Computers in Chemistry —
Lecture VI

Prof. Dr. Stephan Irle
Quantum Chemistry Group
Nagoya University

Today’s Lecture

Logical expressions: Making decisions

!

yes —»

no ||

Several FORTRAN statements used to repeat or select
parts of the program involve logical expressions.
Typical logical expressions involve <, >, or == (equal to)
or /= (not equal to) operators

Get this lecture online

* Please go to: http://gc.chem.nagoya-u.ac.jp
* Click on “Teaching”
* Click on “PPT” link of “6.1 Lecture VI — Logic in

FORTRAN I”

userid: gcguest, password: qcigf!

52 é;(;a'pule'pro—g“r;rvn's.:ﬁiﬁtéi'és:t.‘f.w interest per year), temp1.f80 (Temperature Co
6.1 Lecture VI - Logic in FORT

6.2 Assignment 5 (PDF)
6.3 Practice program: quadratic1.f90 (Solve quadratic equation)

Computer logic vs. biological logic

* Computer logic is binary: no (0) or yes (1)

y

yes —»
no ||

* Logic operations in biomolecules are “fuzzy”, i.e. can have
continuous values in the interval [0,1], where “0” means
“no action”, “1” means “full scale action”, and a value in
between regulates the amount of “intermediate” action.

Cf: Dennis Bray, “Wetware —a computer in every living cell”, Yale University Press, 2009
4

Computer logic vs. biological logic

e.g. concentration
of substrate

Input

Processing

unit

e.g. protein

| o

e.g. product of

catalytic reaction

117 Biological logic
AN
Hyperbolic
5
g
(o]
A Computer logic
Sigmoidal
0
0 Input 1

Cf: Dennis Bray, “Wetware — a computer in every living cell”, Yale University Press, 2009

3.1 Logical Expressions Il

SYMBOL

MEANING

< Or
o
==or
<=or
>=or

/=or.

i 1
.GT.
.EQ.
.LE.
.GE.
NE.

Is less than

Is greater than

Is equal to

Is less than or equal to

Is greater than or equal to

Is not equal to

FORTRAN90 or FORTRAN77: both OK
* FORTRAN90: symbolic form; FORTRAN77: abbreviated

form

* Only use one of them consistently in your code

* Note that “=="is different from

“u_u

3.1 Logical Expressions |

* Logical expressions may be simple or
compound (contain at least two expressions).

* Simple logical expressions are:
— Logical constants (.TRUE. or .FALSE.)
— Logical variables (.TRUE. or .FALSE.)

— Relational expressions of the form:
expression relational-operator expression
numeric or character (or logical) expressions
relational-operator may be any of the following:

3.1 Logical Expressions Il

* Examples for logical expressions:
.JTRUE.
X<5.2
Number ==-999

If X has the value 4.5, the logical expression “X <
5.2” has the value .TRUE.

If Number has the value 400, the expression
“Number ==-999” has the value .FALSE.

3.1 Logical Expressions IV 3.1 Logical Expressions V

* For character data, numeric codes are used to
establish an ordering of the character set.
Most common scheme is the ASCII code,
which uses codes in the range from 0 to 255;

* If logical expression contains both arithmetic
and relational operators, such as in:
B**¥2>=40*A*C

The arithmetic o.per:atlons.are performed first; the for example:
above expression is equivalent to:
B %% 2) >= (4.0 * A * C) A=065 a=97
(IR B=66 b =98
Example: A=2.0,B=1.0,C=3.0, thisis 1.0 >= 24.0,
which is clearly .FALSE. 7-90 L =122
3.1 Logical Expressions VI 3.1 Logical Expressions VI
* Thus, the following are .TRUE. expressions: * Compound logical expressions
NP = Performed by combining simple logical expressions
ug” > ug” by logical ope.rators:
) .NOT. (negation)
* Two strings are compared character by AND. (conjunction)
character. Example: OR. (disjunction)
“cat” < “dog” is .TRUE. because “c” < “d” EQV. (equivalence)
But .NEQV. (nonequivalence)

“cat” > “cow” is .FALSE. because “a” < “0”. * Operators are defined by “truth tables”

3.1 Logical Expressions VI

* Truth tables: p and g are logical expressions,

then:

P .NOT. p
.TRUE. .FALSE.
.FALSE. .TRUE.

P q p .AND. g P 4wOR, G p .EQV. q p .NEQV. g
.TRUE. .TRUE. .TRUE. .TRUE. .FALSE. .TRUE.
.TRUE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE.
.FALSE. .TRUE. .FALSE. .TRUE. .FALSE. .TRUE.
.FALSE. .FALSE. .FALSE. .FALSE. .TRUE. .FALSE.

3.1 Logical Expressions VIII

* If compound logical expressions contain

arithmetic operators, relational operators, and
logical operators, the operations are
performed in the following order:

1. Arithmetic operations (and functions)

2. Relational operations

3. Logical operators in the
order .NOT., .AND., .OR., .EQV. (or .NEQV.)

3.1 Logical Expressions IX

* Example: Assume N=4

-N**2+1>10.AND. .NOT.N< 3
Is equivalent to:
(N**2 +1>10) .AND. (.NOT. (N < 3))
The above is true: (.TRUE.).AND.(.TRUE.)
- N==3.0R.N==
The above is .TRUE. since N==4 is .TRUE.
- N==1.0R.2

The above is .FALSE. since “2” is not a logical expression
to which .OR. can be applied.

3.2 IF Constructs |

* Simple IF construct

* “If” can contain a simple or compound logical
expression

3.2 IF Constructs Il 3.2 IF Constructs Il

* Simple IF Construct (also called “block IF * Example:
construct) of the form: IF (X >=0) THEN
IF (logical-expression) THEN Y=Xx*X
Z = SQRT(X)
statements END IF
END IF * More simple IF statement:
* If the logical expression is .TRUE., the IF (logical-expression) statement
statements are going to be executed, A single statement will be be executed if logical-
otherwise they will not be executed. expression is .TRUE.
Example: IF (1.5 <= X .AND. X <= 2.5) PRINT *, X
3.2 IF Constructs IV 3.2 IF Constructs V
* General form of IF constructs * Syntax:
li IF (logical-expression) THEN
statement sequence 1
ELSE
statement sequence 2
END IF

* |s realized by using the “ELSE” part of the IF construct

3.2 IF Constructs Vi

* Example: Quadratic expression
Ax*+Bx+C =0

. Discriminant
has two solutions: N
_-B+AB’-4aC0) _
i 24 27 24
In FORTRAN notation:
X1 = (-B + SQRT(B**2 — 4.0*A*C))/(2.0*A)
X2 = (-B - SQRT(B**2 — 4.0*A*C))/(2.0*A)

Note that SQRT() gives an error if argument
(=discriminant) is negative!

3.2 IF Constructs VI

* Algorithm:
* Task: Solve the quadratic equation Ax*+Bx+C =0
* |Input: A, B, C
* Output: The two real roots of the quadratic expression;
if the solutions are complex, print a statement that
there are no real roots
* Algorithm:
1. EnterA,B,C
2. Calculate discriminant = B**2 — 4.0*A*C

3. Decide if discriminant is negative or positive: If positive,
compute solutions, else display the discriminant and
print a message that there are no real roots.

3.2 IF Constructs VI

e Algorithm:
Task: Solve the quadratic equation Ax”>+Bx+C =0
Input: A, B, C

Output: The two real roots of the quadratic expression;
if the solutions are complex, print a statement that
there are no real roots
Algorithm:

1. EnterA,B,C

2. Calculate discriminant = B**2 —4.0*A*C

3. Decide if discriminant is negative or positive: If positive,
compute solutions, else display the discriminant and
print a message that there are no real roots.

22

3.2 IF Constructs VIl

* Task: Write your own FORTRAN code without
looking first at the solution, quadratic1.f90 on
the webpage

24

3.3 IF-ELSE IF Constructs

¢ |F-ELSE constructs only considered selecting one of two
alternatives.

¢ |F-ELSE IF constructs allow more than two alternatives:

IF (logical-expression,) THEN
statement sequence 1

ELSE IF (local expression,) THEN
statement sequence 2

ELSE IF (local expression3) THEN
statement sequence 3

ELSE
statement sequence4

END IF

3.4 CASE Constructs Il

* Example: ClassCode: integer variable, serves as selector.
SELECT CASE (ClassCode)

CASE (1)

PRINT *, “Freshman” | B1
CASE (2)

PRINT *, “Sophomore” ! B2
CASE (3)

PRINT *, “Junior” B3
CASE (4)

PRINT *, “Senior” 1 B4

CASE DEFAULT
PRINT *, “lllegal Class Selection”
END SELECT

3.4 CASE Constructs |

* Not as general as IF-ELSE IF constructs, but useful to
implementing selection structures if the selection is based
on the value of a single selector expression.

* Selector is an integer, character, or logical expression.

SELECT CASE (selector)
CASE (label-list1)
statement sequence 1
CASE (label-list2)
statement sequence 1
CASE DEFAULT
statement sequence 3
END SELECT

