	Property of region automata
	Run of $\mathcal{R}(A)$
並行分散計算特論(13)	$r: \langle s_0, \alpha_0 \rangle \xrightarrow{a_1} \langle s_1, \alpha_1 \rangle \xrightarrow{a_2} \langle s_2, \alpha_2 \rangle \xrightarrow{a_3} \cdots$ where $\alpha_i = \{ \nu \nu \models R_i \}$. R_i : Region
Shoji Yuen	A run is <i>progressive</i> if $\forall x \in C$, there are infinitely many $i \ge 0$ such that α_i satisfies $[(x = 0) \lor (x > c_x)]$
	For a progressive r in $\mathcal{R}(A)$, there exists a correspoinding run in A.
2012/01/10	Theorem There exists a progressive r in $\mathcal{R}(A)$ iff there exists a run in A.
H23 並行分散計算特論 2012/01/10	H23 並行分散計算特論 2012/01/10
Property of region automata	Property of region automata
Run of $\mathcal{R}(A)$	Run of $\mathcal{R}(A)$
$r: \langle s_0, \alpha_0 \rangle \xrightarrow{a_1} \langle s_1, \alpha_1 \rangle \xrightarrow{a_2} \langle s_2, \alpha_2 \rangle \xrightarrow{a_3} \cdots$	$r: \langle s_0, \alpha_0 \rangle \xrightarrow{a_1} \langle s_1, \alpha_1 \rangle \xrightarrow{a_2} \langle s_2, \alpha_2 \rangle \xrightarrow{a_3} \cdots$
where $\alpha_i = \{\nu \nu \models R_i\}$. R_i : Region	where $\alpha_i = \{\nu \nu \models R_i\}$. R_i : Region
A run is <i>progressive</i> if $\forall x \in C$, there are infinitely many $i \ge 0$ such that α_i satisfies $[(x = 0) \lor (x > c_x)]$	A run is <i>progressive</i> if $\forall x \in C$, there are infinitely many $i \ge 0$ such that α_i satisfies $[(x = 0) \lor (x > c_x)]$
For a progressive r in $\mathcal{R}(A)$, there exists a correspoinding run in A.	For a progressive r in $\mathcal{R}(A)$, there exists a correspoinding run in A.
Theorem There exists a progressive r in $\mathcal{R}(A)$ iff there exists a run in A.	Theorem There exists a progressive r in $\mathcal{R}(A)$ iff there exists a run in A.
An accepting run is progressive.	An accepting run is progressive.
	$L_{\mathcal{T}}(A) = \emptyset$ if $L(\mathcal{R}(A)) = \emptyset$
(□▶ (圖▶ (臺▶ (臺▶ (臺▶) 2010)(01)(10	▲□▶ 《□▶ 《□▶ 《□▶ 《□▶ 《□▶ 《□▶ 《□▶ 《□▶ 《□▶ 《

Untiming construction

H23 並行分散計算特論 2012/01/10

Checking emptiness

H23 並行分散計算特論 2012/01/10

Proposition Given a TBA $A = \langle \Sigma, S, S_0, C, E, F \rangle$, there exists an (untimed) BA that accepts Untime($L_T(A)$). Untime(w) = σ where $w = (\sigma, \tau)$ Let $\mathcal{R}(A) = \langle \Sigma, S_R, S_{R0}, E_R \rangle$ and $F_R = \{(s, \alpha) s \in F\}$ The untiemd BA= $\langle \mathcal{R}(A), F_R \rangle$ For $(\sigma, \tau) \in L_T(A)$, there exists a run r over (σ, τ) where some $s \in F$ is infinitely many visted. Then, there exists a progressive run over σ in $\mathcal{R}(A)$. $F'' = F_R \cap \bigcup_{x \in C} \{(s, \alpha) \alpha \models [x = 0 \lor x > c_x]\}$	Theorem Given a TBA $A = \langle \Sigma, S, S_0, C, E, F \rangle$, $L(A) = \emptyset$ is checked in time $O[(S + E) \times 2^{ }\delta(A)].$ Theorem The emptiness checking problem is PSPACE-complete.
(□) (□) (□) (□) (□) (□) (□) (□) (□) (□)	H23 並行分散計算特論 2012/01/10
Universality $L_T(A) \stackrel{?}{=} \{(\sigma, \tau) \sigma \in \Sigma^{\omega}, \tau \text{ is a time sequence} \}$ Theorem The universality problem is undecidable.	Additions in constraints $\delta^{+} ::= x \leq c \mid c \leq x$ $\mid x \leq y + c \mid x + c \leq y$ $\mid \neg \delta^{+} \mid \delta_{1}^{+} \land \delta_{2}^{+}$ $T ::= x \mid c \mid T_{1} + T_{2}$ $\delta^{*} ::= T_{1} \leq T_{2} \mid \neg \delta^{*} \mid \delta_{1}^{*} \land \delta_{2}^{*}$ Proposition The emptiness problem with constraints of δ^{*} is undecidable.
	うつつ

5/18

Equivalences Deterministic TA Definition $\langle \Sigma, S, S_0, C, E \rangle$ is deterministic if: $A_1 \sim_1 A_2$ iff $L(A_1) = L(A_2)$ $A_1 \sim_2 A_2$ iff $|S_0| = 1$ $\forall A.L(A) \cap L(A_1) = \emptyset \Leftrightarrow L(A) \cap L(A_2) = \emptyset$ $\forall s \in S.e_1, e_2 \in E, e_1 \neq e_2 \text{ implies } \delta_1 \wedge \delta_2 \text{ is unsatisfiable}$ where δ_i is the time constraint of e_i Proposition a, x := 0 b, x < 2 \sim_1 is undecidable. \sim_2 is decidable. co-re complete. $b, x \ge 2$ a, x := 0▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つくぐ ▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 … 釣�? H23 並行分散計算特論 2012/01/10 H23 並行分散計算特論 2012/01/10 7/18 8/18 Closure property of DTA Decision procedure for DTA Proposition DTMA(Deterministic Timed Müller Automata) is closed under union, intersection, and complementation. Theorem DTMA $A = \langle \Sigma, S, S_0, C, E, \mathcal{F} \rangle$ $A_1 \in TA$, $A_2 \in DTA$, $L(A_1) \subseteq L(A_2)$ is PSPACE-complete. $A^{c} = \langle \Sigma, S, S_{0}, C, E, Loop(S, E) - \mathcal{F} \rangle$ Emptiness check for $L(A_1) \cap L(A_2^c)$. Proposition DTBA(Deterministic Timed Büchi Automata) is closed under union and intersection. The complementation of DTBA is accepted by some DTMA.

H23 並行分散計算特論 2012/01/10

H23 並行分散計算特論 2012/01/10

Expressiveness Verfication Framework $\mathsf{TMA} = \mathsf{TBA}$ closed under union, intersection U DTMA closed under union, intersection, complementation U Given a specification S, A is correct if $L(A) \subseteq S$ DTBA closed under union, intersection S:A timed regular langauge by DTA. (untimed) ω -automata MA=BA=DMA closed under union, intersection, complementation U DBA closed under union, intersection ◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ヨー つくぐ ▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ ₹ 9Q@ H23 並行分散計算特論 2012/01/10 H23 並行分散計算特論 2012/01/10 11/1812/18Composition Exponential blowup source How desperate to precisely check at the formal language level... A set of timed processes (automata) Number of regions is bounded by: ${P_i = (\Sigma_i, L_i)}_i$ $O[|A_s \cdot 2^{|\delta(A_s)|} \prod_i |A_i| \cdot 2^{|\delta(A_i)|}]$ Parallel composition $||_i P_i$: 1. the number of states in the global timed automaton $(\cup_i \Sigma_i, \{(\sigma, \tau) \mid \land_i ((\sigma, \tau) \uparrow \Sigma_i \in L_i\})$ 2. the product of the constatus c_x over all clocks x3. the number of permutations over all clocks ・ロト ・四ト ・ヨト ・ヨト 590 <ロ> (四)、(四)、(日)、(日)、 500 H23 並行分散計算特論 2012/01/10 H23 並行分散計算特論 2012/01/10 13/18 14/18

H23 並行分散計算特論 2012/01/10

H23 並行分散計算特論 2012/01/10

18/18