WSkS (Weakly Second-order monadic logic with k Successors)

- Logic with variables on strings of k alphabet symbols and variables on sets on the strings
- **Ex.:** $\forall x. (x \in X \Rightarrow x \in Y)$
- Satisfiability is decidable

- Syntax of WSkS
 - term: 1st order variables $x, y, z \dots$ and strings of alphabet $\{1, \dots, k\}$ (variable can occur on left side)

Ex.: x1123, 211, ε

- Atomic formula: s = t, $s \le t$, $s \ge t$, $t \in X$ (*s*,*t* for terms, *X*,*Y* for 2nd order variables)
- Formula: constructed atomic formulae by

 $\lor, \land, \neg, \Rightarrow, \Leftarrow, \Leftarrow, \exists x, \forall x, \exists X, \forall X$

- Semantics of WSkS
 - Terms are interpreted as strings
 - 1st order variable x represents a string, 2nd order variable X represents a set of strings
 - = for equality on strings, \in for membership,≤ for prefix relation11 ≤ 121
 - Let $t_i \in \{1, \ldots, k\}^*$, and $S_i \subseteq \{1, \ldots, k\}^*$. Let ϕ be formula with free variables x_1, \ldots, x_n and X_1, \ldots, X_m .

 $t_1, \ldots, t_n, S_1, \ldots, S_m \models \phi$ denotes that ϕ holds for assignment t_i to x_i and S_i to X_i

• Examples of formula, and their abbreviation

- Subset $X \subseteq Y$

 $\forall x. (x \in X \Rightarrow x \in Y)$

- Set equality Y = X $Y \subseteq X \land X \subseteq Y$
- Set emptiness $X = \emptyset$ $\forall Y.(Y \subseteq X \Rightarrow Y = X)$
- Intersection emptiness $X \cap Y = \emptyset$ $\forall x.((x \in X \Rightarrow x \notin Y) \land (x \in Y \Rightarrow x \notin X))$
- Singleton set Sing(X) $X \neq \emptyset \land \forall Y.(Y \subseteq X \Rightarrow (Y = X \lor Y = \emptyset))$

- Examples of formula, and abbrev. (cont.)
 - Union of sets $X = \bigcup_{i=1}^{n} X_i$

$$\bigwedge_{i=1}^{n} X_i \subseteq X \land \forall x. (x \in X \Rightarrow \bigvee_{i=1}^{n} x \in X_i)$$

- Partition $Partition(X, X_1, \ldots, X_n)$

$$X = \bigcup_{i=1}^{n} X_i \wedge (\bigwedge_{i=1}^{n-1} \bigwedge_{j=i+1}^{n} X_i \cap X_j = \emptyset)$$

- Prefix $x \leq y$: (i.e. $\leq is$ not essential) $\forall X.(y \in X \land (\forall z.(\bigvee_{i=1}^{k} zi \in X) \Rightarrow z \in X))$ $\Rightarrow x \in X)$
- Prefix closed PrefixClosed(X): $\forall x.\forall y.((x \in X \land y \leq x) \Rightarrow y \in X)$

Q8: Show WSkS formulae (a) Set X contains at least one string that begins from 1

(b) Set X consists of exactly two elements

- Restriction of the syntax: no 1st order variables with following atomic formula in preserving the power:
 - $X \subseteq Y$, Sing(X), X = Yi, $X = \varepsilon$
 - X = Yi is interpreted as both X and Y are singleton sets $\{t\}$ and $\{s\}$ satisfying t = si
 - For a restricted WSkS ϕ and sets $S_i{\rm 's}{\rm ,}$

 $S_1, \ldots, S_n \models \phi$ denotes that ϕ holds for the assignment S_i to X_i Prop. 1: There exists a transformation T from WSkS formula to an equivalent restricted formula, i.e.,

$$s_1, \ldots, s_n, S_1, \ldots, S_m \models \phi$$
iff

$$\{s_1\},\ldots,\{s_n\},S_1,\ldots,S_m\models T(\phi)$$

An inverse transformation T' exists.

• Proof: Construction of *T*. *T'* is omitted $T(ti \in X) = T(\exists y.(y = ti \land y \in X))$ $T(y \in X) = X_y \subseteq X \land Sing(X_y)$ • Proof (cont.):

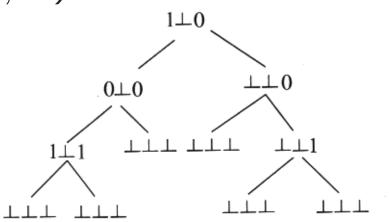
 $T(t=s) = T(\exists z.z = t \land z = s)$ (if t and s are non-variables) $T(x = ti) = T(\exists z \cdot z = t \land x = zi)$ (if t is not a variable) $T(x = yi) = X_x = X_yi$ $T(x = \varepsilon) = X_x = \varepsilon$ $T(x = y) = X_x \supseteq X_y \land X_x \subseteq X_y$ $\wedge Sing(X_x) \wedge Sing(X_y)$ $T(\phi \lor \psi) = T(\phi) \lor T(\psi)$ $T(\neg \phi) = \neg T(\phi)$ $T(\exists X.\phi) = \exists X.T(\phi)$ $T(\exists x.\phi) = \exists X_y.(Sing(X_y) \land T(\phi))$

Relation definable by WSkS is recognizable by an NFTA

A relation R on sets of strings R is definable
 by WSkS:

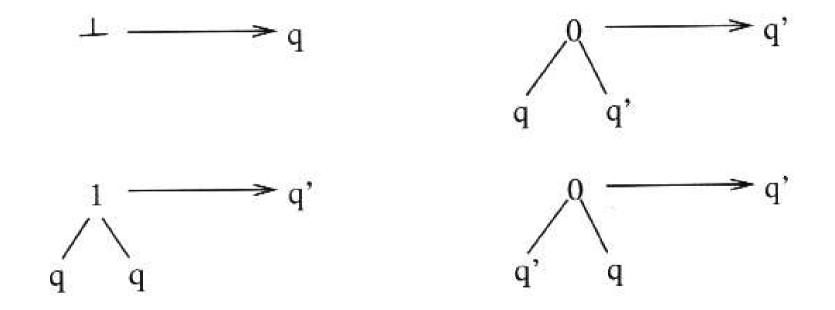
For $S_1, \ldots, S_n \subseteq \{1, \ldots, k\}^*$, there exists a WSkS formula ϕ such that $(S_1, \ldots, S_n) \in R$ iff $S_1, \ldots, S_n \models \phi$

- tree representation $t = (S_1, ..., S_n)^{\sim}$ of $(S_1, ..., S_n)$ Pos(t) = $\{\varepsilon\} \cup \{pi \mid \exists p' \in \cup_{j=1}^n S_j, p \le p', i \in \{1, ..., k\}\}$ $t(p) = \alpha_1 \cdots \alpha_n$, where each α_i is
 - $\alpha_i = \begin{cases} 1 & \text{if } p \in S_i \\ 0 & \text{if } p \notin S i, \exists p' \in S_i \ p < p' \\ \bot & \text{otherwise} \end{cases}$
- Ex.: For k = 2, $A = \{\varepsilon, 11\}$, $B = \emptyset$, and $C = \{11, 22\}$, $(A, B, C)^{\sim} =$

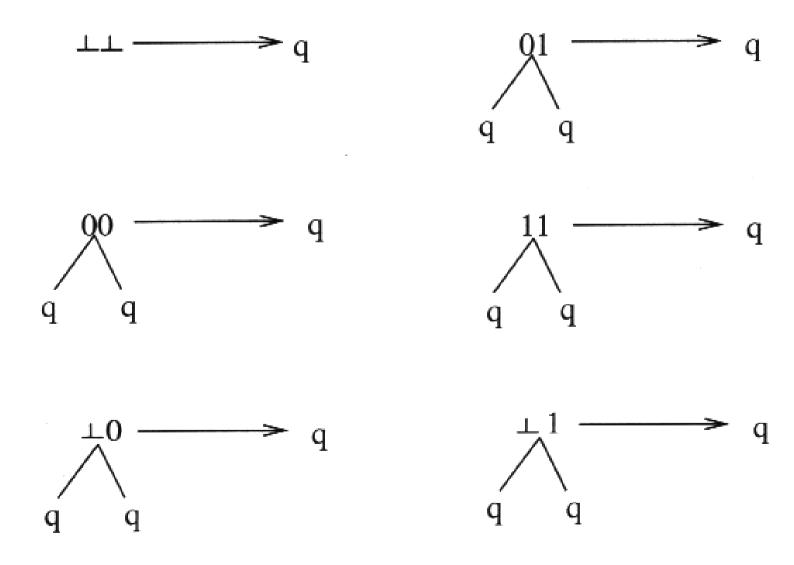


- Th. 2: If a relation R on sets of strings is definable by WSkS, then there exists an NFTA that recognizes the following language $\tilde{R} = \{(S_1, \dots, S_n)^{\sim} \mid (S_1, \dots, S_n) \in R\}$
- Proof: From Prop. 1, we can assume ϕ are restricted WSkS formula. We prove by structural induction on ϕ . We show the proof fixed with k = 2

Proof (cont.)
- If φ is Sing(X), for a final state q'

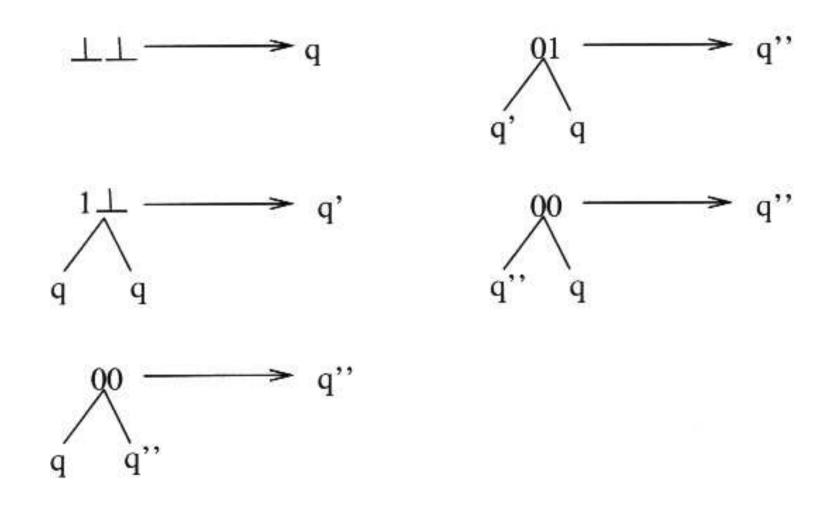


Proof (cont.)
- If φ is X ⊆ Y, for a final state q



• Proof (cont.)

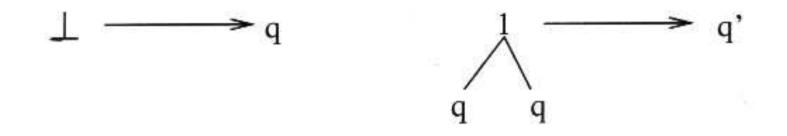
- If ϕ is X = Y1, for a final state q''



15

• Proof (cont.)

- If ϕ is $X = \varepsilon$, for a final state q'



- If ϕ is $\neg \phi'$, there exists TA A' that recognizes R' defined by ϕ' by IH. We construct TA that recognizes the complement of R'
- If ϕ is $\exists X_i.\phi'$, relation by ϕ is *i*'th projection of relation by ϕ' . Thus we convert each rule in TA A' for ϕ'

 $\cdots \alpha_i \cdots (\cdots) \to q$ into $\cdots \cdots (\cdots) \to q$

- Proof (cont.)
 - Consider that ϕ is $\phi' \lor \phi''$. For simplicity, let Free variables in ϕ' are $X_1 \ldots X_i \ldots X_n$ Free variables in ϕ'' are $X_1 \ldots X_n$ Replace each rule of A'' by ϕ''

 $\cdots \cdots (\cdots) \rightarrow q \text{ into rules}$ $\cdots 0 \cdots (\cdots) \rightarrow q$ $\cdots 1 \cdots (\cdots) \rightarrow q$ $\cdots \perp \cdots (\cdots) \rightarrow q$ Take union this and A' by ϕ'

- Col.: Satifiability of WSkS formula is decidable
- Proof: Let *R* by the relation defined by WSkS formula φ. By Th. 2, there exists a TA *A* that recognizes *R*. It is enough to decide the emptiness of *A*, because "*R* = Ø iff *R* = Ø"

Relation recognizable by NFTA is definable by WSkS

• Coding \overline{t} of trees t

- Ex.: f(g(a), a) is representable by 4 sets (S, S_f, S_g, S_a), where $S = \{\varepsilon, 1, 11, 2\}$, $S_f = \{\varepsilon\}$, $S_g = \{1\}$, $S_a = \{11, 2\}$

• Validity of coded tree : $Term(X, X_{f_1}, ..., X_{f_n})$: $X \neq \emptyset \land Partition(X, X_{f_1}, ..., X_{f_n}) \land PrefixClosed(X)$ $\land \bigwedge_{i=0 \text{ arity}(f_j)=i}^k \forall x \left(x \in X_{f_j} \Rightarrow \left(\bigwedge_{\ell=1}^i x\ell \in X \land \bigwedge_{\ell=i+1}^k x\ell \notin X \right) \right)$

- Th. 4: Let *L* be regular language on \mathcal{F} . There exists a WSkS formula ϕ such that $t \in L$ iff $\overline{t} \models \phi$
- Proof: Let $A = (Q, \mathcal{F}, Q^f, \Delta)$ be an NFTA such that L = L(A), where

$$\mathcal{F} = \{f_1, \dots, f_n\}, Q = \{q_1, \dots, q_m\}, \text{ and}$$

 $\overline{t} = (S, S_{f_1}, \dots, S_{f_n})$

• Proof (cont.)

$$\phi$$
 is the following formula with free variables
 $X, X_{f_1}, \dots, X_{f_n}$:
 $\exists Y_{q_1}, \dots, \exists Y_{q_m}.Term(X, X_{f_1}, \dots, X_{f_n})$
 $\wedge Partition(X, Y_{q_1}, \dots, Y_{q_m})$
 $\wedge \bigvee \ \varepsilon \in Y_p$
 $p \in Q_f$
 $\wedge \forall x. \land \land \land ((x \in X_f \land x \in Y_p))$
 $f \in \mathcal{F} p \in Q$
 $\Rightarrow \bigvee \bigwedge \bigwedge_{f(p_1, \dots, p_\ell) \to p \in \Delta} \bigwedge_{i=1}^{\ell} x_i \in Y_{p_i})$

- Col. 5: Rec is definable by WSkS
- Proof: For a relation R in Rec, by Th. 4 there exists a WSkS formula ϕ such that $(t_1, \ldots, t_n) \in R$ iff $[t_1, \ldots, t_n] \models \phi$