

H23 並行分散計算特論 2011/10/25

3/15

H23 並行分散計算特論 2011/10/25

4/15

Observation and Reactions

Flowgraph : Configuration of automaton network Transition graph: State diagram of an automaton

			•	•	4	ð	•	•	2	•	٩
123	並行分散計算特論	2011/10/25									

Transition by Reaction

 $P \rightarrow P'$

P becomes P' by a reaction in P

н

$$P=A'|B,P'=A|B'$$

new *a P* prevents *P* from synchronization by *a* with other agents. (ports named *a* in *P* are not bound) (See: Example 4.3)

Concurrent Process Expressions

$$P ::= A\langle a_1, \ldots, a_n \rangle \mid \sum_{i \in I} \alpha_i . P_i \mid P_1 \mid P_2 \mid \text{new } a \mid P$$

Prefix operators are stronger than '|' new *a P* binds free *a* in *P*

new $a(a.b.0)\{c/a\}\{c/b\} \equiv$ new a(a.c.0)P|Q Communication composition of P and Q

<ロ><合><合><合><合><合><合><合><合><合><合></d>

Process Congruence

Definition

(Process context)

 $C ::= [] \mid \alpha.C + M \mid \text{new } a \ C \mid C \mid P \mid P \mid C$

Definition

(Process congruence) \cong is an equivalence and satisfies followings. When $P \cong Q$,

> $\alpha.P + M \cong \alpha.Q + M$ new a P \cong new a Q $P|R \cong Q|R$ $R|P \cong R|Q$

≣▶ ≣ ∽९୯

5/15

H23 並行分散計算特論 2011/10/25

Process Congruence	Structural Congruence						
Proposition \cong is a process congruence iff for all contexts C, $P \cong Q$ implies $C[P] \cong C[Q]$	Definition 1. Alpha-conversion (for new operator) 2. A-C property (for choice) 3. 0 is a unit of $ $ and $ $ is AC 4. Laws for new operator 5. Process definition Definition (Standard form) $new \vec{a} (M_1 \cdots M_n)$ Theorem Every process is structually congruent to a standard form						
H23 並行分散計算特論 2011/10/25 C→ (□) (□) (□) (□) (□) (□) (□) (□) (□) (□)	(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)						
Reaction rules	Transition by inferences						
au.P + M o P $(a.P + M) (\overline{a}.Q + N) o P Q$ $rac{P o P'}{P Q o P' Q} rac{P o P'}{\operatorname{new} a P o \operatorname{new} a Q}$	$ \begin{array}{c} \overline{b.\overline{c}} b.0 \rightarrow \overline{c}.B 0 \\ \hline \hline b.A \overline{b}.\overline{c}.B b.0 \rightarrow b.A \overline{c}.B 0 \\ \hline \hline b.A \overline{b}.\overline{c}.B b.0 \rightarrow b.A \overline{c}.B 0 \\ \end{array} $ new prevents unintentional communications Together with the new rule for \equiv .						
$\frac{P \to P'}{Q \to Q'} \text{where} P \equiv Q \text{and} P' \equiv Q$	$ \frac{\overline{b.A \overline{b}.\overline{c}.B} \to A \overline{c}.B}{\operatorname{new} \ b \ (b.A \overline{b}.\overline{c}.B) \to \operatorname{new} \ b \ (A \overline{c}.B)} \\ \frac{\overline{b.A \overline{b}.\overline{c}.B} \to \operatorname{new} \ b \ (A \overline{c}.B)}{\operatorname{new} \ b \ (b.A \overline{b}.\overline{c}.B) b.0 \to \operatorname{new} \ b \ (A \overline{c}.B) b.0} \\ \frac{\overline{b.A \overline{b}.\overline{c}.B}}{\operatorname{new} \ b \ (b.A B) B' \to \operatorname{new} \ b \ (A \overline{c}.B) B'} $						
H23 並行分散計算特論 2011/10/25 11/15	H23 並行分散計算特論 2011/10/25 12/15						

Concurrency

Example:Lottery

