2013年3月4日 最終講義 B501

衝撃波中の粒子加速

大澤幸治 名古屋大学大学院理学研究科 素粒子宇宙物理学専攻

プラズマ研究所(1977)→プラズマ科学センター(1989)→ 物理学科(1995)

最初は1-2年ごとに新課題に取組んだ

Vlasov code: Nonlinear self-modulation of ion-acoustic waves Magnetostatic code: Plasma paramagnetism Monte Carlo code: Plasma confinement in RF-plugged cusp field Electromagnetic code: Stability of bumpy torus with hot electron rings

1984年から「衝撃波と粒子加速」の研究を開始

2012年12月にまとめの論文

Ultrarelativistic particle acceleration in collisionless shock waves

Ultrarelativistic Particle Acceleration in Collisionless Shock Waves

Yukiharu Ohsawa

Department of Physics, Nagoya University, Nagoya 464-8602, Japan

Abstract

This paper describes the theory and particle simulations of ultrarelativistic particle acceleration caused by shock waves in a collisionless magnetized plasma.

Since knowledge of field strengths and structures is necessary for the analysis of particle motions, theories of magnetosonic waves are reviewed first: (1) linear and nonlinear magnetosonic waves in a single-ion-species plasma, (2) those in a two-ion-species plasma, (3) those in an electron-positron-ion (EPI) plasma, and (4) the electric field parallel to the magnetic field, E_{\parallel} . The first topic contains a general introduction to the magnetosonic wave. The second and third topics are concerned with three-component plasmas, in which the magnetosonic wave is split into two modes; the plasma behavior can thus be considerably different from that in a single-ion-species plasma. The fourth topic is the parallel electric field E_{\parallel} in a nonlinear magnetosonic wave. It is shown that E_{\parallel} can be strong even in low frequency, magnetohydrodynamic phenomena.

Next, nonstochastic particle acceleration in intense electric and magnetic fields formed in a shock wave is studied with theory and with fully kinetic, fully relativistic, electromagnetic, particle simulations. The subjects include (1) electron trapping and acceleration, (2) energization of thermal and relativistic ions, (3) heavy-ion acceleration and resultant damping of nonlinear pulses in a multi-ion-species plasma, and (4) positron acceleration due to E_{\parallel} in the shock transition region in an EPI plasma. In addition to these processes near a shock front, (5) the evolution of large-amplitude Alfvén waves generated behind a shock front and acceleration of electrons in the Alfvén

wave region are examined.

Simulations demonstrate particle acceleration caused by these nonlinear magnetohydrodynamic waves to ultrarelativistic energies much higher than those of solar energetic particles. The acceleration theory based on the investigation of nonlinear waves quantitatively accounts for these simulation results.

Keywords:

particle acceleration, collisionless shock wave, KdV equation,

single-ion-species plasma, multi-ion-species plasma, electron-positron-ion plasma

Contents

 $\mathbf{1}$

 $\mathbf{2}$

Introduction 6				
1.1	Cosmic rays			
	1.1.1	Sources and energies of cosmic rays		
	1.1.2	Extremely high energy cosmic rays		
1.2	Acceleration models			
	1.2.1	Stochastic acceleration models		
	1.2.2	Nonstochastic acceleration due to shock waves 9		
1.3	Struct	ure of this paper		
\mathbf{Str}	ucture	of nonlinear magnetosonic waves in a single-ion-		
\mathbf{spe}	cies pla	asma 12		
2.1	Linear	magnetosonic and Alfvén waves		
	2.1.1	One-fluid MHD theory		
	2.1.2	Two-fluid theory		
	2.1.3	Long-wavelength magnetosonic wave		
2.2	Finite	-amplitude stationary waves		
	2.2.1	Basic properties		
	2.2.2	Electric potential		
	2.2.3	Charge neutrality and pulse width in a strong magnetic		
		field		
2.3	KdV e	equation for small-amplitude waves		
2.4	Shock	waves		
	2.4.1	Field profiles		
	2.4.2	Quantities in the wave frame		

December 11, 2012

Email address: ohsawa@nagoya-u.jp (Yukiharu Ohsawa)

		2.4.3	Field strengths in a large-amplitude shock wave $\ . \ . \ .$	25		6.
3	Way	ves in a	a multi-ion-species plasma	28		
	3.1	Perper	ndicular waves in a two-ion-species plasma	28		
		3.1.1	Linear dispersion relation	28		
		3.1.2	KdV equation for the low-frequency mode	31		
		3.1.3	KdV equation for the high-frequency mode	32		
		3.1.4	Three-fluid simulation	32		6.
	3.2	Obliqu	e waves in a two-ion-species plasma	34		
		3.2.1	Oblique low-frequency mode	35		
		3.2.2	Oblique high-frequency mode	36		
4	Way	ves in a	an EPI plasma	40	7	Io
	4.1	Waves	in a pure electron-positron plasma	40		7.
	4.2	Perper	ndicular waves in an EPI plasma	42		
		4.2.1	Linear dispersion relation of perpendicular waves	42		
		4.2.2	Effects of the displacement current	46		
		4.2.3	Nonlinear perpendicular low-frequency mode	47		
		4.2.4	Nonlinear perpendicular high-frequency mode	49		
		4.2.5	Nonlinear coupling of high- and low-frequency modes			7.3
			in an EPI plasma	49		
	4.3	Obliqu	ne waves in an EPI plasma	51		
5	Par	allel el	ectric field	55		
	5.1	Paralle	el pseudo potential F	55	8	н
	5.2	Paralle	el electric field and parallel pseudo potential in nonlinear			8.
		magne	tosonic waves	56		8.
		5.2.1	Perturbation theory for E_{\parallel} and F in an electron-ion	20		
		F 0 0	plasma	56		
		5.2.2	Simulations for F in small-amplitude pulses	59		8.
		5.2.3	Parallel pseudo potential in shock waves	60	-	-
		5.2.4	Theory and simulations for E_{\parallel} and F in an EPI plasma	61	9	P
6	Tra	pping a	and ultrarelativistic acceleration of electrons	64		э.
	6.1	Partic	le simulation of shock waves	65		
		6.1.1	Simulation method	65		
		6.1.2	Simulation results: Creation of ultrarelativistic elec-			9
			trons in the main pulse	68		э.

	6.2	Theore 6.2.1 6.2.2	etical analysis: Mechanism of electron acceleration \ldots . Trajectories of passing and reflected electrons \ldots . Energy gain from potential ϕ and constant electric field	71 71
		623	E_{y0}	72
		0.2.0	shock wave	73
	6.3	Reflect	tion and parallel pseudo potential	76
		6.3.1	Nonrelativistic description	76
		6.3.2	Relativistic description	78
		6.3.3	Nonstationarity and deep trapping	79
7	Ion	accele	ration	82
	7.1	Physic	cal considerations and numerical calculations on one and	
		multip	le reflections	84
		7.1.1	Conditions for reflection	84
		7.1.2	One reflection	85
		7.1.3	Multiple reflections	86
		7.1.4 Demonstration with particle simulations		
	7.2	2 Incessant acceleration of fast ions		
		7.2.1	Energy absorption from a perpendicular shock wave	89
		7.2.2	Energy absorption from an oblique shock wave	90
		7.2.3	Relativistic incessant acceleration	92
8	Hea	vy-ion	acceleration	96
	8.1	Simula	ation of heavy-ion acceleration	97
	8.2	Theory	y of heavy-ion acceleration	99
		8.2.1	Acceleration due to a shock wave	99
		8.2.2	Acceleration due to a small-amplitude pulse	101
	8.3	Dampi	ing of small-amplitude pulses in a multi-ion-species plasma	a102
9	\mathbf{Pos}	itron a	acceleration	107
	9.1	Theory	y of ultrarelativistic positron acceleration	108
		9.1.1	Acceleration nearly parallel to the magnetic field	109
		9.1.2	Surfatron and generalized theory	111
		9.1.3	Perturbed motions	112
	9.2	Simula	ations of ultrarelativistic acceleration of positrons $\ . \ . \ .$	113
		9.2.1	Demonstration and analysis of acceleration	113
		9.2.2	Dependence on plasma parameters	118

10 Wave evolution and particle acceleration behind a shock from	t119		
10.1 Electron acceleration due to a compressive pulse			
10.1.1 Theoretical considerations	. 121		
10.1.2 Observed particle motions	. 125		
10.2 Acceleration around a moving magnetic neutral sheet	. 127		
10.3 Alfvén waves and particle acceleration behind a shock front.	. 130		
10.3.1 Motions of bulk particles	130		
10.3.2 Evolution of waves and phase spaces	132		
10.3.3 Electron acceleration due to Alfvén waves	137		
Appendix A Finite-amplitude, stationary, relativistic, per	-		
pendicular wave	144		
Appendix B KdV Equation in a warm single-ion-specie	S		
nlasma	1/0		
plasma	145		
Appendix C Derivation of KdV Equation for the high	I-		
frequency mode	155		
Appendix D Highest energy of trapped electrons	159		
Appendix E Equivalence of Eqs. (245) and (257)	162		
Appendix F Conditions for ion reflection	163		
Appendix F1 Motions in the upstream and transition regions	163		
Appendix F_2 First reflection in the transition region	165		
Appendix F.3 Second reflection	166		
Appendix F.4 Multiple reflections with small relative velocity	168		
Appendix F.4 Multiple reflections with small relative velocity	. 100		
Appendix G Jumps in energy and parallel momentum	168		
Appendix G.1 Magnitude of an energy jump	. 169		
Appendix G.2 Increase in parallel momentum	. 170		
Appendix H Wave energy density of the high-frequency	у		
mode	173		
	155		
Appendix I Perturbed motions of positrons and ions	175		
Appendix 1.1 Perturbations of positron motion	. 175		
Appendix 1.2 Perturbations of ion motion	. 180		

Appendix J		Electron motions inside and outside a com-	
pressive pul	\mathbf{se}	18	31
Appendix J	.1	Elliptic orbits in the momentum space 18	32
Appendix J	1.2	Sign of a_1^2	33
Appendix J	.3	Sign of $\Delta P(t_0)$	33

1. Introduction

Cosmic rays have been investigated for nearly a century and are still attracting increasing attention from plasma, particle, and astrophysics communities [1]-[14]. Their acceleration mechanism, however, remains unresolved. Unlike the studies of plasma-based accelerators initiated by John Dawson *et al.* in the late 1970's [15, 16], in which detailed comparisons between the experiments, theories, and simulations are possible, it is quite difficult to directly observe the acceleration processes of cosmic rays produced in the distance, although we have a huge amount of experimental data, such as time variations of x-ray and gamma-ray emission associated with solar flares [3].

Because of the rapid increase in the power of computers, however, we can now perform simulations that solve large-scale plasma behavior and individual relativistic particle motions in a self-consistent manner. Their precise information about particle motions and electromagnetic fields would enable us to create new theories for particle acceleration and to test existing theories. With use of relativistic particle simulations, indeed, several distinct nonstochastic particle acceleration mechanisms caused by shock waves in a magnetized collisionless plasma have been found and analyzed in the past few decades [17]-[35]. Furthermore, to account for the field structures that lead to energization of particles, nonlinear wave theory has been developed [36]-[44]: A coherent theory for nonlinear waves and particle acceleration mechanisms has thus been constructed. This paper reviews these studies.

Before looking at detailed theories, however, we briefly describe in this section some fundamental properties of cosmic rays for the readers who are not familiar with them and then outline the structure of this paper.

1.1. Cosmic rays

The origin of the research of cosmic rays may date far back to 1912, when Hess revealed with balloon flight experiments that radiation causing ionization in the atmosphere comes mainly from the sky, not from the ground [45].

Ultrarelativistic Particle Acceleration in Collisionless Shock Waves

1 Introduction

Wave

2 Structure of nonlinear magnetosonic waves in a single-ion-species plasma

- 3 Waves in a multi-ion-species plasma
- 4 Waves in an EPI plasma
- 5 Parallel electric field

Acceleration

- 6 Trapping and ultrarelativistic acceleration of electrons
- 7 Ion acceleration
- 8 Heavy-ion acceleration
- 9 Positron acceleration
- 10 Wave evolution and particle acceleration behind a shock front

Appendices A ---- J

特徴

大振幅波の中に形成される強力な電磁場によって引き起こされる nonstochasticな粒子加速を探求 (Fermi加速や乱流のようなstochasticなモデルではない)

粒子加速と大振幅波を並行して研究 第一原理から

超相対論的加速 (γ>100) を粒子シミュレーションで実証

(太陽高エネルギー電子の γ~100、 陽子 γ<10)

注:様々なエネルギー

地球大気	0.03 eV
太陽表面	0.6 eV
太陽コロナ	100 eV
太陽の中心部	1.5 keV
核融合プラズマ	10 keV
太陽宇宙線陽子	1~10 GeV
電子	数十MeV (γ~100)

Observations of high-energy particles

Cosmic Rays ~ 10²⁰ eV

Phys. Rev. Lett. 100, 101101 (2008)

EHECR: GZK cutoff, Anisotropic arrival directions

SN1006, Crab Nebula ~ 10¹⁴ eV (electrons)

Nature **378**, 255 (1995) , ApJ **539**, 317 (2000) **Supernova Remnant RS J1713.7-3946** ~ 10¹² eV (protons) PASJ **55**, L61 (2003), Nature **432**, 75 (2004) **Solar Energetic Particles** 10⁹~ 10¹⁰ eV (protons), 10⁷ ~ 10⁸ eV (electrons)

< a few seconds

```
ApJ 318, 913 (1987)
```

Elemental Composition of cosmic rays similar to that of the universe

ApJ. Suppl. 57, 173 (1985)

無衝突衝撃波とは

二体衝突の非常に少ない高温プラズマにおける衝撃波 例:バウショック、超新星爆発による星間空間の衝撃波

無衝突でなぜ衝撃波ができるか?

Morawetz イオン反射で衝撃波の構造 多数の著者 不安定性が乱流をつくり、散逸を生じる →プラズマ加熱

Three waves in one-fluid MHD

Nonlinear magnetosonic waves in a single-ion-species plasma Small-amplitude waves propagate as solitary waves or wavetrains governed by the KdV Equation

Large-amplitude waves evolve into shock waves

$$\frac{B_{lzm}}{B_{lz0}} = 1 + \gamma_{sh}^2 \left[\left(1 + \frac{2v_{sh}^2}{v_A^2 \sin^2 \theta} \right)^{1/2} - 1 \right],$$

$$\frac{e\phi_{lm}}{m_i v_A^2} = \left(\sin^2 \theta + \frac{\sin \theta \cos \theta}{\gamma_{sh} (1 + \gamma_{sh}^2 \tan^2 \theta)^{1/2}} \right) \left[\left(1 + \frac{2v_{sh}^2}{v_A^2 \sin^2 \theta} \right)^{1/2} - 1 \right].$$

KdV equation

Finite-amplitude, stationary, perpendicular wave Shock wave

field strengths

Nakazawa & Ohsawa, J. Phys. Soc. Jpn. 66, 2044 (1997)

Miyahara, Kawashima, & Ohsawa, Phys. Plasmas 10, 98 (2003)

Multi-ion-species plasma

In a two-ion-species plasma, the magnetosonic wave is split into two modes: High- and low-frequency modes

Although the high-frequency mode has a finite cutoff frequency, we have derived the KdV equation for each mode

The pulse width of the high-frequency mode, $\sim c/\omega_{\rm pe}$, Is much shorter than that of the low-frequency mode, $\sim c/\omega_{\rm pi}$

Even a perpendicular pulse is damped in a multi-ion-species plasma due to the heavy-ion acceleration 0.

Toida, Ohsawa, & T. Jyounouchi, Phys. Plasmas **2**, 3329 (1995) Dogen, Toida, & Y. Ohsawa, Phys. Plasmas **5**, 1298 (1998) Irie & Ohsawa, Phys. Plasmas **10**, 1253 (2003)

High-frequency-mode solitons are generated from a low-frequencymode pulse

Electron-positron-ion (EPI) plasma

The theory for two-ion-species plasmas has been extended to EPI plasmas

Linear dispersion relations are obtained Nonlinear evolution equations for two magnetosonic modes (M & H) are derived Their field structures are analyzed

The electric potential decreases with increasing positron density: $\phi = 0$ in a pure electron-positron plasma

> Hasegawa, Irie, Usami, & Y. Ohsawa, Phys. Plasmas **9**, 2549 (2002) Hasegawa & Ohsawa, J. Phys. Soc. Jpn. **73**, 1764 (2004)

Parallel Electric field

In the Ideal MHD,

$$\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} = 0$$

$$E_{\parallel} = \frac{\mathbf{E} \cdot \mathbf{B}}{B} = 0$$

$$F = -\int E_{\parallel} ds = 0$$
Parallel pseudo potential

It was thought that $E_{||}$ was weak in MHD phenomena

However, some simulations show that *F* >>*T*

F becomes large in shock waves E_{11} can cause strong particle acceleration $\theta = 60^{\circ}, m_i/m_e = 400, v_{Te}/c = 0.2$ Small-amplitude pulses $\varepsilon <<1$ 10¹ $eF_{T} \sim \mathcal{E} I_{e} I_{e} \qquad \text{warring} \qquad \int_{V_{A}}^{+} \int_{V_{A}}^{+} \int_{U_{A}}^{+} \int$ $eF_T \sim \varepsilon \Gamma_\rho T_\rho$ $(m_i v_A^2 + \Gamma_e T_e) \cdot (B_{z1}/B_0)$ $|\mathsf{F}_{\mathsf{R}}|$ Shock waves ε^{-1} • F, $\bigcirc \phi$ for $|\Omega_{e}|/\omega_{pe} = 0.5$ • F, $\triangle \phi$ for $|\Omega_{e}|/\omega_{pe} = 0.2$ 10⁻² $eF \sim \mathcal{E}(m_i v_A^2 + \Gamma_e T_e)$ 2 10 5 B_{71}/B_{0}

Takahashi & Ohsawa, Phys. Plasmas **14**, 112305 (2007): electron-ion plasma Takahashi, Sato, & Ohsawa, Phys. Plasmas **15**, 082309 (2008) : EPI plasma

Simulations of particle acceleration

Stochastic models

Fermi acceleration model (1949)

No evidence has been shown by particle simulations

Turbulence due to instabilities

Many simulations have been performed: For instance, Dieckmann *et al.*, Instabilities, v~20 v_{Te} Astron. Astrophys. **356**, 377 (2000)

Non-stochastic model

Acceleration caused by strong electric and magnetic fields formed in shock waves

Several different acceleration mechanisms to ultrarelativistic energies, γ >100, have been demonstrated with particle simulations

Theory and particle simulations have shown ultrarelativistic particle acceleration in collisionless shock waves

1. protons

Phys. Fluids 28, 2130 (1985), Phys. Plasmas 9, 1069 (2002)

2. heavy ions

Solar Phys. 171, 161 (1997), Phys. Plasmas 2, 3329 (1995); 5,1298 (1998)

3. electrons

Phys. Plasmas **6**, 3076 (1999); **9**, 979 (2002)

Phys. Plasmas 12, 052308 (2005); 13, 063110 (2006); 18, 092307 (2011)

4. positrons

Phys. Plasmas 10, 3455 (2003); 12, 082306 (2005); 19, 022302 (2012)

Relativistic, electromagnetic particle simulation

$$\frac{d\mathbf{p}_{j}}{dt} = q_{j}\mathbf{E}(\mathbf{x}_{j}) + \frac{q_{j}}{c}\mathbf{v}_{j} \times \mathbf{B}_{j}(\mathbf{x}_{j})$$
$$j = 1, 2, 3, \dots N$$
$$\frac{1}{c}\frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{B} - \frac{4\pi}{c}\mathbf{J}$$
$$\frac{1}{c}\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$
$$\nabla \cdot \mathbf{E} = 4\pi\rho, \qquad \nabla \cdot \mathbf{B} = 0$$

Geometry and Simulation Code

One dimensional (three velocities), Fully kinetic, Relativistic, Electromagnetic, Particle code

Relativistic ions are promptly produced in a shock wave

Ohsawa, Phys. Fluids 28, 2130 (1985); Ohsawa, J. Phys. Soc. Jpn. 59, 2782 (1990)

Relativistic ions can stay near the shock front for long periods of time, if $v_{sh} \sim c \cos \theta$

Their energies rise stepwise to ultrarelativistic energies

Usami & Ohsawa, Phys. Plasmas 9, 1069 (2002); ibid. 11, 918 (2004)

All the heavy ions that enter a shock wave are accelerated

Their maximum speeds are independent of particle species

$$v \approx \frac{B_m - B_0}{B_m + B_0} v_{sh}$$

Energetic heavy ions thus have an elemental composition similar to that of the background plasma

θ=90

Toida & Ohsawa, Solar Phys. 171, 161 (1997)

B & O 1

Oblique shock waves can accelerate electrons to ultrarelativistic energies

Some electrons are reflected and then trapped in a shock wave

Bessho & Ohsawa, Phys. Plasmas **6**, 3076 (1999); **9**, 979 (2002) Zindo *et al.*, Phys. Plasmas **12**, 052321 (2005)

$$\Omega_{e} \mid / \omega_{pe} = 3, \ \theta = 45^{\circ}, v_{sh} = 2.2 v_{A}$$

Maximum γ vs shock speed v_{sh}

Strong particle acceleration has **not** been observed in shock waves in an **electron-positron** plasma;

for instance, Langdon, Arons, Max, PRL 61, 779 (1988)

However, in an electron-positron-ion (EPI) plasma, intense $E_{||}$ persistently accelerates positrons

Hasegawa, Usami, & Ohsawa, Phys. Plasmas **10**, 3455 (2003); Hasegawa, Kato, & Ohsawa, *ibid*. **12**, 082306 (2005)

$E_{||}$ =0 in an electron-positron plasma, while $E_{||}$ can be strong in an EPI plasma

Takahashi & Ohsawa, Phys. Plasmas 14, 112305 (2007); Takahashi, Sato, & Ohsawa, ibid. 15, 082309 (2008)

Positron acceleration to $\gamma \sim 10^4$ in an EPI plasma

Acceleration of positrons and electrons to $\gamma \sim 10^4$

Wave evolution and particle acceleration behind a shock front

Strong disturbances produce shock waves and, behind their fronts, large-amplitude Alfven waves

Three types of ultrarelativistic electron acceleration are found in the Alfven waves

> Sato, Miyahara, & Ohsawa, Phys. Plasmas **12**, 052308 (2005) Sato & Ohsawa, Phys. Plasmas **13**, 063110 (2006) Yamauchi & Ohsawa, Phys. Plasmas **14**, 053110 (2007) Takeyama, Nakayama, & Ohsawa, Phys. Plasmas **18**, 092307 (2011)

Strong disturbance produces two shock waves

Three types of acceleration are found in the Alfven wave region

$$\gamma_C \sim \frac{1 + E_{II}/B_{II}}{1 - E_{II}/B_{II}} \gamma_B,$$

Acceleration of electron gyrating along the strongmagnetic-field pulse

 E_{I}

BI

D

 $\mathbf{p}_{\mathbf{v}}$

А

Gyration in the

Π

EII

 $oldsymbol{igo}$

 B_{II}

configuration space

Acceleration of electron meandering along a moving neutral sheet

I

EI

 \otimes

BI

DB

Π

EII

⊙ B_{II}

Acceleration of electron traversing the alternating magnetic field region

Ш

lacksquare

 \otimes

E

E_I

 $\bigcirc B_I$

IV

Ò

F

 $E_{\mathbf{V}}$

 $B_V \bigcirc$

まとめ

「衝撃波中の粒子加速」を30年間研究しました

永い間のご支援、有難うございます

Multi-dimensional codes are being developed by Toida et al.

Toida, Ueno & Ohsawa, J. Phys. Soc. Jpn. 77, 084501 (2008)