Tree Transducers

- Transformation system for trees Ex.: Conversion of LATEX to HTML
 - Bottom-up tree transducer
 - Top-down tree transducer
 - Homomorphic approach

String (word) case

• Rational Transducers

• Rational Transducers: $R = (Q, \mathcal{F}, \mathcal{F}', Q_i, Q_f, \Delta)$

- \mathcal{F} (\mathcal{F}'): Set of finite input (output) symbols
- Q_i (Q_f): Set of finite initial (final) states
- Δ : Set of rules $q \xrightarrow{f/m} q'$, where, $f \in \mathcal{F} \cup \{\varepsilon\}$, $m \in \mathcal{F}'^*$, $q, q' \in Q$
- Transition relation $\rightarrow_R (\subseteq \mathcal{F}^* \times Q \times \mathcal{F}'^*)$ $(ft, q, u) \rightarrow_R (t, q', um)$ for $q \stackrel{f/m}{\rightarrow} q' \in \Delta$
- Relation T_R recognized by R: $T_R = \{(t, u) \mid (t, q, \varepsilon) \rightarrow^*_R (\varepsilon, q', u), q \in Q_i, q' \in Q_f\}$

• Definition by two homomorphisms:

-
$$B = (\Phi, L, \Psi)$$
, where
 $\Phi : \mathcal{F}''^* \to \mathcal{F}^*$
 $\Psi : \mathcal{F}''^* \to \mathcal{F}'^*$
 $L (\subseteq \mathcal{F}''^*)$: regular language
- $T_B = \{(\Phi(w), \Psi(w)) \mid w \in L\}$
• ε -free: no $a \in \mathcal{F}''$ such that $\Phi(a) = \varepsilon$

• Ex.: Transducer defined by homomorphisms:

Tree transducers

- Ex.: Transform syntax tree of $(a + b) \times c$ to $\times (+(a,b),c)$
- A grammar for arithmetic not suitable for parsing

• A LL(1)-parsable grammar G

- Bottom-up tree transducer NUTT:
 - $A = (Q, \mathcal{F}, \mathcal{F}', Q^f, \Delta)$, where Δ is rules $f(q_1(x_1), \dots, q_n(x_n)) \rightarrow q(u)$ for $f \in \mathcal{F}, u \in T(\mathcal{F}', \mathcal{X}_n)$
 - Transition function A:
 - $s \to_A t \quad \stackrel{\text{def}}{\Longleftrightarrow} \\ \exists C, \sigma, l \to r \in \Delta. \ s = C[l\sigma] \land t = C[r\sigma]$
 - Conversion: for $T \subseteq T(\mathcal{F})$,
 - $A(T) = \{ s \in \mathsf{T}(\mathcal{F}') \mid t \in T, \ t \to^*_A q(s), \ q \in Q^f \}$
 - linear: linear variables in RHS
 - non-erasing: RHS has \mathcal{F}' symbols
 - non-deleting: LHS-varible appears in RHS

• Ex.: the final state q_E

$$\begin{array}{c} a \rightarrow q(a) \\ c \rightarrow q(c) \\) \rightarrow q_{1}()) \\ + \rightarrow q_{+}(+) \\ I(q(x)) \rightarrow q_{I}(x) \\ M'(q_{\varepsilon}(x)) \rightarrow q_{M'\varepsilon}(x) \\ M(q_{F}(x), q_{M'\varepsilon(y)}) \rightarrow q_{M'\varepsilon}(x) \\ M(q_{F}(x), q_{M'\varepsilon(y)}) \rightarrow q_{M'\varepsilon}(x) \\ M'(q_{\times}(x), q_{M}(y)) \rightarrow q_{M'\times}(y) \\ E'(q_{+}(x), q_{E}(y)) \rightarrow q_{E'+}(y) \\ F(q_{(}x), q_{E}(y), q_{(}z)) \rightarrow q_{F}(y) \end{array}$$

$$b \rightarrow q(b)$$

$$\varepsilon \rightarrow q_{\varepsilon}(\varepsilon)$$

$$(\rightarrow q_{(}(())$$

$$\times \rightarrow q_{\times}(\times))$$

$$F(q_{I}(x)) \rightarrow q_{F}(x)$$

$$E'(q_{\varepsilon}(x)) \rightarrow q_{E'\varepsilon}(x)$$

$$E(q_{M}(x), q_{E'\varepsilon}(y)) \rightarrow q_{E}(x)$$

$$M(q_{F}(x), q_{M'\times}(y)) \rightarrow q_{M}(\times(x, y))$$

$$E(q_{M}(x), q_{E'+}(y)) \rightarrow q_{E}(+(x, y))$$

• NUTT (cont.) t is the G-syntax tree of $(a + b) \times c$.

9

• Ex. U_1 : non-erasing and non-deleting $\mathcal{F} = \{f(), a\}, \ \mathcal{F}' = \{g(,), f(), f'(), a\}, \ q' \in Q^f$ $a \to q(a) \qquad f(q(x)) \to q(f(x))$ $f(q(x)) \to q(f'(x)) \ f(q(x)) \to q'(g(x, x))$ $U_1(\{f(f(f(a)))\}) \text{ is the set of}$ $g(f(f(a)), f(f(a))), \ g(f(f'(a)), f(f'(a))),$ $g(f'(f(a)), f'(f(a))), \ g(f'(f'(a)), f'(f'(a)))$

• Top-down tree transducer: NDTT $A = (Q, \mathcal{F}, \mathcal{F}', Q^i, \Delta), \text{ where } \Delta \text{ is rules}$ $q(f(x_1, \dots, x_n)) \rightarrow C[q_1(x_{i_1}), \dots, q_p(x_{i_p})]$ $f \in \mathcal{F}, C \in \mathsf{T}(\mathcal{F}', \mathcal{X}_p), x_{i_1}, \dots, x_{i_p} \in \mathcal{X}_n$

- Transition function A:
 - $s \to_A t \quad \stackrel{\text{det}}{\Longleftrightarrow} \\ \exists C, \sigma, l \to r \in \Delta. \ s = C[l\sigma] \land t = C[r\sigma]$

• Conversion: for $T \subseteq \mathsf{T}(\mathcal{F})$, $A(T) = \{s \in \mathsf{T}(\mathcal{F}') \mid t \in T, q \in Q^i, q(t) \to^*_A s\}$

• Ex.: with an initial state q_E

$$\begin{array}{ll} q_E(x) \to E(q_M(x), E'(\varepsilon)) & q_E(+(x,y)) \to E(q_M(x), E'(+,q_E(y))) \\ q_M(x) \to M(q_F(x), M'(\varepsilon)) & q_M(\times(x,y)) \to M(q_F(x), M'(\times,q_M(y))) \\ q_F(x) \to F((,q_E(x),)) & q_F(a) \to F(I(a)) \\ q_F(b) \to F(I(b)) & q_F(c) \to F(I(c)) \end{array}$$

For tree $s \in T(\mathcal{F}')$, the tree $t' \in T(\mathcal{F})$ is obtained by

 $q_E(s) \rightarrow^*_{A'} t'$, where t' is the *G*-syntax tree of $a + b \times c$.

• Ex. D_1 : $\mathcal{F} = \{f(), a\}, \ \mathcal{F}' = \{g(,), f(), f'(), a\}, \ q \in Q^i$ $q(f(x)) \to g(q'(x), q'(x)), \ q'(f(x)) \to f(q'(x))$ $q'(a) \to a, \ q'(f(x)) \to f'(q'(x))$

 $D_1(\{f(f(a)))\})$ is the set of 16 trees g(f(f(a)), f(f(a))), g(f(f(a)), f(f'(a))),g(f(f(a)), f'(f(a))), g(f(f(a)), f'(f'(a))),:

g(f'(f'(a)), f'(f(a))), g(f'(f'(a)), f'(f'(a)))

- Relation between classes
 - NUTT \neq NDTT (e.g. U_1 and D_1)
 - linear NDTT \subseteq linear NUTT
 - NDTT = NUTT on linear and non-deleting
- Closure property by composition
 - Not closed: NUTT, NDTT
 - Closed: linear NUTT, determ. NUTT
 - Composition of determ. NDTTs has an equivalent composition of a non-deleting NDTT and a transducer of linear homomorphism
- Domain of tree transducers are regular
- Regularity is preserved by linear transducer

• Tree transducer by homomorphism: similar to string case

-
$$B = (\Phi, L, \Psi)$$
, where
 $\Phi : T(\mathcal{F}'') \to T(\mathcal{F})$
 $\Psi : T(\mathcal{F}'') \to T(\mathcal{F}')$
 $L (\subseteq T(\mathcal{F}''))$: regular tree language

- NUTTs U has the same power as tree transducers $B = (\Phi, L, \Psi)$ by homomorphism
 - U is linear $\iff \Psi$ is linear
 - U is non-deleting $\iff \Psi$ in non-deleting
 - U is ε -free $\iff \Psi$ is ε -free