Development statistics

S03 Discrete Distribution

Fujikawa, Kiyoshi Nagoya University, GSID

Distribution

- 1. Discrete distribution
 - Binomial distribution
 - Poisson distribution
- 2. Continuous distribution
 - Uniform distribution
 - Normal distribution
 - T-distribution

Mean & variance of a discrete distribution

Mean of a discrete distribution

$$\mu = \sum_{n} X(k) p(k)$$

Continuous distribution

$$\sigma^2 = \sum_{n} (X(k) - \mu)^2 p(k)$$

Discrete Distribution

3

Bernoulli distribution (Coin throwing)

- 1 (success) with probability p (0.5)
- 0 (failure) with probability 1-p (0.5)
- Average

$$\mu = p *1 + (1 - p) *0 = p = 0.5$$

Variance

$$\sigma^2 = p * (1-p)^2 + (1-p) * (0-p)^2$$
$$= p(1-p) = 0.25$$

Discrete Distribution

4

Binomial distribution

- Probability of "success or failure"
 - 1 (success) with probability p
 - 0 (failure) with probability 1-p
- Trial times : n
- Probability of total points "x"

$$P(x) =_{n} C_{x} p^{x} (1-p)^{n-x}$$

Discrete Distribution

5

Binomial Distribution

- Binomial distributiontotal of Bernoulli distribution
- Mean

$$\mu = 1 * p + 1 * p + \dots = np$$

Variance

$$\sigma^2 = 1^2 p + 1^2 p + \dots = np(1-p)$$

Discrete Distribution

Example of BD

- 10 time trial
- Obtained points
 - 1 with probability 0.5
 - 0 with probability 0.5

	Point	Probability
Obverse side	1	0.5
Reverse side	0	0.5

Probability of total points "x"

$$Pr(x) =_{10} C_x 0.5^x 0.5^{10-x}$$

Discrete Distribution

7