
Chapter 2

C∗-algebras

This chapter is mainly based on the first chapters of the book [Mur90]. Material bor-
rowed from other references will be specified.

2.1 Banach algebras

Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an
associative multiplication and with a norm ‖ · ‖ which satisfy for any A,B,C ∈ C and
α ∈ C

(i) (αA)B = α(AB) = A(αB),

(ii) A(B + C) = AB + AC and (A+B)C = AC +BC,

(iii) ‖AB‖ ≤ ‖A‖‖B‖ (submultiplicativity)

(iv) C is complete with the norm ‖ · ‖.

One says that C is abelian or commutative if AB = BA for all A,B ∈ C . One also
says that C is unital if 1 ∈ C , i.e. if there exists an element 1 ∈ C with ‖1‖ = 1 such
that 1B = B = B1 for all B ∈ C . A subalgebra J of C is a vector subspace which is
stable for the multiplication. If J is norm closed, it is a Banach algebra in itself.

Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C)
denotes the set of n×n-matrices over C. All except K (H) are unital, and K (H)
is unital if H is finite dimensional.

(ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach
algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func-
tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which
vanish at infinity, i.e. for any ε > 0 there exists a compact set K ⊂ Ω such
that supx∈Ω\K |f(x)| ≤ ε. These algebras are endowed with the L∞-norm, namely
‖f‖ = supx∈Ω |f(x)|. Note that Cb(Ω) is unital, while C0(Ω) is not, except if Ω is
compact. In this case, one has C0(Ω) = C(Ω) = Cb(Ω).
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22 CHAPTER 2. C∗-ALGEBRAS

(iii) If (Ω, µ) is a measure space, then L∞(Ω), the (equivalent classes of) essentially
bounded complex functions on Ω is a unital abelian Banach algebra with the es-
sential supremum norm ‖ · ‖∞.

(iv) For any n ∈ N, the set BCu(Rd) of bounded and uniformly continuous complex
functions on Rd is a unital abelian Banach algebra. Recall that f : Rd → C is
uniformly continuous if for any ε > 0, there exists δ > 0 such that whenever
x, y ∈ Rd with |x− y| ≤ δ one has |f(x)− f(y)| ≤ ε. Note that this property can
be defined not only on Rd but on all uniform spaces.

If S is a subset of a Banach algebra C , the smallest closed subalgebra of C which
contains S is called the closed algebra generated by S.

Definition 2.1.3. An ideal in a Banach algebra C is a (non-trivial) subalgebra J of
C such that AB ∈ J and BA ∈ J whenever A ∈ J and B ∈ C . An ideal J is
maximal in C if J is proper (⇔ not equal to C ) and J is not contained in any other
proper ideal of C .

In the examples presented above, C0(Ω) is an ideal of Cb(Ω), while K (H) is an
ideal of B(H).

Lemma 2.1.4. If C is a Banach algebra and J is a closed ideal in C , the quotient
C /J of C by J , endowed with the multiplication (A + J )(B + J ) = (AB + J )
and with the quotient norm ‖A+ J ‖ := infB∈J ‖A+B‖, is a Banach algebra.

Proof. The algebraic properties of the quotient are easily verified, and the submulti-
plicativity is shown below. The completeness of the quotient with respect to the norm
is a standard result of normed vector spaces, see for example [Ped89, Prop. 2.1.5].

Let ε > 0 and let A,B ∈ C . Then

‖A+ A′‖ < ‖A+ J ‖+ ε ‖B +B′‖ < ‖B + J ‖+ ε

for some A′, B′ ∈J . Hence, by setting C := A′B + AB′ + A′B′ ∈J one has

‖AB + C‖ ≤ ‖A+ A′‖‖B +B′‖ ≤
(
‖A+ J ‖+ ε

)(
‖B + J ‖+ ε

)
.

Thus, ‖AB + J ‖ ≤
(
‖A + J ‖ + ε

)(
‖B + J ‖ + ε

)
. By letting then ε ↘ 0, we get

‖AB + J ‖ ≤ ‖A+ J ‖‖B + J ‖, which corresponds to the submultiplicativity of the
quotient norm.

Definition 2.1.5. A homomorphism ϕ between two Banach algebras C and Q is a
linear map ϕ : C → Q which satisfies ϕ(AB) = ϕ(A)ϕ(B) for all A,B ∈ C . If C
and Q are unital and if ϕ(1) = 1, one says that ϕ is unit preserving or a unital
homomorphism.
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It is easily seen that if ϕ : C → Q is a homomorphism, its kernel Ker(ϕ) is an
ideal in C and its range ϕ(C ) is a subalgebra of Q. Alternatively, if J is an ideal in
a Banach algebra C , then the quotient map q : C → C /J is a homomorphism.

Let us now consider an arbitrary unital Banach algebra C , and let A ∈ C . One
says that A is invertible if there exists B ∈ C such that AB = 1 = BA. In this case,
the element B is denoted by A−1 and is called the inverse of A. The set of all invertible
elements in a unital Banach algebra C is denoted by Inv(C ).

Exercise 2.1.6. By using the Neumann series, show that Inv(C ) is an open set in a
unital Banach algebra C , and that the map Inv(C ) 3 A 7→ A−1 ∈ C is differentiable.

On the other hand, let us show that maximal ideals in a unital Banach algebra C
are closed. For this, observe first that for every ideal J 6= C we have J ∩ Inv(C ) = ∅.
Indeed, if one has A ∈ J ∩ Inv(C ), then for any B ∈ C \J one would have B =
A(A−1B) ∈ J , which is absurd. As a consequence, it follows that ‖1 − A‖ ≥ 1 since
otherwise A would be invertible with the Neumann series. Consequently, J can not
be dense in C , and thus the closure J of J is a proper and closed ideal in C . One
infers from this that any maximal ideal in C is closed.

2.2 Spectral theory

The main notions of spectral theory introduced before in the context of B(H) can be
generalized to arbitrary unital Banach algebra.

For any A in a unital Banach algebra C we define the spectrum σC (A) of A with
respect to C by

σC (A) :=
{
z ∈ C | (A− z) 6∈ Inv(C )

}
. (2.2.1)

Note that the spectrum σC (A) of A is never empty, see for example [Mur90, Thm. 1.2.5].
This result is not completely trivial and its proof is based on Liouville’s Theorem in
complex analysis.

Based on this observation, we state two results which are often quite useful.

Theorem 2.2.1 (Gelfand-Mazur). If C is a unital Banach algebra in which every
non-zero element is invertible, then C = C1.

Proof. We know from the observation made above that for any A ∈ C , there exists
z ∈ C such that A− z ≡ A− z1 6∈ Inv(C ). By assumption, it follows that A = z1.

Lemma 2.2.2. Let J be a maximal ideal of a unital abelian Banach algebra C , then
C /J = C1.

Proof. As seen in Lemma 2.1.4, C /J is a Banach algebra with unit 1+J ; the quotient
map C → C /J is denoted by q. If I is an ideal in C /J , then q−1(I ) is an ideal of
C containing J , which is therefore either equal to C or to J , by the maximality of
J . Consequently, I is either equal to C /J or to 0, and C /J has no proper ideal.
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Now, if A ∈ C /J and A 6= 0, then A ∈ Inv
(
C /J

)
, since otherwise A(C /J )

would be a proper ideal of C /J . In other words, one has obtained that any non-zero
element of C /J is invertible, which implies that C /J = C1, by Theorem 2.2.1.

Lemma 2.2.3. Let C be a unital Banach algebra and let A ∈ C . Then σC (A) is a
closed subset of the disc in the complex plane, centered at 0 and of radius ‖A‖.

Proof. If |z| > ‖A‖, then ‖z−1A‖ < 1, and therefore (1 − z−1A) is invertible (use
the Neumann series). Equivalently, this means that (z −A) is invertible, and therefore
z 6∈ σC (A). Thus, one has obtained that if z ∈ σC (A), then |z| ≤ ‖A‖.

Since Inv(C ) is an open set in C , one easily infers that C \ σC (A) is an open set in
C, which means that σC (A) is a closed set in C.

Another notion related to the spectrum of A is sometimes convenient. If A belongs
to a unital Banach algebra C , its spectral radius r(A) is defined by

r(A) := sup
z∈σC (A)

|z|.

Clearly, it follows from the previous lemma that r(A) ≤ ‖A‖. In addition, the following
property holds:

Theorem 2.2.4 (Beurling). If A is an element of a unital Banach algebra, then

r(A) = inf
n≥1
‖An‖1/n = lim

n→∞
‖An‖1/n.

Proof. See [Mur90, Thm. 1.2.7] or [Ped89, Thm. 4.1.13].

For the next statement, recall that if K is a non-empty compact set in C, it com-
plement C \K admits exactly one unbounded component, and that the bounded com-
ponents of C \K are called the holes of K.

Proposition 2.2.5. Let C be a closed subalgebra of a unital Banach algebra A which
contains the unit of A . Then,

(i) The set Inv(C ) is a clopen (⇔ open and closed) subset of C ∩ Inv(A ),

(ii) For each A ∈ C ,

σA (A) ⊆ σC (A) and ∂σC (A) ⊆ ∂σA (A),

(iii) If A ∈ C and σA (A) has no hole, then σA (A) = σC (A).

Proof. Clearly Inv(C ) is an open set in C ∩ Inv(A ). To see that it is also closed, let
(An) be a sequence in Inv(C ) converging to a point A ∈ C ∩ Inv(A ). Then, from the
equality A−1

n − A−1 = A−1
n (A− An)A−1, one infers that (A−1

n ) converges to A−1 in A ,
so A−1 ∈ C (by the completeness of C ), which implies that A ∈ Inv(C ). Hence, Inv(C )
is clopen in C ∩ Inv(A ).
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If A ∈ C , the inclusion σA (A) ⊆ σC (A) is immediate from the inclusion Inv(C ) ⊆
Inv(A ).

If z ∈ ∂σC (A), then there is a sequence (zn) in C \ σC (A) converging to z. Hence,
(A− zn) ∈ Inv(C ), and (A− z) 6∈ Inv(C ), so (A− z) 6∈ Inv(A ), by the point (i). Also,
A− zn ∈ Inv(A ), so zn ∈ C \σA (A). Therefore, z ∈ ∂σA (A). This proves the point (ii).

If A ∈ C and σA (A) has no hole, then C \ σA (A) is connected. Since C \ σC (A)
is a clopen subset of C \ σA (A) by the points (i) and (ii), it follows that C \ σA (A) =
C \ σC (A), and therefore σA (A) = σC (A).

Let us end this section with a construction which can be used if a Banach algebra
C has no unit. Consider the set C̃ := C ⊕ C with the multiplication

(A, z)(B, y) = (AB + zB + yA, zy).

This algebra contains a unit 1 = (0, 1) and is call a unitization of C . Clearly, the map
C 3 A 7→ (A, 0) ∈ C̃ is an injective homomorphism, which can be used to identify C
with an ideal of C̃ . It is quite common to write simply A+ z for the element (A, z) of
C̃ . Endowed with the norm ‖A+ z‖ := ‖A‖+ |z|, C̃ is a unital Banach algebra, which
is abelian if C is abelian.

If C is a non-unital Banach algebra and A ∈ C , one sets σC (A) := σC̃ (A).

2.3 The Gelfand representation

In this section, we concentrate on abelian Banach algebras and state a fundamental
result for these algebras. First of all, let us observe that if ϕ : C → Q is a unital ho-
momorphism between the unital Banach algebras C and Q, then ϕ

(
Inv(C )

)
⊂ Inv(Q),

and therefore σQ(ϕ(A)) ⊂ σC (A) whenever A ∈ C .

Definition 2.3.1. A character τ on an abelian algebra C is a non-zero homomorphism
from C to C. The set of all characters of C is denoted by Ω(C ).

Let us immediately observe that if τ ∈ Ω(C ) for a unital abelian Banach algebra
C , then ‖τ‖ = 1. Indeed, if A ∈ C , one has τ(A) ⊂ σC (A), and therefore |τ(A)| ≤ ‖A‖.
Hence ‖τ‖ ≤ 1, but τ(1) = 1 since τ(1) = τ(1)2 and τ(1) 6= 0.

For the next statement, we introduce the notation M(C ) for the set of maximal
ideals of a Banach algebra C .

Proposition 2.3.2. Let C be a unital abelian Banach algebra. There is a bijection
τ ↔ Ker(τ) between the set Ω(C ) of characters of C and the set M(C ). Additionally,
for each A ∈ C one has

σC (A) =
{
τ(A) | τ ∈ Ω(C )

}
.

Proof. Let us first take J ∈ M(C ) and consider the quotient Banach algebra C /J .
By Lemma 2.2.2, it follows that C /J = C1, and therefore the quotient map τ : C →
C /J belongs Ω(C ). Conversely, if τ ∈ Ω(C ), then Ker(τ) is an ideal in C . In addition,
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one has C = Ker(τ) + C1, since
(
A − τ(A)1

)
∈ Ker(τ). Consequently, Ker(τ) is of

co-dimension 1, and therefore is maximal.
Now, we show that any A ∈ C \ Inv(C ) is contained in a maximal ideal. Indeed,

one easily observes that A ∈ CA, with CA an ideal of C which does not contain 1.
Then, the set of ideals that contains A but not 1 is inductively ordered by induction
(because a union of an increasing family of ideals is an ideal), and a maximal element
of this ordering is a maximal ideal. From Zorn’s Lemma, it follows that A is contained
in a maximal ideal.

Finally, if A ∈ C and z ∈ σC (A), then (A − z) 6∈ Inv(C ). Therefore, there exists a
character τ ∈ Ω(C ) such that (A−z) ≡ (A−z1) belongs to the corresponding maximal
ideal Ker(τ). Accordingly, τ(A − z1) = 0 ⇐⇒ τ(A) = z. Conversely, if τ(A) = z for
some τ ∈ Ω(C ), then z ∈ σC

(
τ(A)

)
⊂ σC (A), by the observation made at the beginning

of the section.

Remark 2.3.3. In the previous statement, if C is not unital one has for any A ∈ C

σC (A) =
{
τ(A) | τ ∈ Ω(C )

}
∪ {0}. (2.3.1)

Indeed, if τ∞ : C̃ → C denotes the character defined by τ∞(A, z) = z, then one has
Ω(C̃ ) =

{
τ̃ | τ ∈ Ω(C )

}
∪ {τ∞} with τ̃(A, z) = τ(A) + z, and

σC (A) = σC̃ (A) = {τ(A, 0) | τ ∈ Ω(C̃ )} = {τ(A) | τ ∈ Ω(C )} ∪ {0}. (2.3.2)

Since for any abelian Banach algebra C , any A ∈ C and any τ ∈ Ω(C ) one has
|τ(A)| ≤ ‖A‖, it follows that Ω(C ) is contained in the closed unit ball of the dual space
C ∗. Thus, we can endow Ω(C ) with the relative weak∗ topology and call the topological
space Ω(C ) the character space, or spectrum of C .

Proposition 2.3.4. If C is an abelian Banach algebra, then Ω(C ) is a locally compact
Hausdorff1 space. If C is unital, then Ω(C ) is compact.

Proof. If C is unital, then it can be checked that Ω(C ) is weak∗ closed in the closed
unital ball B of C ∗. Since B is weak∗ compact (Banach-Alaoglu Theorem), it follows
that Ω(C ) is weak∗ compact.

If C is not unital, then Ω(C ) ∼= Ω(C̃ ) \ {τ∞}, and therefore one obtains that Ω(C̃ )
is only locally compact.

For any A in an abelian algebra C one defines the function Â by

Â : Ω(C ) 3 τ 7→ Â(τ) ∈ C

with Â(τ) := τ(A). The topology of Ω(C ) makes this function continuous. In addition,
since for any ε > 0 the set {τ ∈ Ω(C ) | |τ(A)| ≥ ε} is weak∗ closed in the closed
unit ball of C ∗, and weak∗ compact by the Banach-Alaoglu Theorem, it follows that
Â ∈ C0

(
Ω(C )

)
. Note that the map A 7→ Â is called the Gelfand transform.

1A Hausdorff space is a topological space in which distinct points have disjoint neighbourhoods.
The weak∗ topology is Hausdorff.
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Theorem 2.3.5. Let C be an abelian Banach algebra. Then the map

C 3 A 7→ Â ∈ C0

(
Ω(C )

)
is a norm decreasing homomorphism, and ‖Â‖∞ = r(A). If C is unital, then σC (A) =
Â
(
Ω(C )

)
, while if C is not unital, σC (A) = Â

(
Ω(C )

)
∪ {0}, for any A ∈ C .

Proof. It is easily checked that the mentioned map is a homomorphism. The spectral
properties are direct consequences of (2.3.1) and (2.3.2), while the property on the norm
follows from the observation that ‖Â‖∞ = r(A) ≤ ‖A‖.

Note that the interpretation of the character space as a sort of generalized spectrum
is motivated by the following result.

Lemma 2.3.6. Let C be a unital Banach algebra, and let A be the unital subalgebra
generated by 1 and an element A ∈ C . Then A is abelian and the map

φA : Ω(A )→ σA (A), φA(τ) := τ(A) (2.3.3)

is a homeomorphism.

Proof. It is clear that the algebra A is abelian, and that φA is a continuous bijection.
Since Ω(A ) and σA (A) are compact Hausdorff spaces, the map φA is a homeomorphism
(open mapping theorem).

2.4 Basics on C∗-algebras

Definition 2.4.1. A Banach ∗-algebra or B∗-algebra is a Banach algebra C together
with an involution ∗ satisfying for any A,B ∈ C and α ∈ C

(i) (A∗)∗ = A,

(ii) (A+B)∗ = A∗ +B∗,

(iii) (αA)∗ = αA∗,

(iv) (AB)∗ = B∗A∗.

Clearly, if C is a unital B∗-algebra, then 1∗ = 1.

Exercise 2.4.2. Show that ‖A∗‖ = ‖A‖ whenever A belongs to a B∗-algebra.

Definition 2.4.3. A C∗-algebra is a B∗-algebra C for which the following additional
property is satisfied:

‖A∗A‖ = ‖A‖2 ∀A ∈ C . (2.4.1)
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Examples 2.4.4. All examples mentioned in Examples 2.1.2 are in fact C∗-algebras,
once complex conjugation is considered as the involution for complex functions. In ad-
dition, let us observe that for a family {Ci}i∈I of C∗-algebras, the direct sum ⊕i∈ICi,
with the pointwise involution and the supremum norm, is also a C∗-algebra.

Note that a C∗-subalgebra of a C∗-algebra C is a norm closed subalgebra of C which
is stable for the involution. It is clearly a C∗-algebra in itself. Note also that if C and
Q are C∗-algebras, then ϕ : C → Q is a ∗-homomorphism if ϕ is a homomorphism and
if in addition ϕ(A∗) = ϕ(A)∗ for all A ∈ C . An ideal J in a C∗-algebra is self-adjoint
if it is stable for the involution.

Definition 2.4.5. Let C be a C∗-algebra. An element A ∈ C satisfying A = A∗ is
called self-adjoint or hermitian, an element P ∈ C satisfying P = P 2 = P ∗ is called an
orthogonal projection, and an element A ∈ C satisfying AA∗ = A∗A is called a normal
element of C . In addition, if C is unital, an element U ∈ C satisfying UU∗ = 1 = U∗U
is called a unitary,

Note that it then follows from relation (2.4.1) that ‖U‖ = 1 for any unitary in C ,
and that ‖P‖ = 1 for any (non-trivial) orthogonal projection in C .

For the next statement, let us set

T := {z ∈ C | |z| = 1}.

Lemma 2.4.6. Any self-adjoint element A in a unital C∗-algebra C satisfies σC (A) ⊂
R. If U is a unitary element of C , then σC (U) ⊂ T.

Proof. First of all, from the equality
(
(C − z)−1

)∗
= (C∗ − z)−1, one infers that if

z ∈ σC (C), then z ∈ σC (C∗), for any C ∈ C . Furthermore, from the equality

z−1(z − C)C−1 = −(z−1 − C−1),

one also deduces that if z ∈ σC (C) for some C ∈ Inv(C ), then z−1 ∈ σC (C−1).
Now, for a unitary U ∈ C , one deduces from the above computations that if z ∈

σC (U), then z−1 ∈ σC

(
(U∗)−1

)
= σC (U). Since ‖U‖ = 1 one then infers from Lemma

2.2.3 that |z| ≤ 1 and |z−1| ≤ 1, which means z ∈ T.

If A = A∗ ∈ C , one sets eiA :=
∑∞

n=0
(iA)n

n!
and observes that

(eiA)∗ = e−iA = (eiA)−1.

Therefore, eiA is a unitary element of C and it follows that σC

(
eiA
)
⊂ T. Now, let us

assume that z ∈ σC (A), set B :=
∑∞

n=1
in(A−z)n−1

n!
, and observe that B commutes with

A. Then one has
eiA − eiz = (ei(A−z) − 1)eiz = (A− z)Beiz.

It follows from this equality that eiz ∈ σC (eiA). Indeed, if
(
eiA − eiz

)
∈ Inv(C ), then

Beiz
(
eiA − eiz

)−1
would be an inverse for (A − z), which can not be since z ∈ σC (A).

From the preliminary computation, one deduces that |eiz| = 1, which holds if and only
if z ∈ R. One has thus obtains that σC (A) ⊂ R.
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The following statement is an important result for the spectral theory in the frame-
work of C∗-algebras. It shows that the computation of the spectrum does not depend
on the surrounding algebra.

Theorem 2.4.7. Let C be a C∗-subalgebra of a unital C∗-algebra A which contains
the unit of A . Then for any A ∈ C ,

σC (A) = σA (A).

Proof. First of all, suppose that A is a self-adjoint element of C . Then, since σA (A) ⊂ R,
it follows from Proposition 2.2.5.(iii) that σA (A) = σC (A). Alternatively, this means
that A is invertible in C if and only if A is invertible in A .

Now suppose that A is an arbitrary element of C which is invertible in A , i.e. there
exists B ∈ A such that AB = BA = 1. Then A∗B∗ = B∗A∗ = 1, so that AA∗B∗B =
1 = B∗BAA∗, and this means that AA∗ is invertible in A , and therefore also in C .
Hence, there exists C ∈ C such that AA∗C = 1 = CAA∗. One infers then that A∗C =
B, which implies that B ∈ C and thus that A is invertible in C . As a consequence, for
any A ∈ C its invertibility in A is equivalent to its invertibility in C , which directly
implies the statement of the theorem.

Because of the previous result, it is common to denote by σ(A) the spectrum of
an element A of a C∗-algebra, without specifying in which algebra the spectrum is
computed. Let us also mention an additional result concerning the spectral radius:

Exercise 2.4.8. If A is a self-adjoint element of a C∗-algebra C , show that r(A) = ‖A‖.

Let us observe that this simple result has an important corollary:

Corollary 2.4.9. There is at most one norm on a ∗-algebra making it a C∗-algebra.

Proof. If ‖ · ‖1, ‖ · ‖2 are norms on a ∗-algebra C making it a C∗-algebra, then for any
A ∈ C one has ‖A‖2

j = ‖A∗A‖j = r(A∗A), and therefore ‖A‖1 = ‖A‖2.

We have already seen at the end of Section 2.2 how we can construct a unital
Banach algebra C̃ from a non-unital Banach algebra C . However, if C is a C∗-algebra,
the resulting algebra C̃ is not a C∗-algebra in general. We shall now see how the
construction can be adapted.

A double centralizer for a C∗-algebra C is a pair (L,R) of bounded linear maps on
C such that for all A,B ∈ C one has

L(AB) = L(A)B, R(AB) = AR(B), and R(A)B = AL(B).

For example, if C ∈ C , then one can define a double centralizer (LC , RC) by LC(A) :=
CA and RC(A) := AC. One then easily checks that

‖C‖ = sup
‖A‖≤1

‖CA‖ = sup
‖A‖≤1

‖AC‖,

and therefore ‖LC‖ = ‖RC‖ = ‖C‖.
More generally one has:
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Exercise 2.4.10. If (L,R) is a double centralizer for a C∗-algebra, show that ‖L‖ =
‖R‖.

Thus, for any C∗-algebra C , one denotes by M (C ) the set of double centralizers
of C and endows it with the norm ‖(L,R)‖ := ‖R‖ = ‖L‖. M (C ) becomes then a
closed vector subspace of B(C ) ⊕B(C ). If in addition, one endows this set with the
multiplication

(L1, R1)(L2, R2) = (L1L2, R2R1)

and with the involution (L,R)∗ = (R∗, L∗) with L∗(A) =
(
L(A∗)

)∗
and R∗(A) =(

R(A∗)
)∗

, then one ends up with:

Proposition 2.4.11. If C is a C∗-algebra, then M (C ) is also a C∗-algebra.

Proof. We only prove the property that ‖(L,R)∗(L,R)‖ = ‖(L,R)‖2, the other condi-
tions being quite straightforward. For that purpose, let A ∈ C with ‖A‖ ≤ 1. Then one
has

‖L(A)‖2 =
∥∥(L(A)

)∗
L(A)

∥∥ = ‖L∗(A∗)L(A)‖ =
∥∥AR∗(L(A)

)∥∥
≤ ‖R∗L‖ =

∥∥(L,R)∗(L,R)
∥∥,

which implies that

‖(L,R)‖2 = sup
‖A‖≤1

‖L(A)‖2 ≤ ‖(L,R)∗(L,R)‖ ≤ ‖(L,R)‖2.

One thus infers that ‖(L,R)∗(L,R)‖ = ‖(L,R)‖2.

The C∗-algebra M (C ) is called the multiplier algebra of C , and the map C 3
A 7→ (LA, RA) ∈ M (C ) is an isometric ∗-homomorphism of C into M (C ). We can
therefore identify C with a C∗-subalgebra of M (C ). In fact, C is an ideal in M (C ),
and since 1 ∈ B(C ) the algebra M (C ) is a unital C∗-algebra with unit (1,1). Note that
C = M (C ) if and only if C is unital, and that M (C ) is in fact the largest unitization
of C in the following sense:

Theorem 2.4.12. If J be a closed self-adjoint ideal in a C∗-algebra C , then there
exists a unique ∗-homomorphism ϕ : C →M (J ) such that ϕ is the identity map on
J . Moreover, ϕ is injective if and only J is essential2 in C .

Proof. See Proposition 2.2.14 of [W-O93] or Theorem 3.1.8 of [Mur90].

Let us recall that a ∗-isomorphism is a bijective ∗-homomorphism. In the next
lemma, we deduce a consequence of the previous theorem.

Lemma 2.4.13. If C is a C∗-algebra, then there exists a unique norm on its unitization
C̃ making it a C∗-algebra.

2One says that a closed ideal J in a C∗-algebra C is essential if AB = 0 for all B ∈ J implies
A = 0.
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Proof. Uniqueness of the norm is given by Corollary 2.4.9. The proof of the existence
falls into two cases, depending on whether C is unital or not.

Let us consider first the case of a unital C∗-algebra C . Then, the map ϕ : C̃ → C⊕C
defined by ϕ(A, z) = (A + z1, z) is a ∗-isomorphism. Hence, one gets a C∗-norm on C̃
by setting ‖(A, z)‖ := ‖ϕ(A, z)‖.

Suppose now that C has no unit. If 1 denotes the unit of M (C ), then C ∩C1 = 0.
The map ϕ from C̃ to the subalgebra C ⊕ C1 of M (C ) defined by ϕ(A, z) = A + z1
is a ∗-isomorphism, so we get a C∗-norm on C̃ by setting ‖(A, z)‖ := ‖ϕ(A, z)‖.

From now on, we shall always consider the unitization C̃ of a C∗-algebra endowed
with its C∗-norm. Note in addition, that M (C ) is usually much bigger than C̃ . For
example, if C = C0(Ω) for a locally compact space Ω, then M (C ) = Cb(Ω).

It is easily observed that if ϕ : C → Q is a ∗-homomorphism between ∗-algebras,
then ϕ extends uniquely to a unital ∗-homomorphism ϕ̃ : C̃ → Q̃.

Lemma 2.4.14. A ∗-homomorphism ϕ : C → Q from a B∗-algebra C to a C∗-algebra
Q is necessarily norm decreasing.

Proof. Without lost of generality, one can consider C and Q unital (by going to C̃ and
Q̃ if necessary). For A ∈ C one has σQ

(
ϕ(A)

)
⊂ σC (A), and therefore

‖ϕ(A)‖2 =
∥∥ϕ(A)∗ϕ(A)

∥∥ = ‖ϕ(A∗A)‖ = r
(
ϕ(A∗A)

)
≤ r(A∗A) ≤ ‖A∗A‖ ≤ ‖A‖2.

It thus follows that ‖ϕ(A)‖ ≤ ‖A‖.

Let us observe that an important corollary can be deduced from the previous lemma,
namely any ∗-isomorphism between C∗-algebras is necessarily isometric.

Our next aim is to show that the Gelfand representation contained in Theorem 2.3.5
can be improved in the context of abelian C∗-algebras. For that purpose, observe first
that any character on a C∗-algebra preserves adjoints. Indeed, let C be a C∗-algebra
and let τ be a character on C . Then, for any A ∈ C , let us set A = <(A) + i=(A) (with
<(A) := A+A∗

2
and =(A) := A−A∗

2i
self-adjoint) and observe that

τ(A∗) = τ
(
<(A)− i=(A)

)
= τ
(
<(A)

)
− iτ

(
=(A)

)
= τ
(
<(A) + i=(A)

)
= τ(A).

Theorem 2.4.15 (Gelfand representation). For any non-zero abelian C∗-algebra C ,
the Gelfand representation

C 3 A 7→ Â ∈ C0

(
Ω(C )

)
(2.4.2)

is an isometric ∗-isomorphism.

Proof. Let us denote by ϕ the homomorphism defined in (2.4.2). It follows from Theo-
rem 2.3.5 that ϕ is a norm decreasing homomorphism, with ‖Â‖ = r(A), for any A ∈ C .
Now, if τ ∈ Ω(C ) one has [ϕ(A∗)](τ) = τ(A∗) = τ(A) = [ϕ(A)](τ) = [ϕ(A)∗](τ), which
means that ϕ is a ∗-homomorphism. Moreover, ϕ is an isometry since

‖ϕ(A)‖2 = ‖ϕ(A)∗ϕ(A)‖ = ‖ϕ(A∗A)‖ = r(A∗A) = ‖A∗A‖ = ‖A‖2.
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Then, ϕ(C ) is a closed ∗-subalgebra of C0

(
Ω(C )

)
separating the points of Ω(C ), and

having the property that for any τ ∈ Ω(C ) there is an element A ∈ C such that
[ϕ(A)](τ) = τ(A) 6= 0. The Stone-Weierstrass Theorem implies therefore that ϕ(C ) =
C0

(
Ω(C )

)
.

The following exercise shows the coherence of the theory:

Exercise 2.4.16. Let Ω be a compact Hausdorff space, and for each x ∈ Ω let τx be
the character on C(Ω) defined by τx(f) = f(x) for any f ∈ C(Ω). Show that the map

Ω 3 x 7→ τx ∈ Ω
(
C(Ω)

)
is a homeomorphism.

The Gelfand representation has various useful applications. One is contained in the
proof of the following statement. For this proof, we also need the following observation:
If φ : Ω → Ω′ is a continuous map between compact Hausdorff spaces Ω and Ω′, then
the transpose map:

φt : C(Ω′)→ C(Ω), φt(f) := f ◦ φ
is a unital ∗-homomorphism. Moreover, if φ is a homeomorphism, then φt is a ∗-
isomorphism.

Proposition 2.4.17. Let A be a normal element of a unital C∗-algebra C , and let z
be the inclusion map of σ(A) in C. Then there exists a unique unital ∗-homomorphism
ϕ : C

(
σ(A)

)
→ C such that ϕ(z) = A. Moreover, ϕ is isometric and the image of ϕ is

the C∗-subalgebra of C generated by A and 1.

Proof. Let A be the unital C∗-subalgebra of C generated by A and 1, and let ψ : A →
C
(
Ω(A )

)
be the Gelfand representation. By Theorem 2.4.15 ψ is a ∗-isomorphism. In

addition, we know from Lemma 2.3.6 that the map φA defined in (2.3.3) is a homeo-
morphism, and therefore the map φtA : C

(
σ(A)

)
→ C

(
Ω(A )

)
is also a ∗-isomorphism.

It then follows that the composed map ϕ := ψ−1 ◦ φtA : C
(
σ(A)

)
→ A is a unital

∗-homomorphism, with ϕ(z) = A since ϕ(z) = ψ−1
(
φtA(z)

)
= ψ−1(Â) = A. From

the Stone-Weierstrass Theorem, we know that C
(
σ(A)

)
is generated by 1 and z; ϕ is

therefore the unique unital ∗-homomorphism from C
(
σ(A)

)
to C such that ϕ(z) = A.

The remaining part of the proof is rather clear.

Based on the idea developed in the previous proof, it is natural to set the following
definitions: If S is any subset of a C∗-algebra, we denote by C∗(S) the smallest C∗-
algebra generated by S. Clearly, C∗(S) ⊂ C , and C∗(A) := C∗({A}) is an abelian
algebra if A is normal. If A is self-adjoint, C∗(A) is the closure of the set of polynomials
in A with zero constant term. On the other hand, C∗({A,1}) is the closure of the set
of polynomials in A with constant terms.

Let us finally mention that a bounded functional calculus similar to the one devel-
oped in Section 1.7.3 can also be defined in the C∗-algebraic framework. We mention
below a useful result, but refer to [Mur90, Thm. 2.1.14] for its proof.
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Theorem 2.4.18 (Spectral mapping). Let A be a normal element in a unital C∗-algebra
C , and let ϕ ∈ C

(
σ(A)

)
. Then the following equality holds:

σ
(
ϕ(A)

)
= ϕ

(
σ(A)

)
.

Moreover, if ψ ∈ C
(
σ(ϕ(A))

)
, then [ψ ◦ ϕ](A) = ψ

(
ϕ(A)

)
.

2.5 Additional material on C∗-algebras

In this section we add some standard material on C∗-algebras. More information can
be found in Chapters 2 and 3 of [Mur90].

Let us first observe that if C = C0(Ω) for a locally compact space Ω, then a natural
notion of positivity on C exists. Indeed, if Csa denote the subset of C made of real
functions on Ω, then for f ∈ Csa one writes f ≥ 0 if and only if f(x) ≥ 0 for any x ∈ Ω.
In addition, any f ≥ 0 has a unique positive square root in C , namely the function
x 7→

√
f(x). This notion of positivity endowed Csa with a partial order: if f, g ∈ Csa

one sets f ≥ g if and only if f − g ≥ 0. We shall now define a similar partial order on
an arbitrary C∗-algebra.

Let C be a C∗-algebra, and A ∈ C . One says that A is positive if A is self-adjoint,
and σ(A) ⊂ [0,∞). We also write A ≥ 0 to mean that A is positive, and denote
by C + the set of positive elements in C . If J is a subalgebra of C , one clearly has
J + = J ∩ C +.

Theorem 2.5.1. Let C be a C∗-algebra and let A ∈ C +. Then there exists a unique
B ∈ C + such that B2 = A.

Proof. That there exists B ∈ C∗(A) such that B ≥ 0 and B2 = A follows from the
Gelfand representation, since we may use it and identify C∗(A) with C0(Ω), where
Ω := Ω

(
C∗(A)

)
, and then apply the above observation, see also Proposition 2.4.17.

Now, suppose that there exists another element C ∈ C + such that C2 = A. Since C
commute with A, C also commute with the elements generated by A, and therefore C
commute with B. So, let us set Q := C∗({B,C}) which is an abelian C∗-subalgebra of
C , and let ϕ : Q → C0

(
Ω(Q)

)
be its Gelfand representation. Then, ϕ(C) and ϕ(B) are

positive square root of ϕ(A), which means that ϕ(C) = ϕ(B). Since ϕ is is an isometric
∗-isomorphism, it follows that C = B.

If A is a positive element of a C∗-algebra C , we usually write A1/2 for its unique
positive square root in C . For A,B ∈ Csa we also set A ≥ B if A− B ≥ 0. Let us add
some elementary information about C +

Proposition 2.5.2. Let C be a C∗-algebra. Then,

(i) The sum of two positive elements of C is a positive element of C ,

(ii) The set C + is equal to {A∗A | A ∈ C },
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(iii) If A,B ∈ Cas and C ∈ C , then A ≥ B ⇒ C∗AC ≥ C∗BC,

(iv) If A ≥ B ≥ 0, then A1/2 ≥ B1/2,

(v) If A ≥ B ≥ 0, then ‖A‖ ≥ ‖B‖,

(vi) If C is unital and A,B are positive and invertible elements of C , then A ≥ B ⇒
B−1 ≥ A−1 ≥ 0,

(vii) For any A ∈ C there exist A1, A2, A3, A4 ∈ C + such that

A = A1 − A2 + iA3 − iA4.

Proof. See Lemma 2.2.3, Theorem 2.2.5 and Theorem 2.2.6 of [Mur90].

Let us stress that the implication A ≥ B ≥ 0⇒ A2 ≥ B2 is NOT true in general.

Definition 2.5.3. For a C∗-algebra C , an approximate unit is an upwards-directed set
{Ij}j∈J ⊂ C + with ‖Ij‖ ≤ 1 and such that A = limj IjA for any A ∈ C .

In order to show that each C∗-algebra C possesses such an approximate unit, let
us first observe that the set of elements of C + with norm strictly less than 1 is a
partially ordered set which is upwards-directed (⇔ if A,B ∈ C + then there exists
C ∈ C + such that C ≥ A and C ≥ B). For that purpose, let us set C +

1 := {A ∈
C + | ‖A‖ < 1}. Observe first that if A ∈ C +, then 1 + A is invertible in C̃ , and
A(1 + A)−1 = 1 − (1 + A)−1 ∈ C . We next show that if A,B ∈ C + with B ≥ A,
then B(1 + B)−1 ≥ A(1 + A)−1. Indeed, if B ≥ A ≥ 0, then 1 + B ≥ 1 + A in C̃ ,
and by Proposition 2.5.2.(vi) it follows that (1 +A)−1 ≥ (1 +B)−1. As a consequence,
1−(1+B)−1 ≥ 1−(1+A)−1, that is B(1+B)−1 ≥ A(1+A)−1 in C . Observe now that if
A ∈ C +, then A(1+A)−1 ∈ C +

1 (use the Gelfand representation applied to C∗({A,1})).
Suppose finally that A,B ∈ C +

1 , and set A′ := A(1 − A)−1, B′ := B(1 − B)−1 and
C := (A′ + B′)(1 + A′ + B′)−1. Then, C ∈ C +

1 , and since A′ + B′ ≥ A′ we have
C ≥ A′(1 + A′)−1 = A. Similarly, C ≥ B, and therefore C +

1 is upwards-directed, as
claimed.

Theorem 2.5.4. Every C∗-algebra C admits an approximate unit.

The idea of the proof is to show that the upwards-directed set C +
1 provide such an

approximate unit. More precisely, for any Λ ∈ C +
1 , we set IΛ := Λ and show that the

family {IΛ}Λ∈C+
1

is an approximate unit. This approximate unit is called the canonical

approximate unit. We refer to [Mur90, Thm. 3.1.1] for the details. Note that in the
applications, more natural approximate units appear quite often.

If {Ij}j∈J is an approximate unit for a C∗-algebra, then, one has by definition
limj ‖(1 − Ij)A‖ = 0 for all A ∈ C . Let us also observe that limj ‖A(1 − Ij)‖ = 0.
Indeed, from the relations

‖A(1− Ij)‖2 = ‖(1− Ij)A∗A(1− Ij)‖ ≤ ‖(1− Ij)A∗A‖

one directly infers the statement.
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Theorem 2.5.5. Let J be a closed self-adjoint ideal in a C∗-algebra C . Since J is
itself a C∗-algebra, there exists an approximate unit {Ij}j∈J for J , and then for each
A ∈ C one has

‖A+ J ‖ = lim
j
‖A− IjA‖ = lim

j
‖A− AIj‖

Proof. Let A ∈ C and let ε > 0. From the definition of the norm of A+ J there exists
B ∈J such that ‖A+B‖ < ‖A+ J ‖+ ε/2. Since B = limj IjB there exists j0 such
that ‖(1− Ii)B‖ < ε/2 for all j ≥ j0, and therefore

‖A− IjA‖ ≤ ‖(1− Ij)(A+B)‖+ ‖(1− Ij)B‖ ≤ ‖A+B‖+ ‖(1− Ij)B‖
< ‖A+ J ‖+ ε.

It follows that ‖A+J ‖ = limj ‖A− IjA‖. The second equality can be shown similarly.

Let us now state three useful corollaries which can be deduced from this statement,
and refer to [Mur90, Sec. 3.1] for their proofs. These statements correspond to extensions
to the framework of C∗-algebras of results which have already been discussed for Banach
algebras.

Corollary 2.5.6. If J is a closed self-adjoint ideal in a C∗-algebra, then the quotient
algebra C /J is a C∗-algebra.

Corollary 2.5.7. If ϕ : C → Q is an injective ∗-homomorphism between C∗-algebras,
then ϕ is necessarily isometric.

Corollary 2.5.8. If ϕ : C → Q is a ∗-homomorphism between C∗-algebras, then ϕ(C )
is a C∗-subalgebra of Q.

Extension 2.5.9. With the use of an approximate unit, give the proof the three corol-
laries.

We now state an important result for the theory of C∗-algebra, the GNS construc-
tion. It will then allow us to consider any C∗-algebra as a C∗-subalgebra of B(H), for
some Hilbert space H.

Definition 2.5.10. A representation of a C∗-algebra C is a pair (H, π), where H is a
Hilbert space and π : C → B(H) is a ∗-homomorphism. This representation is faithful
if π is injective.

Theorem 2.5.11 (Gelfand-Naimark-Segal (GNS) representation). For any C∗-algebra
C there exists a faithful representation.

Extension 2.5.12. The proof of this theorem is based on the notion of states (positive
linear functionals) on a C∗-algebra, and on the existence of sufficiently many such
states. The construction is rather explicit and can be studied.
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With the GNS construction at hand, we can end this chapter by considering again
the multiplier algebra M (C ) for a C∗-algebra C , and add some information concerning
this algebra. More precisely, let us assume that the C∗-algebra C ⊂ B(H) acts non-
degenerately on H, i.e. for any f ∈ H\ {0} there exists A ∈ C such that Af 6= 0. Note
that this is not really any constraint since one can always ”eliminate” any superfluous
part of the Hilbert space. Then it is natural to set

MH(C ) :=
{
B ∈ B(H) | BA ∈ C and AB ∈ C for all A ∈ C

}
.

Theorem 2.5.13. Let C be a C∗-subalgebra of B(H) acting non-degenerately on H.
Then, the correspondence

MH(C ) 3 C 7→ (LC , RC) ∈M (C )

is an isometric ∗-isomorphism.

We refer to [W-O93, Prop. 2.2.11] for the proof of this statement. Note that the
non-trivial part of the proof consists in constructing the inverse map M (C )→MH(C ).
Because of the previous results, we shall simply write M (C ) for MH(C ) and also call
it the multiplier algebra. This should not lead to any confusion.

Definition 2.5.14. Let C ⊂ B(H) be a C∗-algebra acting non-degenerately on H.
The strict topology on M (C ) is the weakest topology making the maps B 7→ BA and
B 7→ AB norm continuous, for any B ∈ M (C ) and A ∈ C . In other words, the
strict topology is the topology generated by the family of seminorms B 7→ ‖BA‖ and
B 7→ ‖AB‖.

It can be shown that M (C ) is strictly complete, or equivalently that every strict
Cauchy net in M (C ) is strictly convergent in M (C ). In fact, M (C ) is the strict
completion of C . We refer to Section 2.3 of [W-O93] for a friendly approach to the
strict topology.


