

4/16

Observations

Definition

(1) $P \Rightarrow Q$ iff $P \stackrel{\tau}{\rightarrow}{}^{*} Q$

 $\begin{array}{c} \stackrel{a}{\rightarrow} \text{ is observed by } \stackrel{\overline{a}}{\rightarrow}. \\ \stackrel{\tau}{\rightarrow} \text{ cannot be observed}. \end{array}$

(2) $s \in Act^*.P \stackrel{s}{\Rightarrow} Q \text{ iff } P \Rightarrow \stackrel{\alpha_1}{\longrightarrow} \Rightarrow \cdots \stackrel{\alpha_n}{\longrightarrow} Q$

Weak bisimulation

Definition		
(Weak simulation)		

$$(P, Q) \in \mathcal{S} \text{ implies } \begin{array}{ccc} P & \stackrel{e}{\Rightarrow} & \forall P' \\ \mathcal{S} & \mathcal{S} \\ Q & \stackrel{e}{\Rightarrow} & \exists Q' \end{array}$$

Definition

S is a weak bisimulation if both S and S^{-1} are weak simulations. $P \approx Q$ if there exists a weak bisimulation containing (P, Q).

(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)	(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)
Properties	An alternative characterization
Proposition $\sim \subsetneq \approx$ Stongly bisimular Processes are weakly bisimular. Not vice versa. $P \not\sim \tau.P$ but $P \approx \tau.P$ Proposition1. \approx is an equivalence.2. \approx is a weak bisimulation. Moreover, it is the largest weak bisimulation.	Problem: $P \stackrel{e}{\Rightarrow} P'$ is an infinite assumption. You may have to check infinite P' for P Proposition <i>S</i> is a weak simulation iff $(P, Q) \in S$ implies: (1) If $P \stackrel{\tau}{\rightarrow} P'$ then $\exists Q'.Q \Rightarrow Q'$ and $P'SQ$ (2) If $P \stackrel{\lambda}{\rightarrow} P'$ then $\exists Q'.Q \stackrel{\lambda}{\Rightarrow} Q'$ and $P'SQ$
	(ロ) (型) (主) (主) (三) (1)

Proof sketch of the proposition

(\Rightarrow): Obvious (\Leftarrow):If $P \Rightarrow P'$, by repeated application of (1). (Formally, induction on $\stackrel{\tau}{\rightarrow}$) If $P \stackrel{\lambda_1 \dots \lambda_n}{\Rightarrow} P'$ When n = 1: repeated application of (1) and (2) followed by repeated application of (1), Q' s.t. P'SQ' exists. When n = k + 1: by the induction hypothesis followed by repeated application of (1) and (2) and again repeated application of (1).

To see if $P \approx Q$, find a relation \mathcal{R} such that $(P, Q) \in \mathcal{R}$ and both \mathcal{R} and \mathcal{R}^{-1} satisfy the conditions (1) and (2) of the proposition.

Weak bisimulation up to \sim

Definition

 \mathcal{S} is a weak simulation up to \sim , whenever $(P, Q) \in \mathcal{S}$,

(1) $P \xrightarrow{\tau} P'$ implies $Q \Rightarrow Q'$ for some Q' such that $Q' \sim S \sim Q'$

(2) $P \xrightarrow{\lambda} P'$ implies $Q \xrightarrow{\lambda} Q'$ for some Q' such that $Q' \sim S \sim Q'$

If both S and S^{-1} are weak simulation up to \sim , S is a weak bisimulation up to \sim .

Proposition

If \mathcal{S} is a wak bisimulation up to \sim , then $\mathcal{S} \subseteq \approx$

au laws	Weak Process Concruence
Theorem (1) $P \approx \tau . P$ (2) $M + N + \tau . N \approx M + \tau . N$ (3) $M + \alpha . P + \alpha . (\tau . P + N) \approx M + \alpha . (\tau . P + N)$	Proposition If $P \approx Q$, then (1) $\alpha . P + M \approx \alpha . Q + M$ (2) new a $P \approx$ new a Q (3) $P R \approx Q R$ (3) $R P \approx R Q$
ペロト ペラト ペラト ペラト そう このので H23 並行分散計算特論 2011/11/22 13/16	(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)
Unique solutions of Equations	Guarded Equation
Well-definedness of process identifiers:	Theorem
$ec{X} \stackrel{\mathrm{def}}{=} {\mathcal P}(ec{X})$	$X_1 \approx \alpha_{11}.X_{k(11)} + \cdots + \alpha_{1n_1}.X_{k(1n_1)}$
How equation(s) is characterized by $pprox$	$X_2 \approx \alpha_{21} \cdot X_{k(11)} + \cdots + \alpha_{2n_2} \cdot X_{k(2n_2)}$ \cdots
$X \stackrel{\mathrm{def}}{=} au. X \qquad X \stackrel{\mathrm{def}}{=} a.P + au. X$	$X_m \approx \alpha_{m1}.X_{k(m1)} + \cdots + \alpha_{mn_2}.X_{k(mn_m)}$
	where $\alpha_{ij} \neq \tau$. Then, up to \approx , there is a unique sequnce P_1, P_2, \cdots, P_m of processes which satisfies the equations.
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >	H23 並行分散計算特論 2011/11/22 16/16