
Tree Transducers

• Transformation system for trees

Ex.: Conversion of LATEXto HTML

- Bottom-up tree transducer

- Top-down tree transducer

- Homomorphic approach

1

String (word) case

• Rational Transducers

2

• Rational Transducers: R = (Q,F ,F ′, Qi, Qf ,∆)

- F (F ′): Set of finite input (output) symbols

- Qi (Qf): Set of finite initial (final) states

- ∆： Set of rules q
f/m
→ q′,

where, f ∈ F ∪ {ε}, m ∈ F ′∗, q, q′ ∈ Q

• Transition relation →R (⊆ F∗ ×Q×F ′∗)

(ft, q, u) →R (t, q′, um) for q
f/m
→ q′ ∈ ∆

• Relation TR recognized by R:

TR = {(t, u) | (t, q, ε) →∗
R (ε, q′, u), q ∈ Qi, q

′ ∈ Qf}

3

• Definition by two homomorphisms:

- B = (Φ, L,Ψ), where

Φ : F ′′∗ → F∗

Ψ : F ′′∗ → F ′∗

L (⊆ F ′′∗): regular language

- TB = {(Φ(w),Ψ(w)) | w ∈ L}

• ε-free: no a ∈ F ′′ such that Φ(a) = ε

4

• Ex.: Transducer defined by homomorphisms:

Φ(β) = 〈 Φ(λ) = LOAD Φ(σ) = STORE Φ(µ) = MULT

Φ(α) = ADD Φ(ρ) =; Φ(ω) = 1 Φ(ζ) = 0

Φ(θ) =〉
Ψ(β) = 〈 Ψ(λ) = CHARGER Ψ(σ) = STOCKER Ψ(µ) = MULT

Ψ(α) = ADD Ψ(ρ) =; Ψ(ω) = 1 Ψ(ζ) = 0

Ψ(θ) =〉

5

Tree transducers

• Ex.: Transform syntax tree of (a + b) × c to

×(+(a, b), c)

• A grammar for arithmetic not suitable for

parsing

E → M | M + E M → F | F ×M
F → I | (E) I → a | b | · · · | z

• A LL(1)-parsable grammar G

E → ME′ E′ → +E | ε
M → FM ′ M ′ → ×M | ε
F → I | (E) I → a | b | · · · | z

6

• Bottom-up tree transducer NUTT:

A = (Q,F ,F ′, Qf ,∆), where ∆ is rules

f(q1(x1), . . . , qn(xn)) → q(u)

for f ∈ F , u ∈ T(F ′,Xn)

- Transition function A:

s →A t
def
⇐⇒

∃C, σ, l → r ∈ ∆. s = C[lσ] ∧ t = C[rσ]

- Conversion: for T ⊆ T(F),

A(T) = {s ∈ T(F ′) | t ∈ T, t →∗
A q(s), q ∈ Qf}

- linear: linear variables in RHS

- non-erasing: RHS has F ′ symbols

- non-deleting: LHS-varible appears in RHS

7

• Ex.: the final state qE

8

• NUTT (cont.)

t is the G-syntax tree of (a+ b)× c.

9

• Ex. U1: non-erasing and non-deleting

F = {f(), a}, F ′ = {g(,), f(), f ′(), a}, q′ ∈ Qf

a → q(a) f(q(x)) → q(f(x))
f(q(x)) → q(f ′(x)) f(q(x)) → q′(g(x, x))

U1({f(f(f(a)))}) is the set of

g(f(f(a)), f(f(a))), g(f(f ′(a)), f(f ′(a))),

g(f ′(f(a)), f ′(f(a))), g(f ′(f ′(a)), f ′(f ′(a)))

10

• Top-down tree transducer: NDTT

A = (Q,F ,F ′, Qi,∆), where ∆ is rules

q(f(x1, . . . , xn)) → C[q1(xi1), . . . , qp(xip)]

f ∈ F , C ∈ T(F ′,Xp), xi1, . . . , xip ∈ Xn

• Transition function A:

s →A t
def
⇐⇒

∃C, σ, l → r ∈ ∆. s = C[lσ] ∧ t = C[rσ]

• Conversion: for T ⊆ T(F),

A(T) = {s ∈ T(F ′) | t ∈ T, q ∈ Qi, q(t) →∗
A s}

11

• Ex.: with an initial state qE

12

• NDTT (cont.)

For tree s ∈ T(F ′), the tree t′ ∈ T(F) is ob-

tained by

qE(s) →∗
A′ t′,

where t′ is the G-syntax tree of a+ b× c.

13

• Ex. D1:

F = {f(), a}, F ′ = {g(,), f(), f ′(), a}, q ∈ Qi

q(f(x)) → g(q′(x), q′(x)) q′(f(x)) → f(q′(x))
q′(a) → a q′(f(x)) → f ′(q′(x))

D1({f(f(f(a)))}) is the set of 16 trees

g(f(f(a)), f(f(a))), g(f(f(a)), f(f ′(a))),

g(f(f(a)), f ′(f(a))), g(f(f(a)), f ′(f ′(a))),
...

g(f ′(f ′(a)), f ′(f(a))), g(f ′(f ′(a)), f ′(f ′(a)))

14

• Relation between classes

- NUTT 6= NDTT (e.g. U1 and D1)

- linear NDTT ⊆ linear NUTT

- NDTT = NUTT on linear and non-deleting

• Closure property by composition

- Not closed: NUTT, NDTT

- Closed: linear NUTT, determ. NUTT

- Composition of determ. NDTTs has an equiv-

alent composition of a non-deleting NDTT

and a transducer of linear homomorphism

• Domain of tree transducers are regular

• Regularity is preserved by linear transducer
15

• Tree transducer by homomorphism: similar

to string case

- B = (Φ, L,Ψ), where

Φ : T(F ′′) → T(F)

Ψ : T(F ′′) → T(F ′)

L (⊆ T(F ′′)): regular tree language

• NUTTs U has the same power as tree trans-

ducers B = (Φ, L, Ψ) by homomorphism

- U is linear ⇐⇒ Ψ is linear

- U is non-deleting ⇐⇒ Ψ in non-deleting

- U is ε-free ⇐⇒ Ψ is ε-free

16

