	Logical Characterization
並行分散計算特論(14)	 Linear Temporal Logic Specification for the computation path Property description for a sequence of transitions
Shoji Yuen	 Branching Temporal Logic Specification for the computation tree Property description for all possible tree of transitions
2012/01/17	LTL states the properties about a path: A state that satisfies p is always followed by a states that satisfies q
	BTL sates the properties about branches: All transitions from a state that satisfies p lead to the states that satisfy q
ペロト 《□ト 《□ト 《三ト 《 三ト 《 三ト 《 三ト 《 三ト 《 三ト 《	H23 並行分散計算特論 2012/01/17 イロト < 四ト < 三ト < 三ト < 三ト < 三ト < 三ト < 三ト < 2/14 2/14
Propositional Temporal Logic	PTL specification
$F ::= p \neg F F \land F \bigcirc F F \mathcal{U}F$	$\Diamond \phi \equiv \texttt{true} \ \mathcal{U} \phi \qquad \Box \phi \equiv \neg(\texttt{true} \ \mathcal{U} \neg \phi) \\ \Box(p \rightarrow \Diamond q) : \texttt{state} \ p \ \texttt{is always followed by state} \ q.$
Temporal operators	Satisfiability of PTL-formulas is checked in PSPACE-complete.
$\bigcirc \phi : \phi \text{ holds after the next transition.}$ $\phi_1 \mathcal{U} \phi_2 : \phi_1 \text{ holds until } \phi_2 \text{ holds.}$	Model: Kripke structure $M = \langle S, S_0, \mu, E \rangle$
$\sigma \models p \text{iff} p \in \sigma^0$	S : States $S_0 \subseteq S$: Initial states
$\sigma \models \neg \phi \text{iff} \sigma \not\models \phi$ $\sigma \models \phi_1 \land \phi_2 \text{iff} \sigma \models \phi_1 \text{ and } \sigma \models \phi_2$	$\mu : S \rightarrow 2^m$ $E \subseteq S \times S : Transitions$
$\sigma \models \bigcirc \phi \text{iff} \sigma^1 \models \phi$	
$\sigma \models \phi_1 \mathcal{U} \phi_2$ iff For some $j \ge 0.\sigma^j \models \phi_2$	Check: Check if path(s) of M satisfy property ϕ .
and $\sigma^k \models \phi_1$ for all $0 \le k < j$	Usually the paths beginning from an initial state.
4 □ ▶ 〈 □ ▶ (□ ▶	H23 並行分散計算特論 2012/01/17

Timed PTL

With specification when a transition may occur

$$\begin{array}{l} \rho:(S_0,I_0) \to (S_1,I_1) \to (S_2,I_2) \to \\ I_i: \text{ interval } I_i \text{ is adjacent to } I_{i+1} \end{array}$$

Interval: $[a, b], [a, b), [a, \infty), (a, b], (a, b), (a, \infty)$ [,] for closed intervals, (,) for open intervals

notation: ρ^t : State sequence after time t.

$$t \in I_i, \rho^t = (\sigma_i, I_i - t) \rightarrow (\sigma_{i+1, I_{i+1} - t}) \rightarrow \cdots$$

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つくぐ H23 並行分散計算特論 2012/01/17

Derived operators

 $\Diamond_I \phi \equiv \operatorname{true} \mathcal{U}_I \phi \qquad \Box_I \phi \equiv \neg \Diamond_I \neg \phi$ $\phi_1 \ _I \mathcal{U} \phi_2 \equiv \neg((\neg \phi_2) \ \mathcal{U}_I(\neg \phi_1)) \quad \phi_1 \text{ unless } \phi_2$

What do these formulas mean?

MITL(metric interval temporal logic)[Alur90]

MITL formula

$$F ::= p \mid \neg F \mid F \land F \mid F \mathcal{U}_I F$$

MITL semantics
$$\rho = (\overline{\sigma}, \overline{I})$$
:timed state sequence.

$$\rho \models p \quad \text{iff} \quad p \in \sigma^{0}$$

$$\rho \models \neg \phi \quad \text{iff} \quad p \not\models \phi$$

$$\rho \models \phi_{1} \land \phi_{2} \quad \text{iff} \quad \rho \models \phi_{1} \text{ and } \rho \models \phi_{2}$$

$$\rho \models \phi_{1} \ \mathcal{U}_{I} \phi_{2} \quad \text{iff} \quad \text{for some } t \in I.\sigma^{t} \models \phi_{2}$$

$$\sigma^{t'} \models \text{for all } t' \in (0, t)$$

イロト イヨト イヨト イヨト H23 並行分散計算特論 2012/01/17

6/14

Rational time satisfiability

Definition

 $(\overline{\sigma},\overline{I})$ is rational if the end-points of all intervals in \overline{I} are rational. $\rho \mathcal{Q}$ -satifies ϕ iff $\rho \models_{\mathcal{Q}} \phi$ where all time variables range over only \mathcal{Q} A MITL formula ϕ is Q-satisfiable iff it is satisfiable.

5/14

H23 並行分散計算特論 2012/01/17

Undecidability[Alur90]

Satisfiability

Proposition

If singular intervals are allowed as subscripts for temporal operators in MITL, then the satisfiability problem is undecidable.

H23 並行分散計算特論 2012/01/17

Singular interval:[*a*, *a*]

If no singular interval is allowed,

 $\Box(p o \Diamond_{=5}q)$ is not in MITL $\Box(p o (\neg q) \ \mathcal{U}_{=5}q)$ is in MITL

Theorem

The satisfiability of MITL (with no singlular interval) is EXPSPACE-complete.

Alur's algorithm: $O(2^{N \cdot K \cdot log(N \cdot K)})$

- K: largest integer constant in $\phi+1$
- N: number of propositions, boolean connectives and temporal operators in ϕ .

H23 並行分散計算特論 2012/01/17

12/14

(□> (□> (□)> (□)> (□)> (□)> (□)> (□)> (H23 並行分散計算特論 2012/01/17 G→ < ≧→ < ≧→ < ≧→ ○ へ ○ 10/14
Model checking TA with MITL	More on Timed Automata
For a timed automaton A, check if $L_T(A) \subseteq L(\phi)$ Construct a TA that accepts $L(A) \cap L(B_{\neg \phi})$ and check its emptiness. Construction of $A \times B_{\neg \phi}$ is exponential for $ \phi $. Checking emptiness is PSPACE-complete. A minor extension for timed automata to deal with intervals.	 Timed Safety Automata[Henzinger94] Timed automata with state invariants. State invariants:time constraints on states All states are Büchi accepting. Effective in checking safety properties. All safety properties can be checked in the finite prefix. Zone construction[BengtssonYi04] More efficient than regions Symbolic timed model checking. Regions ⇒ Zones (difference constrains) Bounded Difference Matrix(BDM):Efficient data structure Uppaal incorporates these effective verfication method.[BengtssonYi04]
うりつ 川 ・	シング (

11/14

Other timed model

Summary

Timed I/O automata [Kaynar, Lynch, Segara, Vaandrager05] Process calculi with time • Realtime ACP [Baeten91] • Timed CCS [Yi90] • Timed CSP [Schneider00] • ATP [Nicolin, Sifaxis90] • TPL [Regan, Hennessy95] SOS characterization with time OSOS with time tick [UlidowskiYuen04]	 Concurrent computation model A set of automata with synchronization Process calculus(CCS) Algebraic characterization based on bisimulations Timed extension Time as a synchronization measure A thoery of timed automaton and its extension Await for time-aware application.
4 □ ト 4 □ - 1 □ Λ 0 ∩ Λ	ペロト ペラト ペラト ペラト マラ つへで H23 並行分散計算特論 2012/01/17 14/14