	Equivalence property of \sim
並行分散計算特論 (3) Shoji Yuen 2011/10/18	(reflexivity) $p \sim p$ since the identity relation is a bisimulation. (symmetry) Let $p \sim q$. There exists a bisimulation S such that $(p,q) \in S$. Since S is a bisimulation, both S and S^{-1} are simulation. Because $(S^{-1})^{-1} = S$, S^{-1} is also a bisimulation. This means $q \sim p$ (transitivity) Let $p \sim q$ and $q \sim r$. Simulations are closed under composition and seeing the fact that $(S_1 \circ S_2)^{-1} = S_2^{-1} \circ S_1^{-1}$, $p \sim r$.
(ロト (アト (ヨト (ヨト (ヨト (ヨト (ヨト (ヨト (ヨト (ヨト (ヨト (ヨ	ペロト ペラト ベラト ベラト デーラー のへで H23 並行分散計算特論 2011/10/18 2/13 Structural congrurence
$P ::= A \langle a_1, \dots, a_n \rangle \mid \Sigma_{i \in I} \alpha_i.P_i$ I:finite index set for each A: $A(\vec{a}) \stackrel{def}{=} P_A$ $\sum_{i \in \emptyset} \alpha_i.P_i \text{ is written as } 0$ $\sum_{\{0\}} \alpha_i.P_i \text{ is written as } \alpha_0.P_0$ $\sum_{i \in \{0,1\}} \alpha_i.P_i \text{ is written as } \alpha_0.P_0 + \alpha_1.P_1$ Process identifier A is for (mutual) recusion	 Unfolding of the process definition P ≡ Q if A⟨ā⟩ in P is replaced by P_A(b/ā) where A(x) def = P_A a.A⟨a⟩ ≡ a.a.A⟨a⟩ where A(x) def = x.A⟨x⟩ A-C property of operators (Choice) (Not necessary when choice is defined by ∑) P+Q ≡ Q+P, (P+Q) + R ≡ P + (Q+R), P+0 ≡ P ≡ is the trivial equivalence We consider the quotiant of structural congruences over LTS

H23 並行分散計算特論 2011/10/18

12/13

Seqential Processes and \sim

(1) $p \sim q$ implies $a.p \sim a.q$ Show $R_1 = \{(a.p, a.q) | p \sim q\} \cup \sim$ is a bisimulation (2) $p \sim q$ implies $a.p + r \sim a.q + r$ Show $R_2 = \{(a.p+r, a.q+r) | p \sim q\} \cup \sim \text{ is a bisimulation.}$

> H23 並行分散計算特論 2011/10/18

13/13