different from Example 3.3.6 since here the right action is used instead of the
left action, but these modifications are not really relevant).

Example 5.1.4 (Regular representation). Let (C , G, θ, ω) be an (abelian) twisted C∗-
dynamical system, and let (H, π) be a faithful representation of C . Consider the Hilbert
space H̃ := L2(G;H), and define π̃ : C → B(H̃) and Ũ : G→ U (H̃) by

[π̃(ϕ)h](x) := π
(
θx(ϕ)

)
h(x) and [Ũyh](x) := π

(
ω(x, y)

)
h(x+ y), (5.1.5)

for any ϕ ∈ C , h ∈ H̃ and x, y ∈ G. It is then checked straightforwardly that the triple(
H̃, π̃, Ũ

)
is a covariant representation of the (abelian) twisted C∗-dynamical system.

Exercise 5.1.5. Check carefully the statements contained in the previous example.

5.2 Twisted crossed product algebras

Let (C , G, θ, ω) be an (abelian) twisted dynamical system. As for the non-twisted case,
we start by mixing together the algebra C and the space Cc(G) in a way to form
a ∗-algebra. We define Cc(G; C ), the set of compactly supported C -valued functions,
and endow it with the norm ‖f‖1 :=

∫
G
‖f(x)‖dx. Let us also fix an element τ of the

set End(G) of continuous endomorphisms of G. Particular cases are 0,1 ∈ End(G),
0(x) := 0 and 1(x) := x, for all x ∈ G. Addition and subtraction of endomorphisms are
well-defined. For elements f, g of Cc(G; C ) and for any point x ∈ G we set

(f ∗ωτ g)(x) :=

∫
G

θτ(y−x) [f(y)] θ(1−τ)y [g(x− y)] θ−τx [ω(y, x− y)] dy (5.2.1)

and
f ∗

ω
τ (x) := θ−τx[ω(x,−x)−1]θ(1−2τ)x

[
f(−x)

]
, (5.2.2)

where f(−x) corresponds to the involution of C applied to f(−x). Note that the ex-
pression (5.2.2) becomes much simpler if ω(x,−x) = 1, which will be the case in most
of the applications.
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Exercise 5.2.1. Check that the above product is associative, and that ∗
ω
τ is an involu-

tion.

Remark 5.2.2. In the corresponding Section 3.4, and more generally in the literature,
only the special case τ = 0 is considered. We introduced all these isomorphic structures
because they help in understanding τ -quantizations in pseudodifferential theory.

Lemma 5.2.3. For two functions f and g in Cc(G; C ) and for τ ∈ End(G), the function
f ∗ωτ g belongs to Cc(G; C ). With the composition law ∗ωτ and the involution ∗ωτ , the
completion L1(G; C ) of Cc(G; C ) with respect to the norm ‖ · ‖1 is a B∗-algebra. These
B∗-algebras are isomorphic for different τ ’s.

Proof. The fact that L1(G; C ) is stable under the product ∗ωτ follows from the relations

‖θτ(y−x) [f(y)] θ(1−τ)y [g(x− y)] θ−τx [ω(y, x− y)] ‖ ≤ ‖f(y)‖‖g(x− y)‖,

and ∫
G

‖(f ∗ωτ g)(x)‖dx ≤
∫
G

[ ∫
G

‖f(y)‖‖g(x− y)‖dy
]
dx = ‖f‖1‖g‖1.

The associativity of this composition law is easily deduced from the 2-cocycle property
of ω. All the other requirements also follow by routine computations.

The isomorphisms are the mappings

mτ,τ ′ : L1(G; C )→ L1(G; C ), (mτ,τ ′f) (x) := θ(τ ′−τ)x[f(x)], x ∈ G.

On the first copy of L1(G; C ) one considers the structure defined by τ ′ and on the second
that defined by τ . Note the obvious relations mτ,τ ′mτ ′,τ ′′ = mτ,τ ′′ and [mτ,τ ′ ]

−1 = mτ ′,τ

for all τ, τ ′, τ ′′ ∈ End(G).

We recall that a C∗-norm on a ∗-algebra has to satisfy ‖A∗A‖ = ‖A‖2. Since C∗-
norms have many technical advantages and since ‖·‖1 has not this C∗-property, we shall
make now some adjustments, valid in an abstract setting (see Definition 3.4.2 for a sim-
plified version of the following construction). A B∗-algebra C with norm ‖·‖ is called an
A∗-algebra when it admits a C∗-norm or, equivalently, when it has an injective represen-
tation in a Hilbert space [Tak02, Def. 9.19]. In this case we can consider the standard C∗-
norm on it, defined as the supremum of all the C∗-norms, that we shall denote by ||| · |||. A
rather explicit formula for ||| · ||| is |||A||| = sup{‖π(A)‖B(H) | (H, π) is a representation}.
One has by Lemma 2.4.14 that |||A||| ≤ ‖A‖ for all A ∈ C. The completion with re-
spect to this norm will be a C∗-algebra containing C as a dense ∗-subalgebra. We call
it the enveloping C∗-algebra of C. It is known that

(
L1(G; C ), ∗ωτ , ∗

ω
τ , ‖ · ‖1

)
is indeed an

A∗-algebra1.

1In the general setting of twisted crossed product C∗-algebra, this fact is not trivial. The argument
uses the existence of an approximate unit, see [PR89, Rem. 2.6], [BS70, Thm. 3.3] and the Appendix of
[PR90]. Fortunately, for our (abelian) twisted C∗-dynamical system, the regular representation induces
the necessary injective representation of L1(G; C ), as we shall see in the proof of Proposition 5.4.6.



5.3. GROUP COHOMOLOGY 71

Definition 5.2.4. The enveloping C∗-algebra of
(
L1(G; C ), ∗ωτ , ∗

ω
τ , ‖ · ‖1

)
is called the

twisted crossed product of C by G associated with the twisted action (θ, ω) and the
endomorphism τ . It will be denoted by C oω

θ,τ G.

The C∗-algebra C oω
θ,τ G has a rather abstract nature. But most of the time one

uses efficiently the fact that L1(G; C ) is a dense ∗-subalgebra, on which everything is
very explicitly defined. Let us even observe that the algebraic tensor product L1(G)�C
may be identified with the dense ∗-subspace of L1(G; C ) (hence of C oω

θ,τG also) formed
of functions with finite-dimensional range. The isomorphism mτ,τ ′ extends nicely to an
isomorphism from C oω

θ,τ ′ G to C oω
θ,τ G.

The next lemma shows clearly the importance of twisted crossed products as a way
to bring together the information contained in a twisted dynamical system, see Theorem
3.4.1 for the untwisted version.

Lemma 5.2.5. Let (H, π, U) be a covariant representation of the (abelian) twisted C∗-
dynamical system (C , G, θ, ω), and let τ ∈ End(G). Then π oτ U defined on L1(G; C )
by

(π oτ U)f :=

∫
G

π
[
θτy
(
f(y)

)]
Uy dy

extends to a representation of C oω
θ,τ G, called the integrated form of (π, U). One has

π oτ ′ U = (π oτ U) ◦mτ,τ ′ if τ, τ ′ ∈ End(G).

Proof. Some easy computations show that πoτ U is a representation of the B∗-algebra(
L1(G; C ), ∗ωτ , ∗

ω
τ
)
. Then, by taking into account that ‖(π oτ U)f‖ ≤ ‖f‖1, ∀f ∈

L1(G; C ), one gets that πoτ U extends to C oω
θ,τ G by density and, by approximation,

this extension has all the required algebraic properties.
The relation πoτ ′U = (π oτ U)◦mτ,τ ′ is checked readily on L1(G; C ) and obviously

extends to the full twisted crossed product.

Let us mention that an analogue of Theorem 3.4.8 also holds in this more general
setting. Indeed, one can recover the covariant representation from π oτ U . Actually,
there is a bijective correspondence between covariant representations of a twisted dy-
namical system and non-degenerate representations of the twisted crossed product. This
correspondence preserves equivalence, irreducibility and direct sums. We do not give
explicit formulae, since we do not use them.

5.3 Group cohomology

We recall some definitions in group cohomology. They will be used in the next sections
to show that standard matters as gauge invariance and τ -quantizations have a coho-
mological flavour. Now they will serve to isolate twisted dynamical systems for which
a generalization of the Schrödinger representation exists.

Let G be an abelian, locally compact group and U a topological abelian group.
Note that in our applications U will usually not be locally compact, being the unitary
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group of the multiplier algebra of an abelian C∗-algebra, as in Section 5.1. We also
assume that there exists a continuous action θ of G by automorphisms of U . We shall
use for G and U additive and multiplicative notations, respectively.

The class of all continuous functions : Gn → U is denoted by Cn(G; U ); it is
obviously an abelian group (we use once again multiplicative notations). Elements of
Cn(G; U ) are called (continuous) n-cochains. For any n ∈ N, we define the coboundary
map δn : Cn(G; U ) 3 ρ 7→ δn(ρ) ∈ Cn+1(G; U ) by

[δn(ρ)] (x1, . . . , xn, xn+1)

:= θx1 [ρ(x2, . . . , xn+1)]
n∏
j=1

ρ(x1, . . . , xj + xj+1, . . . , xn+1)(−1)jρ(x1, . . . , xn)(−1)n+1

.

It is easily shown that δn is a group morphism and that δn+1
(
δn(ρ)

)
= 1 for any n ∈ N.

It follows that Ran(δn) ⊂ Ker(δn+1).

Definition 5.3.1. (i) Zn(G; U ) := Ker(δn) is called the set of n-cocycles (on G,
with coefficients in U ).

(ii) Bn(G; U ) := Ran(δn−1) is called the set of n-coboundaries.

Let us note that Zn(G; U ) and Bn(G; U ) are subgroups of Cn(G; U ), and that
Bn(G; U ) ⊂ Zn(G; U ).

Definition 5.3.2. The quotient Hn(G; U ) := Zn(G; U )/Bn(G; U ) is called the n’th
group of cohomology (of G with coefficients in U ). Its elements are called classes of
cohomology.

In the sequel, we shall need only the cases n = 0, 1, 2, which we outline now
for convenience. For n = 0, parts of the definitions are simple conventions. We set
C0(G; U ) := U . One has [δ0(ϕ)] (x) = θx(ϕ)ϕ−1, for any ϕ ∈ U , x ∈ G. This implies
that Z0(G; U ) = {ϕ ∈ U | ϕ is a fixed point}. By convention, B0(G; U ) = {1}.

The mapping δ1 : C1(G; U )→ C2(G; U ) is given by[
δ1(λ)

]
(x, y) = λ(x)θx[λ(y)]λ(x+ y)−1.

Thus a 1-cochain λ is in Z1(G; U ) if it is a crossed morphism, i.e. if it satisfies
λ(x)θx[λ(y)] = λ(x+y) for any x, y ∈ G. Particular cases are the elements of B1(G; U )
(called principal morphisms), those of the form λ(x) = θx(ϕ)ϕ−1 for some ϕ ∈ U .

For n = 2 one encounters a situation which was already taken into account in the
definition of twisted dynamical systems. The formula for the coboundary map is[

δ2(ω)
]

(x, y, z) = θx[ω(y, z)]ω(x+ y, z)−1ω(x, y + z)ω(x, y)−1.

Thus a 2-cocycle is just a function satisfying the relation (5.1.1). B2(G; U ) is composed
of 2-cocycles of the form ω(x, y) = λ(x)θx[λ(y)]λ(x+ y)−1 for some 1-cochain λ.
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In the applications, we shall consider for U the unitary group of an algebra of
functions defined on the group G itself. An example of special importance will be the
group U = C(G;T), endowed with the strict topology, which correspond to the unitary
group of the multiplier algebra of C0(G). In this case, the groups of cohomology are
particularly simple.

Lemma 5.3.3. For any locally compact abelian group G and for any n ≥ 1, one has
Hn
(
G;C(G;T)

)
= {1}.

Proof. Let ρn ∈ Zn
(
G;C(G;T)

)
, i.e. ρn is a continuous n-cochain satisfying for any

y1, . . . , yn+1 ∈ G

θy1 [ρn(y2, . . . , yn+1)]
n∏
j=1

ρn(y1, . . . , yj + yj+1, . . . , yn+1)(−1)jρn(y1, . . . , yn)(−1)n+1

= 1.

We set in this relation y1 = q, yj = xj−1 for j ≥ 2 and rephrase it as

θq [ρn(x1, . . . , xn)]

=ρn(q + x1, x2, . . . , xn)
n−1∏
j=1

ρn(q, x1, . . . , xj + xj+1, . . . , xn)(−1)jρn(q, x1, . . . , xn−1)(−1)n ,

which is an identity in C(G;T). One calculates both sides at the point x = 0 and obtain

[ρn(x1, . . . , xn)] (q) = [ρn(q + x1, x2, . . . , xn)] (0)

·
n−1∏
j=1

[
ρn(q, x1, . . . , xj + xj+1, . . . , xn)(−1)j

]
(0)
[
ρn(q, x1, . . . , xn−1)(−1)n

]
(0).

This means exactly ρn = δn−1(ρn−1) for[
ρn−1(z1, . . . , zn−1)

]
(q) := [ρn(q, z1, . . . , zn−1)] (0) (5.3.1)

and thus any n-cocyle is at least formally a n-coboundary.
We show now that ρn−1 has the right continuity properties. Let us recall that if

C(G;T) is endowed with the topology of uniform convergence on compact sets of G
and if Y is a locally compact space, then C

(
Y ;C(G;T)

)
can naturally be identified

with C(G × Y ;T) (the proof of this statement is an easy exercise). So ρn can be in-
terpreted as an element of C(G×Gn;T). Being obtained from ρn by a restriction ρn−1

belongs to C(Gn;T), and thus can be interpreted as an element of C
(
Gn−1;C(G;T)

)
≡

Cn−1
(
G;C(G;T)

)
, which finishes the proof.

Let us add one more definition which will play a crucial role in the sequel.

Definition 5.3.4. Let U be a topological abelian group endowed with a continuous
action θ of G by automorphisms of U , and let ω ∈ Z2(G; U ). We say that ω is
pseudo-trivial if there exists another topological abelian group U ′ with a similar action
θ′ of G such that U is a subgroup of U ′, for each x ∈ G one has θx = θ′x|U , and such
that ω ∈ B2(G; U ′).
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Thus, to produce pseudo-trivial 2-cocycles, one has to find some ω ∈ B2(G; U ′)
such that ω(x, y) ∈ U ⊂ U ′ for any x, y ∈ G and such that (x, y) 7→ ω(x, y) ∈ U
is continuous with respect to the topology of U . This is possible in principle because
the product λ(x)θx[λ(y)][λ(x+ y)]−1 can be better-behaved than any of its factors. The
particular choice [λ(z)](q) = [ω(q, z)](0) we made in (5.3.1) will lead later on to the
familiar transversal gauge for magnetic systems.

Let us emphasize that most of the time pseudo-triviality cannot be improved to a
bona fide triviality. Very often, all the functions λ for which one has ω = δ1(λ) do not
take all their values in U or miss the right continuity. We shall outline such a situation
in the next section.

5.4 Standard twisted crossed products

When trying to transform the formalism of twisted crossed products into a pseudodif-
ferential theory, one has to face the possible absence of an analogue of the Schrödinger
representation and this would lead us too far from the initial motivation. The existence
of a generalized Schrödinger representation is assured by the pseudo-triviality of the
2-cocycle, and thus we restrict ourselves to a specific class of twisted dynamical sys-
tems. In the same time we also restrict to algebras C of complex continuous functions
on G. This also is not quite compulsory for a pseudodifferential theory, but it leads to
a simple implementation of pseudo-triviality (by Lemma 5.3.3) and covers easily the
important magnetic case.

We first extend of framework introduced in Assumption 4.3.1.

Definition 5.4.1. Let G be an locally compact abelian group. We call G-algebra a C∗-
subalgebra C of BCu(G) which is G-invariant, i.e. θx(ϕ) := ϕ(·+x) ∈ C for any ϕ ∈ C
and x ∈ G, and which contains C0(G).

The C∗-algebra BCu(G) is the largest one on which the action θ of translations with
elements of G is norm-continuous. But we shall denote by θx even the x-translation on
C(G), the ∗-algebra of all continuous complex functions on G (which is not a normed
algebra if G is not compact). The restriction of θx on BC(G) is only strictly continuous.

Note that in the previous definition, the assumption C0(G) ⊂ C implies that G can
be identified with a dense subset of the Gelfand spectrum Ω of C . If C is unital, then Ω
is a compactification of G, see the beginning of Section 4.3 for the special case G = Rd.

Now, if C is a G-algebra, then (C , G, θ) is a C∗-dynamical system. If we twist it,
we get:

Definition 5.4.2. A standard twisted dynamical system is an (abelian) twisted C∗-
dynamical system (C , G, θ, ω) for which C is a G-algebra. The C∗-algebra C oω

θ,τ G is
called a standard twisted crossed product.

Proposition 5.4.3. If (C , G, θ, ω) is a standard twisted dynamical system, then ω is
pseudo-trivial.
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Note that a slightly more general statement and proof is provided in [MPR05,
Prop.2.14]. In our context, if is sufficient to observe that U (C ) can naturally be identi-
fied with a subgroup of C(G;T), and that the strict topology on U (C ) is finer than the
strict topology of C(G;T). The 2-cocycle ω can hence be considered as an element of
Z2
(
G;C(G;T)

)
, which coincides with B2

(
G;C(G;T)

)
by Lemma 5.3.3, and this proves

the statement.

Remark 5.4.4. If ω, ω′ are two cohomologous elements of Z2
(
G; U (C )

)
, i.e. ω =

δ1(λ)ω′ for some λ ∈ C1
(
G; U (C )

)
, then the C∗-algebras C oω

θ,τ G and C oω′

θ,τ G

are naturally isomorphic: on L1(G; C ) the isomorphism is given by
[
iλτ (f)

]
(x) :=

θ−τx[λ(x)]f(x). Thus C0(G) oω
θ,τ G does not depend on ω but on its class of coho-

mology; this will be strengthened in Proposition 5.4.6. However this does not work if
λ only belongs to C1

(
G;C(G;T)

)
and C is not C0(G); in general θ−τx[λ(x)]f(x) gets

out of C and iλτ is no longer well-defined. For ω and ω′ defining different classes of
cohomology, C oω

θ,τ G and C oω′

θ,τ G are in general different C∗-algebras.

In the sequel we fix a standard twisted dynamical system (C , G, θ, ω). One observes
that the untwisted system (C , G, θ) always has an obvious covariant representation
(H, π, U), withH := L2(G) (with the Haar measure), π(ϕ) ≡ ϕ(X) = the multiplication
operator with ϕ, and [Uyu](x) := u(x+y). Note that the right action is again considered,
as in Example 5.1.4. Let us now choose λ ∈ C1

(
G;C(G;T)

)
such that δ1(λ) = ω (this

identity taking place in Z2
(
G;C(G;T)

)
). We set Uλ

y := π
(
λ(y)

)
Uy. Explicitly, for any

x ∈ G and u ∈ H,
[
Uλ
y u
]

(x) = [λ(y)](x)u(x + y) ≡ λ(x; y)u(x + y). Let us already
mention that the point (ii) in the next proposition is at the root of gauge invariance for
magnetic pseudodifferential operators.

Proposition 5.4.5. (i) (H, π, Uλ) is a covariant representation of (C , G, θ, ω),

(ii) If µ is another element of C1
(
G;C(G;T)

)
such that δ1(µ) = ω, then there ex-

ists ϕ ∈ C(G;T) such that µ(x) = θx(ϕ)ϕ−1λ(x), ∀x ∈ G. Moreover, Uµ
x =

π(ϕ−1)Uλ
x π(ϕ) for all x ∈ G.

Proof. The proof of the first statement consists in trivial verifications. For the second
statement, one first notes that µλ−1 belongs to Ker(δ1) = Z1

(
G;C(G;T)

)
. Since this set

is equal to B1
(
G;C(G;T)

)
by Lemma 5.3.3, there exists ϕ ∈ C0

(
G;C(G;T)

)
≡ C(G;T)

satisfying µ(x) = θx(ϕ)ϕ−1λ(x), ∀x ∈ G. The last claim of the proposition follows from
π[θx(ϕ)]Ux = Uxπ(ϕ).

We call (H, π, Uλ) the Schrödinger covariant representation associated with the 1-
cochain λ. Let us now recall the detailed form of the composition laws on L1(G; C ). For
simplicity we shall use notations as f(x; y) for [f(y)](x) and ω(x; y, z) for [ω(y, z)](x).
With these notations and for any f, g ∈ L1(G; C ), the relations (5.2.1) and (5.2.2) read
respectively

(f ∗ωτ g)(q;x) =

∫
G

f
(
q + τ(y − x); y

)
g
(
q + (1− τ)y;x− y

)
ω
(
q − τx; y, x− y

)
dy
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and
(f ∗

ω
τ )(q;x) = ω

(
q − τx;x,−x

)−1
f
(
q + (1− 2τ)x;−x

)
,

where x, y, q are elements of G.
Let us also denote for convenience by Repλτ the integrated representation π oτ U

λ

in L2(G) of the twisted crossed product C oω
θ,τ G, see also Lemma 5.2.5. Its explicit

action on f ∈ L1(G; C ) and u ∈ L2(G) is given by

[(
Repλτ (f)

)
u
]

(x) =

∫
G

f(x+ τy; y)λ(x; y)u(x+ y)dy

=

∫
G

f
(
(1− τ)x+ τy; y − x

)
λ(x; y − x)u(y)dy.

We gather some important properties of Repλτ in:

Proposition 5.4.6. (i) Repλτ [C0(G)oω
θ,τG] = K

(
L2(G)

)
, the C∗-algebra of all com-

pact operators in L2(G).

(ii) Repλτ is a irreducible and faithful representation of C oω
θ,τ G in L2(G), for any

G-algebra C ,

(iii) In the setting of Proposition 5.4.5.(ii), one has Repµτ (f) = π(ϕ−1)Repλτ (f)π(ϕ).

Proof. (i) Since δ1(λ) = ω in Z2
(
G;C(G;T)

)
, we can then consider the following iso-

morphism

iλτ :
(
L1
(
G;C0(G)

)
, ∗1

0,
∗10
)
→
(
L1
(
G;C0(G)

)
, ∗ωτ , ∗

ω
τ
)
,[

iλτ (f)
]

(x) = θ−τx
[
λ−1(x)f(x)

]
, (5.4.1)

that extends to an isomorphism between the non-twisted crossed product C0(G)o1
θ,0G

and the twisted crossed product C0(G) oω
θ,τ G (this is consistent with Remark 5.4.4).

One easily checks that Repλτ
[
iλτ (f)

]
=
∫
G
π[f(x)]Ux dx for all f in

(
L1(G; C ), ∗1

0,
∗10
)

.

But it is known that the image of C0(G)o1
θ,0G through the representation πoU ≡ Rep1

0

is equal to the algebra K
(
L2(G)

)
of compact operators in L2(G), cf. for example [GI02,

Cor. 4.1].
(ii) Since C0(G) ⊂ C , then C0(G) oω

θ,τ G can be identified to a C∗-subalgebra of

C oω
θ,τ G and the irreducibility of Repλτ

(
C oω

θ,τ G
)

follows from the irreducibility of

K
(
L2(G)

)
, by (i).

Let us now recall that the regular representation of the twisted dynamical sys-
tem (C , G, θ, ω) has been introduced in Example 5.1.4. In particular, we can choose
in this representation the Hilbert space L2(G) and the representation π of C by op-
erators of multiplication. One thus obtained the representation

(
L2
(
G;L2(G)

)
, π̃, Ũ

)
,

with the maps π̃ and Ũ defined in (5.1.5). Since L2
(
G;L2(G)

)
is canonically iso-

morphic to L2(G × G), let us set ξ(·;x) := ξ(x) and introduce the unitary operator
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W λ : L2(G × G) → L2(G × G), [W λξ](x; y) := λ(x; y) ξ(x;x + y). Its adjoint is given
by [(W λ)∗ξ](x; y) = λ−1(x; y − x) ξ(x; y − x). Some easy computations show then that[
(W λ)∗ π̃(ϕ)W λ ξ

]
(x; y) = ϕ(y)ξ(x; y). Moreover, one has[

(W λ)∗ ŨzW
λ ξ
]

(x; y) = λ−1(x; y − x)ω(x; y − x, z)λ(x; y − x+ z)ξ(x; y + z)

= λ(y; z)ξ(x; y + z),

where we have used that ω = δ1(λ). Equivalently, one has (W λ)∗ π̃(ϕ)W λ = 1⊗ ϕ(X)
and (W λ)∗ Uz W

λ = 1 ⊗ λ(X; z)Uz ≡ 1 ⊗ Uλ
z in L2(G) ⊗ L2(G). Thus the regular

representation is unitarily equivalent to the representation (L2(G)⊗L2(G),1⊗π,1⊗Uλ).
Since the regular representation induces a faithful representation π̃ o U of C oω

θ,0 G in

L2
(
G;L2(G)

)
, cf. Theorem 3.11 of [PR89], the Schrödinger representation induces a

faithful representation of C oω
θ,τ G in L2(G) for any τ ∈ End(G).

(iii) The proof of this statement consists in a simple verification.

Exercise 5.4.7. Check that the map iλτ introduced in the previous proof defines an iso-

morphism between the B∗-algebras
(
L1
(
G;C0(G)

)
, ∗1

0,
∗10
)

and
(
L1
(
G;C0(G)

)
, ∗ωτ , ∗

ω
τ
)
.
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