	Semantics by reaction
並行分散計算特論(6)	Distinguish wheather a reaction is possible or not Computation
Shoji Yuen	$P T \rightarrow P_1 T_1 \rightarrow \cdots \rightarrow P_n T_n \rightarrow \cdots$ P = Q if P and Q cannot be distinguished by any computation
2011/11/8	CSP : Stable Failure Semantics (Brooks et.al. 1984) CCS : Testing Semantics (DeNicola, Hennessy, 1988)
	Poperly weaker than bisimulation equivalence
K → K → K → K → K → K → K → K → K → K →	ペロト ペラト ペラト ペラト ペラト マラペで H23 並行分散計算特論 2011/11/8 2/11
Bisimulation/Reaction	Raction and labelled transtion
$P = Q \text{ or } P \neq Q$	Reaction:transition with no label A step of computation = a reaction computation by communications Labelled transition: labels as observation A step of computation = a pair of transitions with complementary labels When $P \xrightarrow{a} P'$ and $Q \xrightarrow{\overline{a}} Q'$, $P Q \rightarrow P' Q'$ How do we observe computation?
< ロ > 、 四 > 、 四 > 、 一 三 > 、 一 川 > 、 〇 < 〇	トロット語・エポ・ポート ゆうろう

H23 並行分散計算特論 2011/11/8 3/11

H23 並行分散計算特論 2011/11/8 4/11

Labelled transitions LTS for Concurrent Processes Labelled Transition: $P \xrightarrow{\alpha} P'$ $\text{SUM}_t : M + \alpha . P + N \xrightarrow{\alpha} P \quad \text{REACT}_t : \frac{P \xrightarrow{\lambda} P', \ Q \xrightarrow{\lambda} Q'}{P | Q \xrightarrow{\tau} P' | Q'}$ $\alpha \in Act = \{a, \overline{a} \mid a \in N\} \cup \{\tau\}$ $\mathsf{L} - \mathsf{PAR}_t : \frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q} \qquad \mathsf{R} - \mathsf{PAR}_t : \frac{Q \xrightarrow{\alpha} Q'}{P|Q \xrightarrow{\alpha} P|Q'}$ N : Set of names $\{a, \overline{a} | a \in N\}$: Observable actions $\mathsf{RES}_t: \frac{P \xrightarrow{\alpha} P'}{\mathsf{new} \ a \ P \xrightarrow{\alpha} \mathsf{new} \ a \ P'} \text{ if } \alpha \notin \{a, \overline{a}\}$ τ : label for communication IDENT_t : $\frac{\{\vec{b}/\vec{a}\}P_A \stackrel{\alpha}{\to} P'}{A\langle\vec{b}\rangle \stackrel{\alpha}{\to} P'}$ if $A(\vec{a}) \stackrel{\text{def}}{=} P_A$ P communicates (with the environment) and becomes P'▲□▶▲□▶▲□▶▲□▶ □ のくで ▲□▶ ▲□▶ ▲ □▶ ▲ □ ● ● ● ● H23 並行分散計算特論 2011/11/8 H23 並行分散計算特論 2011/11/8 5/116/11Inference of Transition Compatibility of \equiv Proposition $\frac{\overline{b}A \xrightarrow{\overline{b}} A}{\underline{A' \xrightarrow{\overline{b}} A}} \operatorname{IDENT}_{t} \qquad \frac{\overline{b}B' \xrightarrow{b} B'}{\underline{B \xrightarrow{b} B'}} \operatorname{IDENT}_{t} \qquad \operatorname{IDENT}_{t}$ $\frac{A' \xrightarrow{\overline{b}} A}{\underline{A' | B \xrightarrow{\tau} A | B'}} \operatorname{REACT}_{t}$ $\frac{A' | B \xrightarrow{\tau} A | B'}{\underline{CA | B'}} \operatorname{REACT}_{t}$ If $P \xrightarrow{\alpha} P'$ and $P \equiv Q$, then there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \equiv Q'$ If $Q \xrightarrow{\alpha} Q'$ and $P \equiv Q$, then there exists P' such that $P \xrightarrow{\alpha} P'$ and $P' \equiv Q'$ \equiv is a strong bisimulation

H23 並行分散計算特論 2011/11/8

- イロト (四) (日) (日) (日) (日) (日)

7/11

H23 並行分散計算特論 2011/11/8

ク Q (や 8/11

(《曰》(四)(《臣)(《臣)) 臣.

Reaction and $ au$ -transition	Properties of transitions
$\stackrel{\tau}{\rightarrow} \text{ is very similar to } \rightarrow$ Theorem $P \stackrel{\tau}{\rightarrow} \circ \equiv P' \text{ if and only if } P \rightarrow P'$	Proposition (1) Finite branching Given P, there are only finitely many transitions from P. (2) No free name produced by transitions If $P \xrightarrow{\alpha} P'$, then fn $(P', \alpha) \subseteq$ fn (P) (3) substitution stability If $p \xrightarrow{\alpha} P'$ and σ is any substitution over names, then $\sigma P \xrightarrow{\sigma \alpha} \sigma P'$.
(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日
Strong Bisimularity for CPE	
Expression is usually too fine Bisimulation up to \equiv $P \xrightarrow{\alpha} \forall P'$ $S \xrightarrow{\beta} S$ $Q \xrightarrow{\alpha} \forall Q'$ $S \xrightarrow{\beta} S$ $Q \xrightarrow{\alpha} \exists Q'$ $P \xrightarrow{\alpha} \exists P'$	
up-to bisimulation is also a bisimulation	
(□▷ < □▷ < □▷ < □▷ < □▷ < □▷ < □▷ < □▷ <	