

H23 並行分散計算特論 2011/12/20

3/13

H23 並行分散計算特論 2011/12/20

4/13

If complementation is closed	Verification
Language inclusion problem: $L_1 \subseteq L_2$ is equivalent to $L_1 \cap \overline{L_2} = \emptyset$ What is the subclass closed under complementation?	Check if the behavior of implementation satisfies the desied property. Safety: A system does nothing wrong. Liveness: A system does right thing. Formal language approach: Safety: $L(I) \subseteq L(S)$ Liveness: $L(I S) \neq \emptyset$
H23 並行分散計算特論 2011/12/20 H23 並行分散計算特論 2011/12/20 Emptiness Checking	H23 並行分散計算特論 2011/12/20 H23 並行分散計算特論 2011/12/20 Clock region
	Time constraint: $\delta ::= x \le c c \le x \neg \delta \delta_1 \land \delta_2$ where $c \in Q$. Q:Ratinal numbers.
 Set the state as a final state. Check if the language is empty or not. Definition For A, check if its timed language L(A) is empty or not. Decidable in PSPACE complete. Exponential wrt the number of clocks 	Definition $\nu \sim \nu'$ if (1) $\forall x. \lfloor \nu(x) \rfloor = \lfloor \nu'(x) \rfloor$ or $(\nu(x) \ge c_x and \nu'(x) \ge c_x$ (2) $\forall x, y.$, when $\nu(x) \le c_x$ and $\nu(y) \le c_y$ fract $(\nu(x)) \le$ fract $(\nu(y))$ iff fract $(\nu'(x)) \le$ fract $(\nu'(y))$ (3) $\forall x.$ fract $(\nu(x)) = 0$ iff fract $(\nu'(x)) = 0$ c_x : biggest constant in δ of x
(ロ)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)	Definition Clock region: I_c / \sim where $I_c = [C \rightarrow R_{\geq 0}]$

H23 並行分散計算特論 2011/12/20

8/13

12/13

