
Chapter 4

Schrödinger operators and essential
spectrum

The aim of this chapter is to show how crossed product C∗-algebras can be used for the
computation of some spectral information on self-adjoint operators. These operators
appeared naturally in the context of quantum mechanics, but then their investigations
has been developed on a pure mathematical level. For simplicity, all the following con-
siderations will be based on the group Rd, but with the content of the previous chapters
these investigations could be made on an arbitrary locally compact abelian group. This
natural generalization should hold mutatis mutandis, and it is certainly a very useful
exercise to check this statement (note that the main difficulties come from the constants
and from some historical conventions).

4.1 Multiplication and convolution operators

In this section, we introduce two natural classes of operators on Rd. This material is
standard and can be found for example in the books [Amr09] and [Tes09]. We start by
considering multiplication operators on the Hilbert space L2(Rd).

For any measurable complex function ϕ on Rd let us define the multiplication op-
erator ϕ(X) on H := L2(Rd) by

[ϕ(X)f ](x) = ϕ(x)f(x) ∀x ∈ Rd

for any

f ∈ D
(
ϕ(X)

)
:=
{
g ∈ H |

∫
Rd
|ϕ(x)|2|g(x)|2dx <∞

}
.

Clearly, the properties of this operator depend on the function ϕ. More precisely:

Lemma 4.1.1. Let ϕ(X) be the multiplication operator on H. Then ϕ(X) belongs to
B(H) if and only if ϕ ∈ L∞(Rd), and in this case ‖ϕ(X)‖ = ‖ϕ‖∞.
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Proof. One has

‖ϕ(X)f‖2 =

∫
Rd
|ϕ(x)|2|f(x)|2dx ≤ ‖ϕ‖2

∞

∫
Rd
|f(x)|2dx = ‖ϕ‖2

∞‖f‖2.

Thus, if ϕ ∈ L∞(Rd), then D
(
ϕ(X)

)
= H and ‖ϕ(X)‖ ≤ ‖ϕ‖∞.

Now, assume that ϕ 6∈ L∞(Rd). It means that for any n ∈ N there exists a measur-
able set Wn ⊂ Rd with 0 < |Wn| < ∞ such that |ϕ(x)| > n for any x ∈ Wn. We then
set fn = χWn and observe that fn ∈ H with ‖fn‖2 = |Wn| and that

‖ϕ(X)fn‖2 =

∫
Rd
|ϕ(x)|2|fn(x)|2dx =

∫
Wn

|ϕ(x)|2dx > n2‖fn‖2,

from which one infers that ‖ϕ(X)fn‖/‖fn‖ > n. Since n is arbitrary, the operator ϕ(X)
can not be bounded.

Let us finally show that if ϕ ∈ L∞(Rd), then ‖ϕ(X)‖ ≥ ‖ϕ‖∞. Indeed, for any ε > 0,
there exists a measurable set Wε ⊂ Rd with 0 < |Wε| <∞ such that |ϕ(x)| > ‖ϕ‖∞− ε
for any x ∈ Wε. Again by setting fε = χWε one gets that ‖ϕ(X)fε‖/‖fε‖ > ‖ϕ‖∞ − ε,
from which one deduces the required inequality.

If ϕ ∈ L∞(Rd), one easily observes that ϕ(X)∗ = ϕ(X), and thus ϕ(X) is self-adjoint
if and only if ϕ is a real function. If ϕ is real but does not belong to L∞(Rd), one can
show that the pair

(
ϕ(X),D

(
ϕ(X)

))
defines a self-adjoint operator if D

(
ϕ(X)

)
is dense

in H. In particular, if ϕ ∈ C(Rd) or if |ϕ| is polynomially bounded, then the mentioned
operator is self-adjoint, see [Amr09, Prop. 2.29]. For example, for any j ∈ {1, . . . , d}
the operator Xj defined by [Xjf ](x) = xjf(x) is a self-adjoint operator with domain
D(Xj). Note that the d-tuple (X1, . . . , Xd) is often referred to as the position operator
in L2(Rd). More generally, for any α ∈ Nd one also sets

Xα = Xα1
1 . . . Xαd

d

and this expression defines a self-adjoint operator on its natural domain. Other useful
multiplication operators are defined for any s > 0 by the functions

Rd 3 x 7→ 〈x〉s :=
(

1 +
d∑
j=1

x2
j

)s/2
∈ R.

The corresponding operators
(
〈X〉s,Hs

)
, with

Hs :=
{
f ∈ H | 〈X〉sf ∈ H

}
=
{
f ∈ H |

∫
Rd
〈x〉2s|f(x)|2dx <∞

}
,

are again self-adjoint operators on H. Note that one usually calls Hs the weighted
Hilbert space with weight s since it is naturally a Hilbert space with the scalar product
〈f, g〉s :=

∫
Rd f(x)g(x)〈x〉2sdx.
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Exercise 4.1.2. For any ϕ ∈ Cb(Rd), show that the spectrum of the multiplication
operator ϕ(X) coincides with the closure of ϕ(Rd) in C.

We shall now introduce a new type of operators on H, but for that purpose we need
to recall a few results about the usual Fourier transform1 on Rd. The Fourier transform
F is defined on any f ∈ Cc(Rd) by the formula2

[Ff ](ξ) ≡ f̂(ξ) :=
1

(2π)d/2

∫
Rd
e−iξ·xf(x)dx. (4.1.1)

This linear transform maps the Schwartz space S(Rd) onto itself, and its inverse is
provided by the formula [F−1f ](x) ≡ f̌(x) := 1

(2π)d/2

∫
Rd e

iξ·xf(ξ) dξ. In addition, by

taking Parseval’s identity
∫
Rd |f(x)|2dx =

∫
Rd |f̂(ξ)|2dξ into account, one obtains that

the Fourier transform extends continuously to a unitary map on L2(Rd). We shall keep
the same notation F for this continuous extension, but one must be aware that (4.1.1)
is valid only on a restricted set of functions.

Let us use again the multi-index notation and set for any α ∈ Nd

(−i∂)α = (−i∂1)α1 . . . (−i∂d)αd = (−i)|α|∂α1
1 . . . ∂αdd

with |α| = α1 + · · · + αd. With this notation at hand, the following relations hold for
any f ∈ S(Rd) and any α ∈ Nd:

F(−i∂)αf = XαFf,

or equivalently (−i∂)αf = F∗XαFf . Keeping these relations in mind, one defines for
any j ∈ {1, . . . , d} the self-adjoint operator Dj := F∗XjF with domain F∗D(Xj).
Similarly, for any s > 0, one also defines the operator 〈D〉s := F∗〈X〉sF with domain

Hs :=
{
f ∈ H | 〈X〉sFf ∈ H

}
≡
{
f ∈ H | 〈X〉sf̂ ∈ H

}
.

Note that the spaceHs is called the Sobolev space of order s, and (D1, . . . , Dd) is usually
called the momentum operator 3.

We can now introduce the usual Laplace operator −∆ acting on any f ∈ S(Rd) as

−∆f = −
d∑
j=1

∂2
j f =

d∑
j=1

(−i∂j)2f =
d∑
j=1

D2
jf. (4.1.2)

1In the more general framework of arbitrary locally compact abelian group, the Fourier transform
has been defined at the end of Section 3.2. The constants are chosen here such that the Fourier
transform extends to a unitary map on L2(Rd).

2Even if the group Rd is identified with its dual group, we will keep the notation ξ for points of its
dual group.

3In physics textbooks, the position operator is often denoted by (Q1, . . . , Qd) while (P1, . . . , Pd) is
used for the momentum operator.
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This operator admits a self-adjoint extension with domain H2, i.e.
(
− ∆,H2

)
is a

self-adjoint operator in H. However, let us stress that the expression (4.1.2) is not
valid (pointwise) on all the elements of the domain H2. On the other hand, one has
−∆ = F∗X2F , with X2 =

∑d
j=1 X

2
j , from which one easily infers that σ(−∆) = [0,∞).

Indeed, this follows from the content of Exercise 4.1.2 together with the invariance of
the spectrum through the conjugation by a unitary operator.

More generally, for any measurable function ϕ on Rd one sets ϕ(D) := F∗ϕ(X)F ,
with domain D

(
ϕ(D)

)
=
{
f ∈ H | f̂ ∈ D

(
ϕ(X)

)}
, and as before this operator is

self-adjoint if this domain is dense in H, as for example for a continuous function ϕ
or for a polynomially bounded function ϕ. Then, if one defines the convolution of two
(suitable) functions on Rd by the formula

[k ∗ f ](x) =
1

(2π)d/2

∫
Rd
k(y)f(x− y)dy

and if one takes the equality ǧ ∗ f = F∗(gf̂) into account, one infers that the operator
ϕ(D) corresponds to a convolution operator, namely

ϕ(D)f = ϕ̌ ∗ f. (4.1.3)

Obviously, the meaning of such an equality depends on the class of functions f and g
considered.

Exercise 4.1.3. Show that the following relations hold on the Schwartz space S(Rd):
[iXj, Xk] = 0 = [Dj, Dk] for any j, k ∈ {1, . . . , d} while [iDj, Xk] = 1δjk.

4.2 Schrödinger operators

In this section, we introduce the main operator we want to investigate.
First of all, let h : Rd → R be a continuous real function which diverges at infinity.

Equivalently, we assume that h satisfies (h − z)−1 ∈ C0(Rd) for some z ∈ C \ R.
The corresponding convolution operator h(D), defined by F∗h(X)F , is a self-adjoint
operator with domain F∗D

(
h(X)

)
. Clearly, the spectrum of such an operator is equal

to the closure of h(Rd) in R.
Some examples of such a function h which are often considered in the literature are

the functions defined by h(ξ) = ξ2, h(ξ) = |ξ| or h(ξ) =
√

1 + ξ2 − 1. In these cases,
the operator h(D) = −∆ corresponds to the free Laplace operator, the operator h(D) =
|D| is the relativistic Schrödinger operator without mass, while the operator h(D) =√

1−∆ − 1 corresponds to the relativistic Schrödinger operator with mass. In these
three cases, one has σ

(
h(D)

)
= σac

(
h(D)

)
= [0,∞) while σsc

(
h(D)

)
= σp

(
h(D)

)
= ∅.

Let us now perturb this operator h(D) with a multiplication operator V (X). If
the measurable function V : Rd → R is not essentially bounded, then the operator
h(D) + V (X) can only be defined on the intersection of the two domains, and checking
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that there exists a self-adjoint extension of this operator is not always an easy task. On
the other hand, if one assumes that V ∈ L∞(Rd), then we can define the operator

H := h(D) + V (X) with D(H) = D
(
h(D)

)
(4.2.1)

and this operator is self-adjoint.
A lot of investigations have been performed on such an operator H when V vanishes

at infinity, in a suitable sense. On the other hand, much less is known on this operator
when the multiplication operator V (X), also called the potential, has an anisotropic
behavior. The main idea of the approach presented here is to encode the anisotropy
in an algebra C of functions on Rd. Then, if the potential belongs to this algebra of
functions, we can show that the operator H itself belongs to the crossed product algebra.
More explanations about this construction are provided in the next section.

4.3 Affiliation

The main ideas of this section are borrowed from [Măn02]. Some other references using
similar ideas are [GI02, AMP02, GI06, DG13, Măn013]. From now on, we consider an
algebra of functions on Rd satisfying the following assumptions:

Assumption 4.3.1. C is a unital C∗-subalgebra of BCu(Rd) which is Rd-invariant and
which contains the subalgebra C0(Rn).

Recall that this algebra is Rd-invariant if whenever ϕ ∈ C and x ∈ Rd, then
θx(ϕ) := ϕ(· − x) ∈ C . As a consequence of Theorem 2.4.15, there exists a compact
space Ω such that C is isometrically ∗-isomorphic to C(Ω). In addition, note that from
the requirement C0(Rd) ⊂ C one infers that Ω is a compactification of Rd (⇔ a compact
space in which Rd is dense). Indeed, each point x ∈ Rd defines a distinct element of the
character space Ω by setting x→ δx where δx is the evaluation at x, i.e. δx(ϕ) := ϕ(x)
for any ϕ ∈ C . Finally, one also observes that the action of Rd continuously extends to
an action on Ω defined by the formula:

[θx(τ)](ϕ) = τ
(
θx(ϕ)

)
, (4.3.1)

for any ϕ ∈ C , x ∈ Rd and τ ∈ Ω. Note that we use the same symbol for the action
of Rd on itself and for its extension on Ω. In summary, the Assumptions 4.3.1 imply
that the triple

(
C(Ω),Rd, θ

)
defines a C∗-dynamical system, see also Example 3.3.2 and

Exercise 3.3.3.

Exercise 4.3.2. Find a unital C∗-subalgebra of BCu(Rn) which is Rd-invariant but for
which the space Ω is not a compactification of Rd.

Let us now construct a covariant representation of this dynamical system in the
Hilbert space H := L2(Rd). First of all, the algebra C(Ω) is faithfully represented in
B(H) by operators of multiplication. Indeed, if one defines the ∗-homomorphism π by

C(Ω) ∼= C 3 ϕ 7→ π(ϕ) := ϕ(X) ∈ B(H),
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then π : C(Ω)→ B(H) is faithful and non-degenerate. In addition, let us consider the
unitary representation of the group Rd on H, namely {Ux}x∈Rd given by [Uxf ](y) =
f(y − x) for any f ∈ H. With this definition, the following compatibility condition
holds for any ϕ ∈ C

π
(
θx(ϕ)

)
= π

(
ϕ(· − x)

)
= ϕ(X − x) = Uxϕ(X)U∗x = Uxπ(ϕ)U∗x . (4.3.2)

As a consequence, the triple (H, π, U) defines a covariant representation of the dy-
namical system

(
C(Ω),Rd, θ

)
, and thus a non-degenerate representation of the crossed

product algebra C(Ω) oθ Rd in B(H), by Theorem 3.4.8. This representation corre-
sponds to the integrated representation π o U(C(Ω) oθ Rd).

Exercise 4.3.3. Check that the above operator Ux is equal to the operator e−ix·D, where
D is the momentum operator introduced in Section 4.1.

In order to get a better understanding of the C∗-algebra πoU(C(Ω)oθ Rd), recall
that C(Ω) is unital, and therefore that L1(Rd) ⊂ C(Ω) oθ Rd. Thus, by applying the
integrated representation π o U defined in (3.4.1) to some u ∈ L1(Rd), one gets

[π o U(u)f ](x) =
[ ∫

Rd
u(y)Uyf dy

]
(x) =

∫
Rd
u(y)f(x− y)dy = (2π)d/2[û(D)f ](x),

where we have taken equation (4.1.3) into account. More generally, by considering
products u ⊗ ϕ ⊂ L1(Rd) � C(Ω) ⊂ L1

(
Rd;C(Ω)

)
, we get that operators of the form

(2π)d/2ϕ(X)û(D) belong to π o U(C(Ω) oθ Rd). Finally, by considering linear combi-
nations, one infers that:

Theorem 4.3.4. Let C satisfy Assumption 4.3.1 and let Ω be defined by the Gelfand
∗-isomorphism C ∼= C(Ω). Then π o U(C(Ω) oθ Rd) is equal to

〈C · C0(R̂d)〉 := C∗
(
ϕ(X)v(D) | v ∈ C0(Rd) and ϕ ∈ C(Ω)

)
, (4.3.3)

and the C∗-algebra C(Ω) oθ Rd is isometrically ∗-isomorphic to this algebra.

Proof. By construction, and since π o U(C(Ω) oθ Rd) is norm closed, it is quite clear
that this algebra and the C∗-algebra defined in the r.h.s. of (4.3.3) are equal. However,
it remains to show that the representation π o U of C(Ω) oθ Rd is faithful. Such a
statement has been proved for example in [GI02, Thm 4.1] and is based on the regular
representation introduced in Example 3.3.6. We do not provide the arguments here since
we are going to prove a more general result in the context of twisted crossed product
C∗-algebras in a forthcoming chapter.

Remark 4.3.5. In the previous statement, if one chooses4 C0(Rd) for the algebra C ,
then the resulting C∗-algebra 〈C0(Rd) · C0(R̂d)〉 coincides with C∗-algebra K

(
L2(Rd)

)
.

It means that the integrated representation π o U provides the ∗-isomorphism already
mentioned in Example 3.4.3.

4Obviously, C0(Rd) is not unital, but this lack of a unity can easily be taken into account in the
previous construction.
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We are now in a suitable position for explaining the link between the Schrödinger
operator H and the C∗-algebra introduced in (4.3.3).

Lemma 4.3.6. Let C satisfy Assumption 4.3.1 and let Ω be defined by the Gelfand
∗-isomorphism C ∼= C(Ω). Let h ∈ C(Rd;R) be diverging at infinity, let V ∈ C(Ω;R),
and let H := h(D) + V (X). Then, for some z ∈ C \ R with |=z| large enough, the
resolvent (H − z)−1 belongs to the C∗-algebra 〈C · C0(R̂d)〉.
Proof. Let us consider the Neumann series

(H − z)−1 =
(
h(D)− z + V (X)

)−1

=
(
h(D)− z

)−1
(
1 + V (X)

(
h(D)− z

)−1
)−1

=
(
h(D)− z

)−1
∞∑
n=0

(−1)n
[
V (X)

(
h(D)− z

)−1]n
,

where we have used the result of Lemma 4.1.1 and suitably chosen z such that∥∥V (X)
(
h(D)− z

)−1∥∥ < 1.

Since each term in the series belongs to 〈C · C0(R̂d)〉, and since the series converges in
norm of B(H), it follows that the series converges in 〈C · C0(R̂d)〉.

Note that from the resolvent equation (1.6.1), one infers the equalities

(H − z)−1 = (H − z0)−1
(
1 + (z − z0)(H − z0)−1

)−1

=
∞∑
n=0

(z − z0)n
(
(H − z0)−1

)n+1
.

By starting then from the result of the previous lemma and by a approximation ar-
gument, one deduces that if (H − z0)−1 ∈ 〈C · C0(R̂d)〉 for some z0 ∈ C \ R, then
(H − z)−1 ∈ 〈C ·C0(R̂d)〉 for all z ∈ C \R. By a density argument, it even follows that
ϕ(H) ∈ 〈C ·C0(R̂d)〉 for any ϕ ∈ C0(R), and the operator ϕ(H) corresponds to the one
also mentioned in Definition 1.7.9. Thus, H defines a ∗-homomorphism from C0(R) to
〈C · C0(R̂d)〉. More generally, one sets:

Definition 4.3.7. (i) An observable affiliated to a C∗-algebra C is a ∗-homomor-
phism Φ : C0(R)→ C.

(ii) The spectrum σ(Φ) of an observable Φ consists in the set of λ ∈ R such that
Φ(ϕ) 6= 0 whenever ϕ ∈ C0(R) and ϕ(λ) 6= 0.

Let us stress that for the previous definition of an observable, the C∗-algebra C does
not need to be represented in a Hilbert space. On the other hand, with the observation
made just before the definition, one observes that if H is a self-adjoint operator on a
Hilbert space H, and if C is a C∗-subalgebra of B(H) with (H − z)−1 ∈ C for some
z ∈ C \R, then H defines an observable affiliated to C, which we denote by ΦH (in this
case one has ΦH(ϕ) = ϕ(H)).

Exercise 4.3.8. In the framework of the previous paragraph, show that σ
(
ΦH
)

= σ(H).
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4.4 J-essential spectrum

Let us consider a C∗-algebra C and one ideal J in C (in this section ideals of C∗-
algebras will always be considered closed and self-adjoint). By Corollary 2.5.6, the
quotient algebra C/J is a C∗-algebra, and let us denote by q : C → C/J the quotient
∗-homomorphism. Then, if Φ is an observable affiliated to C, the composed map q ◦Φ :
C0(R) → C/J defines an observable affiliated to the quotient algebra. In this setting,
one has:

Definition 4.4.1. Let C be a C∗-algebra, with J an ideal in C, and let Φ be an observable
affiliated to C. The spectrum σ(q ◦ Φ) of the observable q ◦ Φ is called the J-essential
spectrum of Φ and will be denoted by σJ(Φ), i.e. σJ(Φ) = σ(q ◦ Φ).

Exercise 4.4.2. In the framework of the previous definition, show that λ ∈ σJ(Φ) if
and only if Φ(ϕ) 6∈ J whenever ϕ ∈ C0(R) with ϕ(λ) 6= 0.

To motivate the introduction of this notion of J-essential spectrum, let us derive
the original result in this setting:

Lemma 4.4.3. Let H be a Hilbert space, and H be a self-adjoint operator on H. Then
the following equality holds:

σess(H) = σK (H)
(
ΦH
)
,

or in other words, the essential spectrum of H can be computed by considering the
K (H)-essential spectrum of the corresponding observable affiliated to B(H).

Proof. From the definition of the essential spectrum provided in Definition 1.7.17, it is
easily observed that λ ∈ σess(H) if and only if E

(
(λ−δ, λ+δ)

)
H is infinite dimensional

for any δ > 0, where E(·) denotes the spectral measure associated with the self-adjoint
operator H, see Section 1.7.2. This property in then equivalent to the fact that if
ϕ ∈ C0(R) with ϕ(λ) > 0, the corresponding operator ΦH(ϕ) = ϕ(H) 6∈ K (H).
Indeed:
⇐: let δ > 0 and choose ϕ ∈ Cc

(
(λ − δ, λ + δ)

)
with ϕ(λ) > 0. By assumption

ϕ(H) 6∈ K (H), and therefore E
(
(λ − δ, λ + δ)

)
6∈ K (H) since otherwise one would

have ϕ(H) = ϕ(H)E
(
(λ− δ, λ+ δ)

)
∈ K (H).

⇒: By absurd let us assume that there exists ϕ ∈ C0(R) with ϕ(λ) > 0 such that
ϕ(H) ∈ K (H). Therefore, for any ε > 0 with ϕ(λ)/2 > ε there exist {gj, hj}nj=1 ⊂ H
such that ‖ϕ(H)− An‖ < ε, see equation (1.3.1) for the definition of An. Then, let us
choose δ > 0 such that ϕ(λ′) > ϕ(λ)− ε for any λ′ ∈ (λ− δ, λ+ δ). By assumption, the
subspace E

(
(λ− δ, λ+ δ)

)
H is infinite dimensional, and so is the subspace

E
(
(λ− δ, λ+ δ)

)
H ∩ Vect

(
{gj, hj | j ∈ {1, . . . , n}}

)⊥
.

It finally follows from Proposition 1.7.4.(iii) for any f in the above set one has

‖ϕ(H)f‖2 =

∫ λ+δ

λ−δ
|ϕ(λ′)|2mf (dλ

′) > (ϕ(λ)− ε)2

∫ λ+δ

λ−δ
mf (dλ

′) = (ϕ(λ)− ε)2‖f‖2,
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implying that ‖ϕ(H)f‖ > (ϕ(λ)− ε)‖f‖ > ϕ(λ)‖f‖/2 > ε‖f‖. However, this estimate
contradicts the initial assumption which stated that

‖ϕ(H)f‖ =
∥∥(ϕ(H)− An

)
f
∥∥ < ε‖f‖.

Now, if J is an ideal in a C∗-algebra C, the computation of the J-essential spectrum
of an observable Φ affiliated to C can sometimes be eased by the existence of a larger
family of ideals Ji in C which satisfy ∩iJi = J. Our interest in such a family is that
the quotient algebras C/Ji might be more easily understandable than the quotient C/J.
Note that in this framework we shall denote by q the quotient map C→ C/J and by qi
the quotient map C→ C/Ji. Our next aim is to show that with such a construction, the
spectral properties are preserved. Note that we shall use the notation ↪→ for injective
∗-homomorphisms.

Proposition 4.4.4. Let C be a C∗-algebra, and J, Ji be ideals in C satisfying ∩iJi = J.

(i) There is a canonical injective ∗-homomorphism C/J ↪→ Πi C/Ji,

(ii) If Φ is an observable affiliated to C, and if one sets Φi := qi ◦Φ for the observable
affiliated to C/Ji, then one has

σJ(Φ) = ∪i σ(Φi) (4.4.1)

Proof. With the notation introduced before the statement, one has that the kernel of
qi is Ji. Thus, the kernel of (qi)i : C→ Πi C/Ji is ∩iJi = J.

By definition, one has

σJ(Φ) = σ(q ◦ Φ)

=
{
λ ∈ R | q

(
Φ(ϕ)

)
6= 0 ∀ϕ ∈ C0(R) with ϕ(λ) 6= 0

}
= ∪i

{
λ ∈ R | qi

(
Φ(ϕ)

)
6= 0 ∀ϕ ∈ C0(R) with ϕ(λ) 6= 0

}
= ∪iσ(Φi).

Alternatively, we can use that for any ϕ ∈ C0(R) one has

σ
(
q ◦ Φ(ϕ)

)
= σ

[
q
(
Φ(ϕ)

)]
= σ

[
Πiqi

(
Φ(ϕ)

)]
= ∪iσ

(
Φi(ϕ)

)
where we have used that the spectrum is invariant under an injective ∗-homomorphism5

and that the spectrum of an operator belonging to a direct product is the closure of
the union of the spectrum of its components.

5Indeed, if C , Q are C∗-algebras and if ϕ : C → Q is an injective ∗-homomorphism, it follows
from Corollary 2.5.8 that C and ϕ(C ) ⊂ Q are isometrically ∗-isomorphic, and thus computing the
spectrum of A ∈ C or of ϕ(A) ∈ Q provides the same result.
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Remark 4.4.5. In the above framework, if C = B(H) and if J = K (H) then the
quotient algebra B(H)/K (H) is called the Calkin algebra. In this situation, there does
not exist any other ideal in B(H), and thus the construction provided in the previous
proposition is useless. However, if C is a C∗-subalgebra smaller than B(H) but with
K (H) ⊂ C, then the above construction might provide lots of information, as we shall
see in the following section.

4.5 Orbits and essential spectrum

Our aim in this section is to compute the essential spectrum of the operator H = h(D)+
V (X), with h : Rd → R a continuous real function which diverges at infinity, and with
V ∈ C , this C∗-algebra satisfying itself Assumptions 4.3.1. Since by Lemma 4.3.6 the
operator H corresponds to an observable affiliated to the C∗-algebra 〈C ·C0(R̂d)〉 defined
in (4.3.3), and since by Remark 4.3.5 we already know that K (H) ⊂ 〈C · C0(R̂d)〉,
Proposition 4.4.4 encourages us to find a suitable family of other ideals of 〈C ·C0(R̂d)〉
surrounding K (H) in the sense of that proposition. Thanks to the functoriality of the
crossed product, as presented in Corollary 3.5.2, these investigations can be performed
quite easily at an abelian level.

Recall first that Ω is a compactification of Rd. In addition, the group Rd acts
continuously on Ω, and we use the notation θx(τ) for the action of x ∈ Rd on τ ∈ Ω, see
also Exercise 3.3.3. Clearly, Rd is an open and Rd-invariant subset of Ω, and therefore
C0(Rd) corresponds to a Rd-invariant ideal of C(Ω), see the end of Section 3.5. Now, if
we denote by ∂Ω the boundary of Ω (⇔ Ω\Rd), then ∂Ω is a closed Rd-invariant subset
of Ω. By taking into account corollary 3.5.2 we deduce the existence of the following
short exact sequence of C∗-algebras:

0 −→ C0(Rd) oθ Rd −→ C(Ω) oθ Rd −→ C(∂Ω) oθ Rd −→ 0. (4.5.1)

Note that by Theorem 4.3.4 and Remark 4.3.5 we already know faithful representations
of the first two algebras in the Hilbert space H. Our aim is thus to obtain a better
understanding of the third algebra, by decomposing it into suitable components.

Definition 4.5.1. Let (Ω, G, θ) be a locally compact transformation group, and let τ ∈
Ω. The orbit Oτ of τ is the set {θx(τ) | x ∈ G}, while the quasi-orbit Qτ of τ corresponds
to the closure of Oτ in Ω.

Clearly, each orbit and each quasi-orbits are Rd-invariant subsets of Ω. In addition,
observe that if τ ∈ Rd ⊂ Ω, then Oτ is a dense orbit in Ω, and therefore Qτ = Ω.
On the other hand, if we choose τ ∈ Ω \ Rd, then Oτ ⊂ ∂Ω and Qτ is therefore a
closed subset of ∂Ω. Remark however that the set of all quasi-orbits is not a partition
of Ω, since quasi-orbits may overlap or there may even be a strict inclusion between
them. For that reason, a quasi-orbit is said maximal if it is not strictly contained in
some other quasi-orbit. On the other hand, note that a subset Ω′ of Ω is minimal if
this set is non-empty, closed and invariant and if no proper subset of Ω′ has these three
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properties. For example, a quasi-orbit is minimal if it does not contain any other proper
quasi-orbit. Note that any quasi-orbit contains a minimal one (it may be the quasi-orbit
itself).

Exercise 4.5.2. For any τ ∈ ∂Ω and for any f ∈ C(Qτ ), check that the map

Rd 3 x 7→ f
(
θx(τ)

)
∈ C (4.5.2)

is an element of BCu(Rd), and that the map f 7→ f
(
θ·(τ)

)
is injective. Note that from

now on and with a slight abuse of notation, we shall always identify C(Qτ ) with its
realization as a subalgebra of BCu(Rd), as prescribed by (4.5.2).

Let us now consider {Qτi}i a covering of ∂Ω by quasi-orbits. Clearly, it implies the
existence of an injective ∗-homomorphism

ϕ : C(∂Ω) 3 f ↪→ (fi)i ∈ Πi C(Qτi),

where fi corresponds to the restriction of f to Qτi . Note that this morphism is rarely
surjective, but that the following condition holds, namely

lim
x→0

sup
i
‖θix(fi)− fi‖ = lim

x→0
sup
i

∥∥θix(f |Qτi )− f |Qτi∥∥ = lim
x→0
‖θx(f)− f‖ = 0. (4.5.3)

Here θix denotes the restriction of θx to Qτi . In order to keep track of the property
(4.5.3), we denote by Π′iC(Qτi) the C∗-subalgebra of ΠiC(Qτi) on which this continuity
property holds. From these considerations, one infers that

(
Π′iC(Qτi),Rd,Πiθ

i
)

is a C∗-
dynamical system and that

ϕ′ : C(∂Ω) 3 f ↪→ (fi)i ∈ Π′i C(Qτi)

is an equivariant ∗-homomorphism. Then, by the functoriality of the crossed product
(see Lemma 3.4.9), one infers that

C(∂Ω) oθ Rd ↪→
(

Π′i C(Qτi)
)
oΠiθi R

d ↪→ Πi

(
C(Qτi) oθ Rd

)
,

where we have taken into account the identification of C(Qτi) with a C∗-subalgebra of
BCu(Rd) as mentioned in Exercise 4.5.2.

By summarizing our findings, one has obtained that

〈C · C0(R̂d)〉
/

K
(
L2(Rd)

)
= 〈C · C0(R̂d)〉

/
〈C0(Rd) · C0(R̂d)〉

∼= C oθ Rd
/
C0(Rd) oθ Rd

∼= C(∂Ω) oθ Rd

↪→
(

Π′i C(Qτi)
)
oΠiθi R

d

↪→ Πi

(
C(Qτi) oθ Rd

)
∼= Πi 〈C(Qτi) · C0(R̂d)〉. (4.5.4)

We shall denote by ιess the resulting injective ∗-homomorphism.
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Remark 4.5.3. Note that the same result would have been obtained if we had considered
the ideals C0(Ω \ Qτi) of C(Ω), and observed that ∩i C0(Ω \ Qτi) = C0(Rd). Then, by
identifying in Proposition 4.4.4 the algebra C with C(Ω) oθ Rd and the ideals Ji with
C0(Ω \ Qτi) oθ Rd, the first statement of this proposition would have coincide with the
above result.

We can now state the main result of this section:

Theorem 4.5.4. Let H = h(D) + V (X) be the self-adjoint operator defined in Lemma
4.3.6. Let {Qτi}i be a covering of ∂Ω by quasi-orbits, and let us set Vi := V

(
θ·(τi)

)
∈

BCu(Rd) and Hi := h(D) + Vi(X). Then

σess(H) = ∪iσ(Hi). (4.5.5)

Proof. In fact, most of the proof has already been performed before the statement.
Indeed, by Lemma 4.3.6 we already know that H defines an observable ΦH affiliated to
the algebra 〈C ·C0(R̂d)〉. Then, by keeping track of the form of all the ∗-homomorphisms,

we see that ιess transforms the class modulo K (H) of the element V (X)
(
h(D)− z

)−1

into
(
Vi(X)

(
h(D)− z

)−1)
i
. Thus, if q denotes the map

q : 〈C · C0(R̂d)〉 → 〈C · C0(R̂d)〉
/

K
(
L2(Rd)

)
then by taking the Neumann series into account, one deduces that ιess(q◦ΦH) =

(
ΦHi

)
i
.

Finally, since the spectrum is invariant under an injective ∗-homomorphism and since
the spectrum of an operator belonging to a direct product is the closure of the union
of the spectrum of its components, one directly gets

σess(H) = σ(q ◦ ΦH) = ∪iσ(ΦHi) = ∪iσ(Hi).

Note that this result should be compared with the content of Proposition 1.7.18.
Note also that such a result holds for more general observables affiliated to the algebra
〈C · C0(R̂d)〉, but stronger affiliation criteria are then necessary.

In the publications [Măn02] and [AMP02], highly non-trivial applications of the
previous result have been presented. In part of these examples, the index i belongs to
a continuum, and the corresponding result could hardly be guessed by constructing
Weyl sequences, as introduced in Proposition 1.7.18. On the other hand, let us present
a situation which is much more tractable, see [Ric05] for details.

Example 4.5.5 (Cartesian anisotropy). Let C be the C∗-algebra made of functions on
R2 having a cartesian anisotropy, i.e. V ∈ C if and only if there exists V ±1 , V ±2 in
BCu(R) such that

lim
x→±∞

sup
y∈R

∣∣V (x, y)− V ±2 (y)
∣∣ = 0 and lim

y→±∞
sup
x∈R

∣∣V (x, y)− V ±1 (x)
∣∣ = 0.
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In this case, the compact space Ω is rather easy to describe, namely

Ω = [−∞,∞]× [−∞,∞],

and if one sets H±j = h(D) + V ±j (X), then (4.5.5) reads:

σess(H) = σ(H+
1 ) ∪ σ(H−1 ) ∪ σ(H+

2 ) ∪ σ(H−2 ).

Exercise 4.5.6. Consider the cartesian anisotropy in an arbitrary dimension, as in-
troduced in Section 3 of [Ric05].

In the previous example, the space Ω was easily understandable. However, even if
Ω is not so explicit, computations can be performed based on our understanding of
quasi-orbits. We present a final example in this direction.

Example 4.5.7 (Vanishing oscillations). Let us consider the C∗-algebra C = V O(Rd)
of functions with vanishing oscillations, i.e. V ∈ V O(Rd) if and only if V ∈ Cb(Rd) and
for any x ∈ Rd, the function V (· − x) − V (·) belongs to C0(Rd). Clearly, V O(Rd) is a
unital Rd-invariant C∗-subalgebra of BCu(Rd), and contains C0(Rd). Therefore, Ω is a
compactification of Rd, and each point of ∂Ω is an orbit in itself. Indeed, if τ ∈ ∂Ω,
then τ(ϕ) = 0 for any ϕ ∈ C0(Rd), and then by (4.3.1) one has for any x ∈ Rd and
ϕ ∈ V O(Rd):

[θx(τ)](ϕ) = τ
(
ϕ(· − x)

)
= τ
(
ϕ(· − x)− ϕ(·)

)
+ τ
(
ϕ(·)

)
= τ(ϕ).

Thus, the only covering of ∂Ω is obtained by {τi}i∈∂Ω, the asymptotic potentials are just
constants, and in this case (4.5.5) reads:

σess(H) = ∪i∈∂Ωσ
(
h(D) + V |τi

)
=
[

minh+ minV (Rd)asy,∞
)

where V (Rd)asy := ∩KV (Rd \K) and K are arbitrary compact neighbourhoods of 0 in
Rd.
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