Minimization

- Relation $\equiv \subseteq S \times S$ is an equivalent relation if the following properties hold:
 - Reflectively: $\forall t \in S, t \equiv t$
 - Symmetricity: $\forall t, s \in S, t \equiv s \Rightarrow s \equiv t$
 - Transitivity: $\forall t, s, u \in S$, $(t \equiv s \land s \equiv u) \Rightarrow t \equiv u$
- S is divided into equivalence classes by \equiv . Index $|\equiv|$ is the number of the classes
 - Equivalence class containing t:

$$[t]_{\equiv} = \{s \mid t \equiv s\}$$

$$-S = \bigcup_{t \in S} [t]_{\equiv}$$

• Equivalence relation \equiv on $\top(\mathcal{F})$ is congruence relation if the following property holds

 $t_1 \equiv s_1, \ldots, t_n \equiv s_n \text{ implies } \forall f \in \mathcal{F}, f(t_1, \ldots, t_n) \equiv f(s_1, \ldots, s_n)$

• Congruent relation \equiv_L on $\top(\mathcal{F})$ is determined by a language L:

 $t \equiv_L s$ if and only if $C[t] \in L \iff C[s] \in L$ for any context C

• Congruent relation \equiv_A on $\top(\mathcal{F})$ is determined by a complete DFTA $A = (Q, \mathcal{F}, Q^f, \Delta)$:

 $t \equiv_A s$ if and only if $t \to_A^* q$ and $s \to_A^* q$

- Thorem(Myhill-Nerode)
 The following conditions are equivalent
 1 L is regular
 - 2 *L* is equal to union of some equivalence classes of a congruence relation with finite index
 - $\mathbf{3} \equiv_L \mathbf{has} \mathbf{a}$ finite index

- Proof of $(1 \Rightarrow 2)$: Let $A = (Q, \mathcal{F}, Q^f, \Delta)$ be a complete DFTA recognizing *L*. Then
 - $-\equiv_A$ has a finite index since index is not greater than number of states of A, and

$$-L = \bigcup_{t \in L} [t]_{\equiv_A}$$

 \bullet Proof of (2 \Rightarrow 3): Letting \sim be congruence relation determined by 2, we show that

 $\forall t \in \mathsf{T}(\mathcal{F}), \ [t]_{\sim} \subseteq [t]_{\equiv_L}, \ \mathbf{i.e.} \ | \sim | \geq | \equiv_L |$

- Letting $s \in [t]_{\sim}$, $s \sim t$. Since \sim is congruent, $C[s] \sim C[t]$ for any context C. Thus $C[s] \in$ $L \iff C[t] \in L$ holds by 2. Therefore $s \equiv_L t$, i.e. $s \in [t]_{\equiv_L}$

- Proof of (3 ⇒ 1): Construct FTA A_{min} = (Q, F, Q^f, Δ) from ≡_L:
 Q = {[t]≡_L | t ∈ T(F)}
 f([t₁]≡_L,..., [t_n]≡_L) → [f(t₁,...,t_n)]≡_L ∈ Δ (DFTA from congruence property of ≡_L)
 Q^f = {[t]≡_L | t ∈ L}
 From t →^{*}<sub>A_{min} [t]≡_L and construction of Q^f,
 </sub>
 - A_{\min} recognizes L

- Cor.: Minimum DFTA recognizing a regular tree language *L* is uniquely determined as A_{\min} in Myhill-Nerode theorem under renaming
- Proof: Considering DFTA A such that L = L(A), from Myhill-Nerode theorem $[t]_{\equiv_A} \subseteq [t]_{\equiv_L}$ for any t
 - States of A are not less than states of A_{min} . Thus A_{min} is minimum
 - Uniqueness is clear from $[t]_{\equiv_A} \subseteq [t]_{\equiv_L}$
- Classes of \equiv_A (sates of A) are indistinguishable if they are contained a class of \equiv_L .

- Minimization of DFA A: merging indistinguishable classes of \equiv_A (states of A)
- Property to distinguish classes
 - If $q \in Q^f$ and $q' \in Q \setminus Q^f$, then q and q' are distinguishable
 - If q and q' are distinguishable, and $f(\cdots p \cdots) \rightarrow q$, $f(\cdots p' \cdots) \rightarrow q' \in \Delta$ then p and p' are distinguishable

• Ex.: $A = (\{q_a, q_b, \underline{q_{ab}}, q_{ba}\}, \{a, b, f(,)\}, \Delta, \{q_{ab}, q_{ba}\})$ $a \rightarrow q_a,$ $b \rightarrow q_b,$ $f: \begin{array}{c} q_a & q_b & q_{ab} & q_{ba} \\ q_a & q_a & q_{ab} & q_{ab} & q_{ab} \\ q_{ba} & q_{ba} & q_{b} & q_{ba} & q_{ba} \\ q_{ab} & q_{ab} & q_{ab} & q_{ab} & q_{ab} \\ q_{ba} & q_{ba} & q_{ba} & q_{ba} & q_{ba} \end{array}$

- Enumerate distinguishable states
 - every final state and non-final state are distinguishable
 - From $f(q_a, q_a) \rightarrow q_a$ and $f(q_b, q_a) \rightarrow q_{ba}$, q_a and q_b are distinguishable

$$\begin{array}{c|c|c|c|c|c|c|c|c|}\hline\hline & q_a & q_b & q_{ab} & q_{ba}\\\hline & q_b & \times & - & - & -\\\hline & q_{ab} & \times & \times & - & -\\\hline & q_{ba} & \times & \times & - & -\\\hline \end{array} \times : \text{ distinguishable } -: \text{ N/A}$$

- q_{ab} and q_{ba} can be merged

• Decidable problems

- Emptiness: $L(A) = \emptyset$?
- Finiteness: L(A) is finite ? Existence of loop $C[q] \rightarrow^*_A q$?
- Singleton set property: L(A) is singleton ?
- Equivalence: L(A) = L(A') ?