AWCBB

- AWCBB (Automata with constraints Between Brothers):
 - AWE DC in which constraints are restricted to i = j, $i \neq j$ ($i, j \in N$)
- Ex.:

-
$$A = (\{q\}, \mathcal{F}, \{q\}, \Delta)$$

 $\mathcal{F} = \{f(,), a\}$
 $\Delta = \{a \to q, f(q, q) \xrightarrow{1=2} q\}$

- L(A) is the set of complete binary trees
- AWCBB is closed by union, intersection, and complement

- Emptiness problem for AWCBB is decidable
- Key of the proof:
 - Consider a deterministic AWCBB. Then if

 $q_1 \neq q_2$ the following rule never be used $f(q_1, q_2) \stackrel{1=2}{\rightarrow} q$

- For the following rule, we must know whether more than one trees are reachable to the given state

 $a \to q, \ b \to q, \ f(q,q) \stackrel{1 \neq 2}{\to} q'$

• $M_{\mathcal{F}}$: maximum number of arguments of symbols in \mathcal{F}

•
$$L(q) \iff \{t \mid t \to_A^* q\}$$

- Lemma: for a rule $f(q_1, \ldots, q_n) \xrightarrow{c} q$ of deterministic AVVCBB, $|L(q)| \ge M_F$ if $|L(q_1)| \ge 1, \ldots, |L(q_n)| \ge 1$, $\exists q_i.|L(q_i)| \ge M_F$, and $\exists t_1 \in L(q_1), \ldots, t_n \in L(q_n).$ $f(t_1, \ldots, t_n) \models c$
- Proof sketch: let $t = f(t_1, \ldots, t_n)$. Note that c has no negation
 - Constraint i = j satisfied by t is also satisfied by a term obtained from t by replacing t_i with a term in $|L(q_i)|$, since $q_i = q_j$
 - Constraint $i \neq j$ satisfied by t is also satisfied by a term obtained from t by replacing t_i with an appropriate term in $|L(q_i)|$ in either cases that $q_i \neq q_j$ or $q_i = q_j$

- Th.: Emptiness for an AWCBB is decidable
- Proof sketch: Assume deterministic AWCBB with rule set Δ
 - Initialize $L_p := \emptyset$, and repeat the following step for each state p until L_p 's saturate
 - $L_q := L_q \cup \{t\}$ for t such that $t \notin L_q$, $|L_q| \leq M_F$ and the following holds:

 $f(q_1,\ldots,q_n) \xrightarrow{c} q \in \Delta$, $t_1 \in L_{q_1},\ldots,t_n \in L_{q_n}$, and

 $t = f(t_1, \ldots, t_n), t \models c$

- It is empty if $L_q = \emptyset$ for all accepting states q

Reduction automata

- AWEDC that satisfies the conditions
 - States are ordered <, and
 - For any $f(q_1, \ldots, q_n) \xrightarrow{c} q$, $\forall i.q_i > q$ if c contains EQUALITY $\forall i.q_i \ge q$ otherwise
- Ex.: Deterministic and complete reduction automaton accepting terms containing g(g(t,s),t) for some s,t)

$$\begin{aligned} a \to q_{\top}, \ g(q_{\top}, q_{\top}) \to q_g, \ g(q_{\top}, q_g) \to q_g, \ g(q_g, q_{\top}) \stackrel{11 = 2}{\to} q_f, \\ g(q_g, q_{\top}) \stackrel{11 \neq 2}{\to} q_g, \ g(q_g, q_g) \stackrel{11 = 2}{\to} q_f, \ g(q_g, q_g) \stackrel{11 \neq 2}{\to} q_g, \\ g(q, q_f) \to q_f, \ g(q_f, q) \to q_f \text{ where } q \in \{q_{\top}, q_g, q_f\} \end{aligned}$$

Property of reduction automata

- Closed under union and intersection Open for complement
- Emptiness problem
 - Decidable if complete and deterministic
 - Undecidable if non-deterministic
- Finiteness problem (finiteness of *L*(*A*)) is decidable