
Chapter 1

Linear operators on a Hilbert space

This chapter is mainly based on the first chapters of the book [Amr09]. All missing
proofs can be found in this reference.

1.1 Hilbert space

Definition 1.1.1. A (complex) Hilbert space H is a vector space on C with a strictly
positive scalar product (or inner product), which is complete for the associated norm
and which admits a countable basis. The scalar product is denoted by 〈·, ·〉 and the
corresponding norm by ‖ · ‖.

In particular, note that for any f, g, h ∈ H and α ∈ C the following properties hold:

(i) 〈f, g〉 = 〈g, f〉,

(ii) 〈f + αg, h〉 = 〈f, h〉+ α〈g, h〉,

(iii) ‖f‖2 = 〈f, f〉 > 0 if and only if f 6= 0.

From now on, the symbol H will always denote a Hilbert space.

Examples 1.1.2. (i) H = Cd with 〈α, β〉 =
∑d

j=1 αj βj for any α, β ∈ Cd,

(ii) H = l2(Z) with 〈a, b〉 =
∑

j∈Z aj bj for any a, b ∈ l2(Z),

(iii) H = L2(Rd) with 〈f, g〉 =
∫
Rd f(x)g(x)dx for any f, g ∈ L2(Rd).

Let us recall some useful inequalities: For any f, g ∈ H one has

(i) |〈f, g〉| ≤ ‖f‖‖g‖ Schwartz inequality,

(ii) ‖f + g‖ ≤ ‖f‖+ ‖g‖,

(iii) ‖f + g‖2 ≤ 2‖f‖2 + 2‖g‖2,
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6 CHAPTER 1. LINEAR OPERATORS ON A HILBERT SPACE

(iv)
∣∣‖f‖ − ‖g‖∣∣ ≤ ‖f − g‖

the last 3 inequalities are called triangle inequalities. In addition, let us recall that
f, g ∈ H are said orthogonal if 〈f, g〉 = 0.

Definition 1.1.3. A sequence {fn}n∈N ⊂ H is strongly convergent to f∞ ∈ H if
limn→∞ ‖fn − f∞‖ = 0, or is weakly convergent to f∞ ∈ H if for any g ∈ H one has
limn→∞〈fn − f∞, g〉 = 0.

Clearly, a strongly convergent sequence is also weakly convergent. The converse is
not true.

Definition 1.1.4. A subspaceM of a Hilbert space H is a linear subset of H, or more
precisely ∀f, g ∈M and α ∈ C one has f + αg ∈M.

Note that ifM is closed, thenM is a Hilbert space in itself, with the scalar product
and norm inherited from H.

Examples 1.1.5. (i) If f1, . . . , fn ∈ H, then Vect(f1, . . . , fn) is the closed vector
space generated by the linear combinations of f1, . . . fn. Vect(f1, . . . , fn) is a closed
subspace.

(ii) If M is a closed subspace of H, then M⊥ := {f ∈ H | 〈f, g〉 = 0, ∀g ∈ M} is a
closed subspace of H.

Note that the closed subspaceM⊥ is called the orthocomplement ofM in H. Indeed,
one has:

Lemma 1.1.6 (Projection Theorem). Let M be a closed subspace of a Hilbert space
H. Then, for any f ∈ H there exist a unique f1 ∈M and a unique f2 ∈M⊥ such that
f = f1 + f2.

Let us recall that the dual H∗ of the Hilbert space H consists in the set of all
bounded linear functionals on H, i.e. H∗ consists in all mappings ϕ : H → C satisfying
for any f, g ∈ H and α ∈ C

(i) ϕ(f + αg) = ϕ(f) + αϕ(g), (linearity)

(ii) |ϕ(f)| ≤ c‖f‖, (boundedness)

where c is a constant independent of f . One sets

‖ϕ‖H∗ := sup
06=f∈H

|ϕ(f)|
‖f‖

.

Note that if g ∈ H, then g defines an element ϕg of H∗ by setting ϕg(f) := 〈f, g〉.
Lemma 1.1.7 (Riesz Lemma). For any ϕ ∈ H∗, there exists a unique g ∈ H such that
for any f ∈ H

ϕ(f) = 〈f, g〉.
In addition, g satisfies ‖ϕ‖H∗ = ‖g‖.

As a consequence, one often identifies H∗ with H itself.
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1.2 Bounded operators

First of all, let us recall that a linear map B between two complex vector spaces M
and N satisfies B(f + αg) = Bf + αBg for all f, g ∈M and α ∈ C.

Definition 1.2.1. A map B : H → H is a bounded linear operator if B : H → H is a
linear map, and if there exists c ∈ R such that ‖Bf‖ ≤ c‖f‖ for all f ∈ H. The set of
all bounded linear operators on H is denoted by B(H).

For any B ∈ B(H), one sets

‖B‖ := sup
0 6=f∈H

‖Bf‖
‖f‖

. (1.2.1)

and call it the norm of B. Note that the same notation is used for the norm of an
element of H and for the norm of an element of B(H), but this does not lead to any
confusion.

Lemma 1.2.2. If B ∈ B(H), then ‖B‖ = supf,g∈H with ‖f‖=‖g‖=1 |〈Bf, g〉|.

Definition 1.2.3. A sequence {Bn}n∈N ⊂ B(H) is uniformly convergent to B∞ ∈
B(H) if limn→∞ ‖Bn − B∞‖ = 0, is strongly convergent to B∞ ∈ B(H) if for any
f ∈ H one has limn→∞ ‖Bnf − B∞f‖ = 0, or is weakly convergent to B∞ ∈ B(H)
if for any f, g ∈ H one has limn→∞〈Bnf − B∞f, g〉 = 0. In these cases, one writes
respectively u− limn→∞Bn = B∞, s− limn→∞Bn = B∞ and w − limn→∞Bn = B∞.

Clearly, uniform convergence implies strong convergence, and strong convergence
implies weak convergence. The reverse statements are not true.

Lemma 1.2.4. For any B ∈ B(H), there exists a unique B∗ ∈ B(H) such that for
any f, g ∈ H

〈Bf, g〉 = 〈f,B∗g〉.

The operator B∗ is called the adjoint of B, and the proof of this statement involves
the Riesz Lemma.

Proposition 1.2.5. The following properties hold:

(i) B(H) is an algebra,

(ii) The map B(H) 3 B 7→ B∗ ∈ B(H) is an involution,

(iii) B(H) is complete with the norm ‖ · ‖,

(iv) One has ‖B∗‖ = ‖B‖ and ‖B∗B‖ = ‖B‖2.

As a consequence of these properties, B(H) is a C∗-algebra, as we shall see later
on.
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Definition 1.2.6. For any B ∈ B(H) one sets

Ran(B) := BH = {f ∈ H | f = Bg for some g ∈ H},

and call this set the range of B.

Definition 1.2.7. An operator B ∈ B(H) is invertible if the equation Bf = 0 only
admits the solution f = 0. In such a case, there exists a linear map B−1 : Ran(B)→ H
which satisfies B−1Bf = f for any f ∈ H, and BB−1g = g for any g ∈ Ran(B). If B
is invertible and Ran(B) = H, then B−1 ∈ B(H) and B is said boundedly invertible
or invertible in B(H).

Note that the two conditions B invertible and Ran(B) = H imply B−1 ∈ B(H) is
a consequence of the Closed graph Theorem.

Remark 1.2.8. In the sequel, we shall use the notation 1 ∈ B(H) for the operator
defined on any f ∈ H by 1f = f , and 0 ∈ B(H) for the operator defined by 0f = 0.

Lemma 1.2.9 (Neumann series). If B ∈ B(H) and ‖B‖ < 1, then the operator (1−B)
is invertible in B(H), with

(1−B)−1 =
∞∑
n=0

Bn,

and with
∥∥(1−B)−1

∥∥ ≤ (1− ‖B‖)−1.

Note that we have used the identity B0 = 1.

1.3 Special classes of operators

Definition 1.3.1. An element U ∈ B(H) is a unitary operator if UU∗ = 1 and if
U∗U = 1.

Note that in this case, U is boundedly invertible with U−1 = U∗. Indeed, observe
first that Uf = 0 implies f = U∗(Uf) = U∗0 = 0. Secondly, for any g ∈ H, one has
g = U(U∗g), and thus Ran(U) = H. Finally, the equality U−1 = U∗ follows from the
unicity of the inverse.

Definition 1.3.2. An element P ∈ B(H) is an orthogonal projection if P = P 2 = P ∗.

In this case, PH is a closed subspace of H. Alternatively, for each closed subspace
M of H, there exists an orthogonal projection P such that PH =M.

Now, for any family {gj, hj}nj=1 ⊂ H and for any f ∈ H one sets

Anf :=
n∑
j=1

〈f, gj〉hj. (1.3.1)

Then An ∈ B(H), and Ran(An) ⊂ Vect(h1, . . . , hn). Such an operator An is called a
finite rank operator. In fact, any operator B ∈ B(H) with dim

(
Ran(B)

)
< ∞ is a

finite rank operator.
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Exercise 1.3.3. For the operator An defined in (1.3.1), give an upper estimate for
‖An‖ and compute A∗n.

Definition 1.3.4. An element B ∈ B(H) is a compact operator if there exists a family
{An}n∈N of finite rank operators such that limn→∞ ‖An−B‖ = 0. The set of all compact
operators is denoted by K (H).

Proposition 1.3.5. The following properties hold:

(i) B ∈ K (H)⇐⇒ B∗ ∈ K (H),

(ii) K (H) is a ∗-algebra, complete for the norm ‖ · ‖,

(iii) If B ∈ K (H) and A ∈ B(H), then AB and BA belong to K (H).

As a consequence, K (H) is a C∗-algebra and an ideal of B(H).

Extension 1.3.6. There are various subalgebras of K (H), for example the algebra of
Hilbert-Schmidt operators, the algebra of trace class operators, and more generally the
Schatten classes. Note that these algebras are not closed with respect to the norm ‖ · ‖
but with respect to some stronger norms |||·|||. These algebras are ideals in B(H).

1.4 Operator valued maps

Let I be an open interval on R, and let us consider a map F : I → B(H).

Definition 1.4.1. The map F is continuous in norm on I if for all x ∈ I

lim
ε→0

∥∥F (x+ ε)− F (x)
∥∥ = 0.

The map F is strongly continuous on I if for any f ∈ H and all x ∈ I

lim
ε→0

∥∥F (x+ ε)f − F (x)f
∥∥ = 0.

The map F is weakly continuous on I if for any f, g ∈ H and all x ∈ I

lim
ε→0

〈(
F (x+ ε)− F (x)

)
f, g
〉

= 0.

One writes respectively u − limε→0 F (x + ε) = F (x), s − limε→0 F (x + ε) = F (x) and
w − limε→0 F (x+ ε) = F (x).

Definition 1.4.2. The map F is differentiable in norm on I if there exists a map
F ′ : I → B(H) such that

lim
ε→0

∥∥∥1

ε

(
F (x+ ε)− F (x)

)
− F ′(x)

∥∥∥ = 0.

The definitions for strongly differentiable and weakly differentiable are similar.
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If I is an open interval of R and if F : I → B(H), one defines
∫
I
F (x) dx as a

Riemann integral (limit of finite sums over a partition of I) if this limiting procedure
exists and is independent of the partitions of I. Note that these integrals can be defined
in the weak topology, in the strong topology or in the norm topology (and in other
topologies). For example, if F : I → B(H) is strongly continuous and if

∫
I
‖F (x)‖dx <

∞, then the integral
∫
I
F (x)dx exists in the strong topology.

Proposition 1.4.3. Let I is an open interval of R and F : I → B(H) such that∫
I
F (x)dx exists (in an appropriate topology). Then,

(i) For any B ∈ B(H) one has

B

∫
I

F (x)dx =

∫
I

BF (x)dx and
(∫

I

F (x)dx
)
B =

∫
I

F (x)Bdx,

(ii) one also has
∥∥∥ ∫I F (x)dx

∥∥∥ ≤ ∫I ‖F (x)‖dx,

(iii) If C ⊂ B(H) is a subalgebra of B(H), closed with respect to a norm |||·|||, and
if the map F : I → C is continuous with respect to this norm and satisfies∫
I
|||F (x)|||dx <∞, then

∫
I
F (x)dx exists, belongs to C and satisfies∣∣∣∣∣∣∣∣∣∣∣∣∫
I

F (x)dx

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∫
I

|||F (x)|||dx.

Note that the last statement is very useful, for example when C = K (H) or any
Schatten class.

1.5 Unbounded operators

In this section, we define an extension of the notion of bounded linear operators. Obvi-
ously, the following definitions and results are also valid for bounded linear operators.

Definition 1.5.1. A linear operator onH is a pair
(
A,D(A)

)
, where D(A) is a subspace

of H and A is a linear map from D(A) to H. D(A) is called the domain of A. One says
that the operator

(
A,D(A)

)
is densely defined if D(A) is dense in H.

Note that one often just says the linear operator A, but that its domain D(A) is
implicitly taken into account. For such an operator, its range Ran(A) is defined by

Ran(A) := AD(A) = {f ∈ H | f = Ag for some g ∈ D(A)}.

In addition, one defines the kernel Ker(A) of A by

Ker(A) := {f ∈ D(A) | Af = 0}.
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Example 1.5.2. Let H := L2(R) and consider the operator X defined by [Xf ](x) =
xf(x) for any x ∈ R. Clearly, D(X) = {f ∈ H |

∫
R |xf(x)|2 dx <∞} ( H. In addition,

by considering the family of functions {fy}y∈R ⊂ D(X) with fy(x) := e|x−y|
2
, one easily

observes that sup0 6=f∈D(X)
‖Xf‖
‖f‖ =∞, which can be compared with (1.2.1).

Definition 1.5.3. For any pair of linear operators
(
A,D(A)

)
and

(
B,D(B)

)
satisfying

D(A) ⊂ D(B) and Af = Bf for all f ∈ D(A), one says that
(
B,D(B)

)
is an extension

of
(
A,D(A)

)
to D(B), or that

(
A,D(A)

)
is the restriction of

(
B,D(B)

)
to D(A).

Let us note that if
(
A,D(A)

)
is densely defined and if there exists c ∈ R such that

‖Af‖ ≤ c‖f‖ for all f ∈ D(A), then there exists a natural continuous extension A of
A with D(A) = H. This extension satisfies A ∈ B(H) with ‖A‖ ≤ c, and is called the
closure of the operator A.

Exercise 1.5.4. Construct this natural extension and show that ‖A‖ ≤ c.

Let us stress that the sum A + B for two linear operators is a priori only defined
on the subspace D(A)∩D(B), and that the product AB is a priori defined only on the
subspace {f ∈ D(B) | Bf ∈ D(A)}. These two sets can be very small.

Definition 1.5.5. Let
(
A,D(A)

)
be a densely defined linear operator on H. The adjoint

A∗ of A is the operator defined by

D(A∗) :=
{
f ∈ H | ∃f ∗ ∈ H with 〈f ∗, g〉 = 〈f, Ag〉 for all g ∈ D(A)

}
and A∗f := f ∗ for all f ∈ D(A∗).

Let us note that the density of D(A) is necessary to ensure that A∗ is well defined.
Indeed, if f ∗1 , f

∗
2 satisfy for all g ∈ D(A)

〈f ∗1 , g〉 = 〈f, Ag〉 = 〈f ∗2 , g〉,

then 〈f ∗1 − f ∗2 , g〉 = 0 for all g ∈ D(A), and this equality implies f ∗1 = f ∗2 only if D(A)
is dense in H. Note also that once

(
A∗,D(A∗)

)
is defined, one has

〈A∗f, g〉 = 〈f, Ag〉 ∀f ∈ D(A∗) and ∀g ∈ D(A).

Lemma 1.5.6. Let
(
A,D(A)

)
be a densely defined linear operator on H. Then

Ker(A∗) = Ran(A)⊥.

Proof. Let f ∈ Ker(A∗), i.e. f ∈ D(A∗) and A∗f = 0. Then, for all g ∈ D(A), one has

0 = 〈A∗f, g〉 = 〈f, Ag〉

meaning that f ∈ Ran(A)⊥. Conversely, if f ∈ Ran(A)⊥, then for all g ∈ D(A) one has

〈f, Ag〉 = 0 = 〈0, g〉

meaning that f ∈ D(A∗) and A∗f = 0, by the definition of the adjoint of A.
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Definition 1.5.7. A densely defined linear operator
(
A,D(A)

)
is self-adjoint if

D(A∗) = D(A) and A∗f = Af for all f ∈ D(A).

Note that whenever the operator A is self-adjoint one has

〈Af, g〉 = 〈f, Ag〉 ∀f, g ∈ D(A).

Let us stress that self-adjoint operators are very important in relation with quan-
tum mechanics: any physical system is described with such an operator. Self-adjoint
operators are the natural generalisation of Hermitian matrices.

Extension 1.5.8. Self-adjoint operators are a special class of closed and symmetric
linear operators. These notions, as well as the graph or the essential self-adjointness of
an operator are important topics for the study of unbounded linear operators.

1.6 Resolvent and spectrum

Definition 1.6.1. For a closed1 linear operator A, a value z ∈ C is an eigenvalue of
A if there exists f ∈ D(A), f 6= 0, such that Af = zf . In such a case, the element f is
called an eigenfunction of A associated with the eigenvalue z. The set of all eigenvalues
of A is denoted by σp(A).

Lemma 1.6.2. Let A be a self-adjoint operator on H. Then,

(i) All eigenvalues of A are real,

(ii) Two eigenfunctions of A associated with two different eigenvalues of A are or-
thogonal.

Proof. (i) Assume that Af = zf for some z ∈ C and f ∈ D(A) with f 6= 0. Then, one
has

z‖f‖2 = 〈zf, f〉 = 〈Af, f〉 = 〈f, Af〉 = 〈f, zf〉 = z‖f‖2,

which implies that z ∈ R.

(ii) Assume that Af = λf and that Ag = µg with λ, µ ∈ R and λ 6= µ, and
f, g ∈ D(A), with f 6= 0 and g 6= 0. Then

λ〈f, g〉 = 〈Af, g〉 = 〈f, Ag〉 = µ〈f, g〉,

which implies that 〈f, g〉 = 0, or in other words that f and g are orthogonal.

1An operator A is closed if the three conditions (i) fn ∈ D(A), (ii) s− limn→∞ fn = f , (iii) {Afn} is
strongly Cauchy, imply that f ∈ D(A) and s− limn→∞Afn = Af . Note that any self-adjoint operator
as well as any bounded operator is closed.
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By analogy to the bounded case, we say that A is invertible if Ker(A) = {0}. In this
case, the inverse A−1 gives a bijection from Ran(A) onto D(A). Note now that if z is an
eigenvalue of a linear operator A, then (A− z) is not invertible since (A− z)f = 0 for
some f ∈ D(A) with f 6= 0. Then, the spectrum of the operator A is a generalization of
the notion of eigenvalues which is based on the previous observation.

Definition 1.6.3. The resolvent set ρ(A) of a closed linear operator A is defined by

ρ(A) :=
{
z ∈ C | (A− z) is invertible in B(H)

}
=
{
z ∈ C | Ker(A− z) = {0} and Ran(A− z) = H

}
.

The spectrum σ(A) of A is the complement of ρ(A) in C, i.e. σ(A) := C \ ρ(A).

Definition 1.6.4. For any closed linear operator A and for any z ∈ ρ(A), the operator
(A− z)−1 ∈ B(H) is called the resolvent of A at the point z.

Exercise 1.6.5. For any closed linear operator A and any z1, z2 ∈ ρ(A), show the first
resolvent equation, namely

(A− z1)−1 − (A− z2)−1 = (z1 − z2)(A− z1)−1(A− z2)−1. (1.6.1)

Lemma 1.6.6. The spectrum of a self-adjoint operator A is real, i.e. σ(A) ⊂ R.

Proof of Lemma 1.6.6. Let us consider z = λ+ iε with ε 6= 0, and show that z ∈ ρ(A).
Indeed, for any f ∈ D(A) one has

‖(A− z)f‖2 = ‖(A− λ)f − iεf‖2

=
〈
(A− λ)f − iεf, (A− λ)f − iεf

〉
= ‖(A− λ)f‖2 + ε2‖f‖2.

It follows that ‖(A− z)f‖ ≥ |ε|‖f‖, and thus A− z is invertible.
Now, for any for any g ∈ Ran(A− z) let us observe that

‖g‖ =
∥∥(A− z)(A− z)−1g

∥∥ ≥ |ε|∥∥(A− z)−1g
∥∥.

Equivalently, it means for all g ∈ Ran(A− z), one has∥∥(A− z)−1g
∥∥ ≤ 1

|ε|
‖g‖. (1.6.2)

Let us finally observe that Ran(A− z) is dense in H. Indeed, by Lemma 1.5.6 one
has

Ran(A− z)⊥ = Ker
(
(A− z)∗

)
= Ker(A∗ − z) = Ker(A− z) = {0}

since all eigenvalues of A are real. Thus, the operator (A− z)−1 is defined on the dense
domain Ran(A − z) and satisfies the estimate (1.6.2). As explained just before the
Exercise 1.5.4, it means that (A − z)−1 continuously extends to an element of B(H),
and therefore z ∈ ρ(A).
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1.7 Spectral theory for self-adjoint operators

1.7.1 Stieltjes measures

Let us consider a function F : R→ R satisfying the following properties:

(i) F is monotone non-decreasing, i.e. λ ≥ µ =⇒ F (λ) ≥ F (µ),

(ii) F is right continuous, i.e. F (λ) = F (λ+ 0) := limε↘0 F (λ+ ε) for all λ ∈ R,

(iii) F (−∞) := limλ→−∞ F (λ) = 0 and ρ := F (+∞) := limλ→∞ F (λ) <∞.

Note that F (λ + 0) := limε↘0 F (λ + ε) and F (λ− 0) := limε↘0 F (λ− ε) exist since F
is a monotone and bounded function.

With a function F having these properties, one can associate a bounded Borel
measure mF on R, called Stieltjes measure, starting with

mF

(
(a, b]

)
:= F (b)− F (a), a, b ∈ R

and extending then this definition to all Borel sets of R. With this definition, note that
mF (R) = ρ and that

mF

(
(a, b)

)
= F (b− 0)− F (a), mF

(
[a, b]

)
= F (b)− F (a− 0)

and therefore mF

(
{a}
)

= F (a)− F (a− 0) is different from 0 if F is not continuous at
the point a.

Note that starting with a bounded Borel measure m on R and setting F (λ) :=
m
(
(−∞, λ]

)
, then F satisfies the conditions (i)-(iii) and the associated Stieltjes measure

mF verifies mF = m.

Theorem 1.7.1. Any Stieltjes measure m admits a unique decomposition

m = mp +mac +msc

where mp is a pure point measure, mac is an absolutely continuous measure with respect
to the Lebesgue measure on R, and msc is a singular continuous measure with respect
to the Lebesgue measure R.

This result is based on Lebesgue Decomposition Theorem. Let us simply stress that
msc is singular with respect to the Lebesgue measure but msc({λ}) = 0 for any λ ∈ R.
On the other hand, for any Borel set V , mp(V ) =

∑
λ∈V m({λ}), where this sum

contains at most a countable number of contributions.
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1.7.2 Spectral measures

We shall now define a spectral measure, by analogy with the Stieltjes measure defined
in the previous section.

Definition 1.7.2. A spectral family, or a resolution of the identity, is a family {Eλ}λ∈R
of orthogonal projections in H satisfying:

(i) The family is non-decreasing, i.e. EλEµ = Emin{λ,µ},

(ii) The family is strongly right continuous, i.e. Eλ = Eλ+0 = s− limε↘0Eλ+ε,

(iii) s− limλ→−∞Eλ = 0 and s− limλ→∞Eλ = 1,

It is important to observe that the condition (i) implies that the elements of the
families are commuting, i.e. EλEµ = EµEλ. We also define the support of the spectral
family as the following subset of R:

supp{Eλ} = {µ ∈ R | Eµ+ε − Eµ−ε 6= 0, ∀ε > 0}.

With such a spectral family one first defines

E
(
(a, b]

)
:= Eb − Ea, a, b ∈ R, (1.7.1)

and extends this definition to all Borel sets on R (we denote by AB the set of all Borel
sets on R). One ends up with a projection-valued map E : AB → R which satisfies
E(∅) = 0, E(R) = 1, E(V1)E(V2) = E(V1 ∩ V2) for any Borel sets V1, V2. In addition,

E
(
(a, b)

)
= Eb−0 − Ea, E

(
[a, b]

)
= Eb − Ea−0

and therefore E
(
{a}
)

= Ea − Ea−0.

Definition 1.7.3. The map E : AB → R defined by (1.7.1) is called the spectral
measure associated with the family {Eλ}λ∈R. This spectral measure is bounded from
below if there exists λ− ∈ R such that Eλ = 0 for all λ < λ−.

Let us note that for any spectral family {Eλ}λ∈R and any f ∈ H one can set

Ff (λ) := ‖Eλf‖2 = 〈Eλf, f〉.

Then, one easily checks that the function Ff satisfies the conditions (i)-(iii) of the
beginning of Section 1.7.1. Thus, one can associate with each element f ∈ H a finite
Stieltjes measure mf on R which satisfies mf (V ) = ‖E(V )f‖2 = 〈E(V )f, f〉 for any
V ∈ AB.

Our next aim is to define integrals of the form∫ b

a

ϕ(λ)E(dλ) (1.7.2)
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for a continuous function ϕ : [a, b] → C and for any spectral family {Eλ}λ∈R. Such
integrals can be defined in the sense of Riemann-Stieltjes by first considering a partition
a = x0 < x1 < ... < xn = b of [a, b] and a collection {yj} with yj ∈ (xj−1, xj) and by
defining the operator

n∑
j=1

ϕ(yj)E
(
(xj−1, xj]

)
. (1.7.3)

It turns out that by considering finer and finer partitions of [a, b], the corresponding
expression (1.7.3) strongly converges to an element of B(H) which is independent of
the successive choice of partitions. The resulting operator is denoted by (1.7.2).

Proposition 1.7.4 (Spectral integrals). Let {Eλ}λ∈R be a spectral family, let −∞ <
a < b <∞ and let ϕ : [a, b]→ C be continuous. Then one has

(i)
∥∥∥∫ ba ϕ(λ)E(dλ)

∥∥∥ = supµ∈[a,b]∩supp{Eλ} |ϕ(µ)|,

(ii)
(∫ b

a
ϕ(λ)E(dλ)

)∗
=
∫ b
a
ϕ(λ)E(dλ),

(iii) For any f ∈ H,
∥∥∥∫ ba ϕ(λ)E(dλ)f

∥∥∥2

=
∫ b
a
|ϕ(λ)|2mf (dλ),

(iv) If ψ : [a, b]→ C is continuous, then∫ b

a

ϕ(λ)E(dλ) ·
∫ b

a

ψ(λ)E(dλ) =

∫ b

a

ϕ(λ)ψ(λ)E(dλ).

Let us now observe that if the support supp{Eλ} is bounded, then one can consider∫ ∞
−∞

ϕ(λ)E(dλ) = s− lim
M→∞

∫ M

−M
ϕ(λ)E(dλ). (1.7.4)

Similarly, by taking property (iii) of the previous proposition into account, one observes
that this limit can also be taken if ϕ ∈ L∞(R,C). On the other hand, if ϕ is not bounded
on R, the r.h.s. of (1.7.4) is not necessarily well defined. In fact, if ϕ is not bounded
on R and if supp{Eλ} is not bounded either, then the r.h.s. of (1.7.4) is an unbounded
operator and can only be defined on a dense domain of H.

Lemma 1.7.5. Let ϕ : R→ C be continuous, and let us set

Dϕ :=
{
f ∈ H |

∫ ∞
−∞
|ϕ(λ)|2mf (dλ) <∞

}
.

Then the pair
( ∫∞
−∞ ϕ(λ) E(dλ),Dϕ

)
defines a densely defined linear operator on H.

This operator is self-adjoint if and only if ϕ is a real function.
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A function ϕ of special interest is the function defined by the identity function id,
namely id(λ) = λ.

Definition 1.7.6. For any spectral family {Eλ}λ∈R, the operator
( ∫∞
−∞ λE(dλ),Did

)
with

Did :=
{
f ∈ H |

∫ ∞
−∞

λ2mf (dλ) <∞
}

is called the self-adjoint operator associated with {Eλ}.

By this procedure, any spectral family defines a self-adjoint operator on H. The
spectral Theorem corresponds to the converse statement:

Theorem 1.7.7 (Spectral Theorem). With any self-adjoint operator (A,D(A)) on a
Hilbert space H one can associate a unique spectral family {Eλ}, called the spectral
family of A, such that D(A) = Did and A =

∫∞
−∞ λE(dλ).

In summary, there is a bijective correspondence between self-adjoint operators and
spectral families. This theorem extends the fact that any n × n hermitian matrix is
diagonalizable. The proof of this theorem is not trivial and is rather lengthy. In the
sequel, we shall assume it, and state various consequences of this theorem.

Extension 1.7.8. Study the proof the Spectral Theorem, starting with the version for
bounded self-adjoint operators.

1.7.3 Bounded functional calculus

Let A be a self-adjoint operator in H and {Eλ} be the corresponding spectral family.

Definition 1.7.9. For any bounded and continuous function ϕ : R → C one sets
ϕ(A) ∈ B(H) for the operator defined by

ϕ(A) :=

∫ ∞
−∞

ϕ(λ)E(dλ).

Exercise 1.7.10. Show the following equality: supp{Eλ} = σ(A). Note that part of the
proof consists in showing that if ϕz(λ) = (λ − z)−1 for some z ∈ ρ(A), then ϕz(A) =
(A− z)−1, where the r.h.s. has been defined in Section 1.6.

For the next statement, we set Cb(R) for the set of all continuous and bounded
complex functions on R.

Proposition 1.7.11. a) For any ϕ ∈ Cb(R) one has

(i) ϕ(A) ∈ B(H) and ‖ϕ(A)‖ = supλ∈σ(A) |ϕ(λ)|,

(ii) ϕ(A)∗ = ϕ(A), and ϕ(A) is self-adjoint if and only if ϕ is real,
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(iii) ϕ(A) is unitary if and only if |ϕ(λ)| = 1.

b) The map Cb(R) 3 ϕ 7→ ϕ(A) ∈ B(H) is a ∗-homomorphism.

In the point (iii) above, one can consider the function ϕt ∈ Cb(R) defined by ϕt(λ) :=
e−itλ for any fixed t ∈ R. Then, if one sets Ut := ϕt(A) one can observe that UtUs = Ut+s
and that the map R 3 t 7→ Ut ∈ B(H) is strongly continuous. Such a family {Ut}t∈R is
called a strongly continuous unitary group.

Theorem 1.7.12 (Stone Theorem). There exists a bijective correspondence between
self-adjoint operators on H and strongly continuous unitary groups on H. More pre-
cisely, if A is a self-adjoint operator on H, then {e−itA}t∈R is a strongly continuous
unitary group, while if {Ut}t∈R is a strongly continuous unitary group, one sets

D(A) :=
{
f ∈ H | ∃ s− lim

t→0

1

t
[Ut − 1]f

}
and for f ∈ D(A) one sets Af = s− limt→0

i
t
[Ut − 1]f .

Remark 1.7.13. If the inverse Fourier transform ϕ̌ of ϕ belongs to L1(R), then the
following equality holds

ϕ(A) =
1√
2π

∫ ∞
−∞

ϕ̌(t)e−itAdt.

1.7.4 Spectral parts of a self-adjoint operator

In this section, we consider a fixed self-adjoint operator A (and its associated spectral
family {Eλ}), and show that there exists a natural decomposition of the Hilbert space
H with respect to this operator. First of all, recall from Lemma 1.6.6 that the spectrum
of any self-adjoint operator is real. In addition, let us recall that for any µ ∈ R, one has

Ran
(
E({µ})

)
= {f ∈ H | E({µ})f = f}.

Then, one observes that the following equivalence holds:

f ∈ Ran
(
E({µ})

)
⇐⇒ f ∈ D(A) with Af = µf.

Indeed, this can be inferred from the equality

‖Af − µf‖2 =

∫ ∞
−∞
|λ− µ|2mf (dλ)

which itself can be deduced from the point (iii) of Proposition 1.7.4. Indeed, since the
integrand is strictly positive for each λ 6= µ, one can have ‖Af − µf‖ = 0 if and only
if mf (V ) = 0 for any Borel set V on R with µ 6∈ V . In other words, the measure mf is
supported only on {µ}.
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Definition 1.7.14. The set of all µ ∈ R such that Ran
(
E({µ})

)
6= 0 is called the point

spectrum of A or the set of eigenvalues of A. One then sets

Hp(A) :=
⊕

Ran
(
E({µ})

)
where the sum extends over all eigenvalues of A.

In accordance with what has been presented in Theorem 1.7.1, we define two addi-
tional subspaces of H.

Definition 1.7.15.

Hac(A) :=
{
f ∈ H | mf is an absolutely continuous measure

}
=

{
f ∈ H | the function λ 7→ ‖Eλf‖2 is absolutely continuous

}
,

Hsc(A) :=
{
f ∈ H | mf is a singular continuous measure

}
=

{
f ∈ H | the function λ 7→ ‖Eλf‖2 is singular continuous

}
,

for which the comparison measure is always the Lebesgue measure on R.

Theorem 1.7.16. Let A be a self-adjoint operator in a Hilbert space H.
a) This Hilbert space can be decomposed as follows

H = Hp(A)⊕Hac(A)⊕Hsc(A),

and the restriction of the operator A to one of these subspaces defines a self-adjoint
operator denoted respectively by Ap, Aac and Asc.

b) For any ϕ ∈ Cb(R), one has the decomposition

ϕ(A) = ϕ(Ap)⊕ ϕ(Aac)⊕ ϕ(Asc).

Moreover, the following equality holds

σ(A) = σ(Ap) ∪ σ(Aac) ∪ σ(Asc).

Note that one often writes Ep(A), Eac(A) and Esc(A) for the orthogonal projection
on Hp(A), Hac(A) and Hsc(A), respectively, and with these notations one has Ap =
AEp(A), Aac = AEac(A) and Asc = AEsc(A). In addition, note that the relation between
the set of eigenvalues σp(A) introduced in Definition 1.6.1 and the set σ(Ap) is

σ(Ap) = σp(A).

Two additional sets are often introduced in relation with the spectrum of A, namely
σd(A) and σess(A).
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Definition 1.7.17. An eigenvalue λ belongs to the discrete spectrum σd(A) of A if
and only if Ran

(
E({λ})

)
is of finite dimension, and λ is isolated from the rest of the

spectrum of A. The essential spectrum σess(A) of A is the complementary set of σd(A)
in σ(A), or more precisely

σess(A) = σ(A) \ σd(A).

We end this section with an other characterization of the spectrum of the operator
A.

Proposition 1.7.18 (Weyl’s criterion). Let A be a self-adjoint operator in a Hilbert
space H.

a) A real number λ belongs to σ(A) if and only if there exists a sequence {fn}n∈N ⊂
D(A) such that ‖fn‖ = 1 and s− limn→∞(A− λ)fn = 0.

b) A real number λ belongs to σess(A) if and only if there exists a sequence {fn}n∈N ⊂
D(A) such that ‖fn‖ = 1, w − limn→∞ fn = 0 and s− limn→∞(A− λ)fn = 0.


